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Abstract

We developed a fully automated procedure for analyzing data from LED pulses and multi-level 

bead sets to evaluate backgrounds and photoelectron scales of cytometer fluorescence channels.

The method improves on previous formulations by fitting a full quadratic model with appropriate 

weighting and by providing standard errors and peak residuals as well as the fitted parameters 

themselves. Here we describe the details of the methods and procedures involved and present a set 

of illustrations and test cases that demonstrate the consistency and reliability of the results.
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The automated analysis and fitting procedure is generally quite successful in providing good 

estimates of the Spe (statistical photoelectron) scales and backgrounds for all of the fluorescence 

channels on instruments with good linearity. The precision of the results obtained from LED data 

is almost always better than for multi-level bead data, but the bead procedure is easy to carry out 

and provides results good enough for most purposes. Including standard errors on the fitted 

parameters is important for understanding the uncertainty in the values of interest. The weighted 

residuals give information about how well the data fits the model, and particularly high residuals 

indicate bad data points.

Known photoelectron scales and measurement channel backgrounds make it possible to estimate 

the precision of measurements at different signal levels and the effects of compensated spectral 

overlap on measurement quality. Combining this information with measurements of standard 

samples carrying dyes of biological interest, we can make accurate comparisons of dye sensitivity 

among different instruments.

Our method is freely available through the R/Bioconductor package flowQB.

Key terms

flow cytometry; sensitivity; statistics; clustering algorithms; regression analysis; bioinformatics; 
data analysis; photoelectron scale; LED; microspheres

Introduction

The basic capabilities of a fluorescence cytometer measurement channel can be estimated by 

knowing just two values: Q, the statistical number of photoelectrons (Spe) generated per unit 

of dye in the sample, and B, the background light in dye equivalents that sets the minimum 

variance that underlies all measurements (1,2). From these the minimum detectable amount 

of dye and the precision of measurements at different signal levels can be calculated. 

Therefore, measurements of Q and B are the key to making valid comparisons between 

different instruments and among different channels on an instrument. This information can 

be very useful in identifying problems on an instrument and can be critical in situations like 

multi-site trials where good comparability of data taken on different instruments is 

necessary.

High Q values are useful in improving the quality of cytometer measurements both in 

relation to single channel signal versus background (illustrated in (3) Figres 5 and 7 and in 

(1) Figures 7, 8 and 9) and in spectral overlap correction (compensation) where high Q 

values contribute to improved discrimination of signals-of-interest relative to the 

measurement variance effects of spectral overlaps ((4), including calculations in the 

Appendix).

We can achieve full specification of Q and B in two steps by evaluating photoelectron scales 

and backgrounds for the measurement channels of interest and relating those to 

measurements on dye reference samples. There are problems and challenges in 

implementing each step in a way that is convenient and accurate in routine use. Here we 

address the photoelectron scale aspect by providing reliable automated software for 
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obtaining the needed information from LED or multi-level, multi-dye bead data. The 

automated procedure avoids the effort and inconsistencies involved in manual analysis of 

cytometry data and requires only specification of the appropriate data files and some specific 

information like identification of fluorescence and light scatter channels. Since problems, 

including some outside the range of those encountered in testing, will inevitably occur, we 

have included several kinds of quality checking outputs designed to alert users to suspect 

conditions or questionable results.

Signal production in fluorescence cytometers

When a cell or particle moves through a sensing area on a flow cytometer, a focused laser 

beam excites fluorescent dyes that emit a pulse of light in all directions. The optical system 

collects some of this light and passes it through optical filters to the cathodes of one or more 

PMT detectors where a fraction of the photons generate photoelectrons. The photoelectrons 

are amplified through a series of dynodes to produce an output current pulse. Photoelectron 

production is a Poisson process, so the variance of signals at a particular level is proportional 

to the signal level itself (5). Since the amplification process through the dynodes results in 

some additional variance, we introduce the term “statistical photoelectrons” or Spe to denote 

the effective Poisson number relating signal levels and their variances. Spe values should be 

approximately (g-1)/g times actual photoelectrons where g is the dynode step gain (5). For 

the currently typical 9-dynode PMTs with maximum gain of about 107, g can be as high as 

6, but usual PMT voltages give g in the range of 4 leading to Spe values about (g-1)/g = ¾ of 

the actual photoelectron count.

One instrument used in the study uses avalanche photodiodes (APDs) rather than PMTs, and 

the analysis of additional noise due to amplification is more complex than in the case of a 

PMT. The concept of Spe is still appropriate for APDs since there is a direct relationship of 

Spe to photon generated events.

Background signal includes electronic noise from the detector and the signal processing 

electronics and optical background from light not associated with a cell or particle transit. 

Electronic baseline restoration keeps background signal from offsetting the pulse 

measurements, but the background does introduce corresponding additional variance in the 

results.

Some instruments measure signal Height rather than, or in addition to, Area. If the shapes of 

pulses at different signal levels are the same, the Height and Area measurements will be 

closely proportional except at low signal levels where Heights are elevated by peak detection 

on noise fluctuations.

Estimating Q and B

Since it is difficult to measure photoelectron counts directly, the usual method for estimating 

photoelectron scales has been to measure uniform light signals at various levels and fit the 

measured means and variances to a statistical model involving the Poisson distribution 

expectations for the relation between them. Historically, two kinds of signal source have 

been used for this kind of evaluation: an LED light source producing very uniform pulses at 

adjustable signal levels or a mixture of populations of microspheres (also called “beads”) 

Parks et al. Page 3

Cytometry A. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



labeled with several different concentrations of a mixture of fluorescent dyes (or, in some 

cases, measurements of a single population of bright microspheres with a sequence of 

neutral density (ND) filters). The model can be expressed as a second-degree (quadratic) 

polynomial relating the observed signal means and variances to Q, B and CV0, a source of 

variability in the measurements that is assumed to be the same among the several 

microsphere populations (or LED pulse levels).

Summary of previous methods for estimating Q and B from LED or bead measurements

Although not referred to as Q and B, Steen (5) used LED pulses to characterize the ability to 

convert fluorophore molecules detected in a flow cytometer into photoelectrons in a PMT. 

Steen also recognized the contributions of both the detection efficiency of signal photons 

and the background photons that were continuously present. Chase and Hoffman (1) adapted 

Steen’s basic approach to one that could be done on any flow cytometer using a set of 

fluorescent beads that spanned the signal range from dim to bright. The results with beads 

were compared to results with LED pulses to demonstrate that at least qualified beads could 

substitute for LED pulses to measure Q and B. For bead evaluations, the observed CV of the 

brightest bead population in the set was used as an estimate of the combined intrinsic CV 

and flow path variation effect for all of the populations. This fixed the second order term in 

an otherwise quadratic model allowing results to be obtained by fitting a linear model.

The quadratic mean and variance model and equation

For measurements on a population of similar particles like one of the populations in a multi-

level bead set, the observed variance should be the sum of several components, specifically, 

electronic noise, background light not associated with the particles, Poisson variance related 

to the signal levels of the particles, the variation in dye amount among the particles and 

illumination variations due to particles taking different flow paths through the laser beam. 

The electronic noise and background light combine into a variance contribution that is not 

dependent on the signal level. The Poisson variance is proportional to the signal level, and 

the dye and illumination variations combine to form CV0 whose contribution to the observed 

variance goes with the square of the signal level. Therefore, the general equation for the 

observed variance and its components can be expressed as

(Eq. 1a)

where MI is the mean signal of the population in measurement intensity units, and V(MI) is 

the observed variance of a population with mean MI. We will fit sets of mean and variance 

data points with this equation to obtain the parameters c0, c1 and c2.

If we scale the signal levels in Spe, we can define BSpe as the effective background level in 

Spe and MSpe as the mean signal in Spe. BSpe and MSpe are Poisson distributed variables, so 

their contribution to the variance equals their value. Since CV0 is not unit dependent, its 

contribution to the total variance will be CV0
2M2 for any scaling of M, and the equation 

becomes
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(Eq. 1b)

Considering that the overall CV is also not unit dependent, it can be expressed as

(Eq. 1c)

Defining QI as the Spe per intensity unit, QI = MSpe/MI or MSpe = MIQI and, from Eq. 1c, 

V(MSpe) = V(MI)QI
2. Rewriting Eq. 1b with these relations, we obtain

(Eq. 1d)

Dividing by QI
2 we obtain

(Eq. 1e)

Comparing Eq. 1a and Eq. 1e, we see that c0 = BSpe/QI
2, c1 = 1/QI and c2 = CV0

2 or, 

alternatively, BSpe = c0/c12, QI = 1/c1 and CV0
2 = c2. These relations provide the physical 

interpretation of the fit parameters.

Improved and automated evaluation of Q and B

In the interest of creating a very reliable fully automated computational procedure for 

evaluating Q and B, we have made five important improvements over previous work:

1. We have implemented a set of methods that eliminate all subjective gating in 

evaluating multi-peak microsphere samples thereby providing consistent results 

in a fully automated mode. These include automated FSC-SSC peak finding and 

gating, K-means segmentation to assign data events to the appropriate peaks, and 

Gaussian peak fitting to minimize the influence of outlier events and peak shape 

distortions derived from the samples themselves and from flow conditions in the 

cytometer.

2. Most previous methods have tried to estimate CV0 separately and then fit the 

data to a linear model for Q and B. We fit all three parameters of the quadratic 

model at once.

3. We have implemented appropriate weighting in carrying out the least squares 

fitting. Since the variances of the different points are quite variable, this is 

important for obtaining accurate results and has not been done in much of the 

previous work.

4. We provide standard errors for all of the fitted parameters so that uncertainties in 

the Q and B estimates can be taken into account.
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5. We provide weighted residuals for the populations in each fit. These reveal any 

data points that are seriously out of line and act as an important quality control 

monitor.

Materials and Methods

Multi-level, multi-dye particle sets

We tested an 8-level multi-dye particle set (Sph8) from Spherotech (Lake Forest, IL 64005), 

Lot AE01, and a 6-level set (TF6) from Thermo Fisher (Fremont, CA 94538), item FC3MV, 

Batch2. More-or-less uniform bead populations are commonly referred to as “peaks”, 

particularly when in a multi-level series. Both types consist of polystyrene microspheres 

about 3 μm in diameter dyed internally with different dilutions of a mixture of 5 (Sph8) or 4 

(TF6) fluorescent dyes with a range of spectra to provide signals in all fluorescence channels 

of multi-laser cytometers. The average signal step ratio between the Sph8 peaks is about 2.7 

while the average step ratio between TF6 peaks is about 3.9. In addition to the dyed 

populations, each set includes a population of “blanks” with no added dye. The base 

microsphere lots include a main population of single microspheres with some aggregates and 

some particles of different sizes. The samples are provided as a mixture of the different 

populations which all have the same light scatter properties, so a combination of FSC-SSC 

light scatter gating to isolate the main population and a method for assigning events to the 

appropriate fluorescence populations is required to specify the individual peaks for statistical 

analysis. Ideally, the dyes will be uniformly distributed in the particles so that the 

distribution of dye amounts reflects the volume distribution of the particles in the main peak 

of the sample. In that case, the intrinsic CV of the dye distributions will be the same at all 

dye concentrations and peak brightness levels. The fitting procedure assumes that a single 

intrinsic CV is applicable to all of the bead peaks in a set, but, since the populations labeled 

with different concentrations of the dye mixture are processed separately, the intrinsic CVs 

may not be truly identical. Also, at very low dye concentration, the limited number of dye 

molecules per particle may produce a detectable Poisson variation in itself.

LED signal generation, attenuation and coupling into cytometers

Two LED signal generators were used in this work. For most of the work we used a battery-

powered device designed and constructed by James Wood. It produces light pulses at a 

repetition rate of 1300/sec with a total pulse width of 2.0 μsec and a width at half maximum 

(FWHM) of 1.3 μsec. A current amplifier drives the LED producing light pulses with 

amplitude CVs of less than 0.2%. This device provides variable electronic attenuation over a 

signal level range of about 1600:1. In some cases it was used at maximum output with an 

optical fiber attenuation device that produces about 10,000:1 signal range by varying the 

distance between the LED and the fiber input. A second constant-level LED output provides 

an independent threshold signal. For the tests involving different LED pulse widths, we used 

a device consisting of an Agilent 33120A Function/Arbitrary Waveform Generator 

producing truncated Sinc function ((sin x)/x) pulses with adjustable width coupled to a 

Hewlett Packard 8013B Pulse Generator that provided threshold signals with variable delay 

relative to the Sinc function pulses. Signal level adjustments on this system were made with 

the optical fiber attenuation device.
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On most of the instruments we tested, it was possible to mount a white 3 mm LED 

(NTE30044 Super Bright white LED) or the 2 mm fiber optic output of the attenuator close 

to the laser-sample stream intersection facing the collection optics so that all fluorescence 

detectors could be illuminated at once. Instruments used here that required more customized 

LED signal introduction are noted in the next section.

Instrument setup and data acquisition

As part of a larger instrument evaluation and comparison study, we collected LED series and 

multi-level bead data on 23 different cytometers. The instruments were set up for ordinary 

cell data collection conditions, generally what would be used for immunophenotyping work 

on lymphoid cells. Each instrument was equipped with its usual optical filters. On most 

instruments, LED data was taken with lasers off. In addition, a series of additional 

conditions and variations were investigated on one LSR-II instrument (designated LSR-IIF 

in the larger study, BD Biosciences, Milpitas, CA USA). These included data sets taken at 

different times, tests at several different PMT voltages, LED data with different pulse widths 

and bead data at different sample flow rates. Other instruments providing data reported here 

include other LSR-IIs (LSR-IIB, LSR-IIC, LSR-IIE, LSR-IIH), a two FACSArias (Aria-B 

and Aria-C), a FACSCanto (Canto), a Fortessa (Fortessa-A), a BD Influx (Influx-A) (all 

manufactured by BD Biosciences, Milpitas, CA USA) and a Xitogen XTG1600 prototype 

instrument (Xitogen was acquired by Beckman Coulter Life Sciences, Indianapolis, IN 

USA, and the test instrument was the precursor to the Beckman Coulter CytoFLEX.). On the 

Influx, the LED was mounted at the usual nozzle tip position. On the Xitogen XTG1600, the 

optical fiber output was coupled successively into the input of each detector set.

LED data files with 20,000 events were collected at approximate 2x intervals across the 

attenuation range of the LED system. The white LEDs provide some signal at all visible 

wavelengths (nominally 425nm to 750nm), but the far-red emission is weak. A given LED 

pulse level will generate quite different photoelectron signals on different detectors, so it is 

important to collect data over a wide range of LED levels to assure that the measurement 

series on each detector will include the low, middle and high level signals needed for optimal 

results in the fitting procedure. For the multi-level bead sets, 100,000 events were collected 

to assure that each defined peak would include about 10,000 events.

Peak evaluation for LED data files

LED data were acquired as a separate file for each LED level. All of the events in each file 

should represent valid LED signals. However, for consistency and to minimize problems due 

to possible stray events or imperfect linearity, we fit a Gaussian to the data and use its mean 

and variance as the Mean and Variance estimates.

Automated peak analysis of multi-level bead data files

The multi-level bead samples consist of a mixture of subsamples with different dye levels 

that are all based on the same original undyed bead lot. Therefore, the FSC and SSC 

distributions are all the same. The data events consist of a main population with at least 80% 

of the events, other low-frequency populations, bead doubles and aggregates and some small 

particles and debris.
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The identification of event populations at the different dye levels and the estimation of their 

means and variances proceeds in three steps:

1. To isolate the core of the main population, we employ a peak finding routine in 

the log-FSC and log-SSC dimensions separately. The data values are sorted, and 

the width of each region containing 10% of events is evaluated across the data 

range to find the narrowest, and thus densest, region. Then, on each side, the 

10% zone is moved away from the peak until the width is twice what it was at 

the densest region. The medians of the data in each of these two zones are taken 

as the upper and lower bounds of the interval where the estimated density is 

greater than half the maximum. The midpoint, which is half of the sum, is taken 

as the center and half the difference is taken as the radius. Finally, the data are 

gated by an ellipse in log-FSC versus log-SSC centered at the midpoints with a 

radius in each dimension equal to twice the radius estimated from the half width 

in that dimension.

2. We employ a standard K-means clustering algorithm from the ‘stats’ R package 

(6) to assign each data event in the FSC-SSC main peak gate to one of 6 (TF6) or 

8 (Sph8) clusters. The data in each fluorescence dimension is presented to the K-

means procedure in a logicle transformation (7,8) so that assigning events to the 

“nearest” cluster reliably gives correct assignments. The K-means procedure is 

applied to all of the fluorescence dimensions at once so that, as long as the peaks 

are well separated in at least some dimensions, the correct segmentation is 

achieved for all of the peaks in all dimensions.

3. In each of the fluorescence dimensions, we carry out a Gaussian fit for each 

cluster using the 'getOutliers' function from the 'extremevalues' R package, and 

we take the mean and variance of the best fit Gaussian as the Mean and Variance 

for the population. The fitting procedure strongly discounts outlier events and is 

relatively insensitive to peak distortion due to sample flow rate effects.

Peak validity criteria for Area and Height measurements—Once we have Mean 

and Variance values for the LED or bead peaks, we need to exclude any peaks that do not 

comply with the requirements of the data model. On some instruments, the blank bead 

population or the lowest LED peaks may be cut off at a data baseline so that the peak 

statistics will not be valid. Therefore, peaks too close to the baseline are excluded from the 

quadratic fitting. Many instruments do not maintain good linearity to the full top of scale, so 

it is important to specify a maximum level for good linearity and, on each fluorescence 

channel, exclude any peak that is above that maximum. We tested a sample of different 

instruments for linearity by measuring a single-level, multi-dye bead sample at a series of 

PMT voltages and tracking the ratio of signal medians between double and single bead 

peaks (ideally, a constant ratio of about 2.0). On Becton Dickinson instruments that utilize 

CS&T, the Baseline procedure evaluates linearity. The method is somewhat different from 

the double-single ratio procedure, but the results are similar when both procedures are run in 

parallel.
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Area measurements are generally usable to down to zero signal level as long as the data 

acquisition system allows the negative side of the distribution to be recorded. For Height 

measurements at low signal levels, however, peak detection on noise+signal fluctuations 

results in higher means and lower variances than would be expected for the actual signal 

levels. To minimize distortion in the Height fitting, we have excluded peaks with Means less 

than ten times minimum peak height or with CVs > 65%.

Fitting the LED and multi-level bead data, assigning appropriate weights to the data and 
evaluating standard errors and individual peak weighted residuals

For a given detector and LED data file or isolated bead peak i we have Ni observations Xij. 

The sample mean  and variance  are then 

also statistics with their own errors and distribution. We used unbiased estimators so that 

E[Mi] = E[Xi] and E[Xi] = Var[Xi], where E[Xi] and Var[Xi] are the true (but unknown) 

values of Mi and Vi respectively. For normal Xi, the Mi are also normally distributed with 

 while Vi has a rescaled chi squared distribution, which will be very close 

to normal for large Ni and with . Technically, since both coordinates are 

subject to random errors, this is an error in variables model, which is, in general, hard to 

solve exactly. However, these two statistics are known to be independent so the errors are at 

least uncorrelated. In the ideal case (e.g., LED signals where electronic noise and light 

background are negligible) and in Spe coordinates, we have E[Xi] = Var[Xi] = Spe, so that 

, and, for large samples, the ratio of the 

errors is . for a pulse of 100 Spe this ratio is more than fourteen to one and rising 

with pulse amplitude. The intrinsic CV0 of the beads complicates this but, in the range of a 

few percent, does not change the conclusion that the variance in the Vi dimension dominates 

for all but the very smallest signals. Therefore, we can ignore the errors in Mi altogether and 

use the method of weighted least squares (9), where the weights are conventionally given as 

the inverses of the Var[Vi]. The least squares solution is not affected by a linear scale change 

of the data, so it doesn’t matter if we don’t actually know the Spe scale when doing the 

computation. The error estimated by least squares for the c0 coefficient is likely to be 

systematically low on channels with very low background because of the neglected errors, 

but the c0 error is not something that we rely on for making detailed comparisons.

To put this into a more descriptive form and describe the actual methods employed, the 

peaks in the multi-level bead samples and the LED data series have a wide range of 

variances, so unweighted least squares fitting is not appropriate, and we need to apply 

appropriate weights in the fitting procedure. In particular, the populations with lower 

variances get more weight since having the fit miss them by any particular amount is worse 

than missing a high variance population by the same amount. The weights are typically 

supplied to the statistics package as one divided by the expected variance and, using the 

formula above, we could express them in terms of the true variance Var[Xi] if we knew it. 

We have taken two approaches in carrying out the fitting procedure. The simpler one is to 
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derive the estimate from the value we already have in hand, namely Vi. In the second 

approach, the coefficients of the fit polynomial are first estimated using weights for each 

point computed directly from the sample variance of each peak as in the first method. These 

results are then refined iteratively by computing new weights based on the variance 

predicted by the fit polynomial, evaluated at the mean of each peak and refitting. This 

process is repeated until all the coefficients have converged to four significant figures, i.e., 

the absolute value of the relative change in the coefficients was less than the round off error 

of 5×10−5. This occurs quickly, usually in about 4 iterations.

When the uncertainty in estimates of peak means and variances are due to limited sample 

size and related statistical variability, the iterative method has theoretical advantages and 

should improve the accuracy of the results. However, with sample sizes in the range of 

10,000 events per sample population, statistical error should be small, and improvements 

using the iterative method should be minimal. For multi-level beads, the main sources of 

error in the fitting are likely to be differences in the effective CV0 of the different bead 

populations leading to data that contains systematic deviations from the assumptions of the 

quadratic model. The multi-level bead samples start with a single undyed lot of polymer 

beads, and aliquots of that are stained with different concentrations of a mixture of several 

dyes. In our experience, optimal uniformity of the staining may not be achieved in all of the 

separately dyed populations in a multi-level sample, and any production problems will tend 

to give one or more populations with effective CV0 higher than the others. One population 

with high CV0 will shift the initial fit parameters somewhat away from what would be 

obtained with all equal CV0s, but, in the presence of one bad data point, the single step 

method, while degraded, generally produces a sensible result from the remaining points.

When the initial fitting procedure is applied with its assumption of a single CV0 for all 

populations, any population with higher CV0 can be expected to have an observed variance 

greater than that predicted by the fit. Applying the iterative procedure in this situation will 

increase the weights of any bad points and shift the fit parameters away from those 

corresponding to the actual Spe scale and Background values that are the objective of the 

whole procedure. The iterative method can be driven quite far from the single step result by 

trying to accommodate an inopportunely placed bad point. Therefore, it should not be used 

blindly but only after quality control of the first step result. Our results discussed below in 

the section “Are there differences in intrinsic CV …” demonstrate that this is a relevant 

issue, so in this work we have relied on the results of the single fitting procedure.

The fitting routine provides estimates for the three quadratic parameters (c0, c1 and c2) and 

their standard errors. A weighted residual is evaluated for each data peak as the difference 

between the observed variance and the fit parameters estimate of that variance multiplied by 

the square root of the weight for that peak.

In the data processing and fitting we use the R packages flowCore (10), flowViz (11), xlsx 

and extremevalues. The first two are available from BioConductor http://

www.bioconductor.org/ and the remaining two are available from any CRAN mirror. 

Package flowCore is used to read and write FCS files, flowViz is used for visualization and 

debugging, xlsx lets us read the Excel spreadsheets that we use in order to organize files and 
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capture metadata essential for the automated calculations, and the function getOutliers in 

extremevalues returns as part of its output the estimated mean and standard deviation 

obtained by fitting a Gaussian distribution. The quadratic model is fit using the 'lm' (linear 

model) function from the 'stats' library in R. We are able to use the 'lm' function since our 

quadratic model is essentially a linear model in two variables, one of which is the square of 

the other. For some work we used the equivalent platform in JMP 10 (SAS Institute, Cary, 

NC, USA).

LED fitting includes both quadratic and linear fits

For LED analysis, results are reported for both quadratic fitting and linear fitting (effectively 

fixing CV0 = 0). Since the uniformity of LED signal outputs is likely to be better than the 

ability of the cytometer electronics to evaluate it, the c2 term in a quadratic fit should be 

very close to zero with a small standard error. If the results of the quadratic fit are consistent 

with CV0 = 0, we can rely on the linear fit results whose standard errors on c1 will generally 

be smaller than the c1 standard errors of the quadratic fit.

Information needed to carry through the otherwise fully automated procedure

The scripted analysis procedure requires some information to process the sample data 

correctly:

1. A folder or file name and designation as LED or multi-level bead data.

2. For different populations in a single file, the number of peaks to be identified.

3. Fluorescence channels to be used in the fitting must be identified and designated 

as Area or Height. Also, for bead data, channel names for light scatter gating 

dimensions are needed.

4. The highest measurement level that is expected to maintain good linearity.

Note that no subjective processing or gating decisions are involved.

Monte Carlo modeling for the effect of CV0 differences in fitting

When the weighted residuals in the fits are good for both LED signals and multi-level beads 

on the same instrument, we usually see good correspondence among the c1 fit parameters, 

but the relative standard errors are almost always larger for the bead fits than for the 

corresponding LED fits. In order to clarify whether this is due to imperfections in the beads 

themselves or because the presence of a positive quadratic term in itself reduces the 

sensitivity of the model, we conducted a series of Monte Carlo simulations of the procedure. 

Given a number of peaks, a fixed ratio between the successive peaks and a signal value for 

the top bead, we calculate a defined set of peak means Mi. Then, for a given choice of the 

parameters (c0, c1 and c2=CV0
2), we can form a suitable set of variances Vi using a chi-

squared distribution pseudo random number generator and then fit these data to the model. 

For each trial the predicted relative error of c1 and the actual relative error are recorded. 

After 1000 trials the average predicted relative error and standard deviation of the actual 

relative error are saved.
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We extended the modeling to include the effect of differences in effective CV0 among the 

different bead peaks by multiplying each Vi by a pseudo random factor, log normally 

distributed with a mean of one and 5% CV thereby simulating random errors in the 

uniformity of the beads themselves.

FlowJo and JMP data analysis for data illustrations

FlowJo 9.7.6 and FlowJo VX0.7 (FlowJo LLC, Ashland, OR USA) were used for additional 

analysis of fcs data files and for production of some data illustrations. JMP 10 software was 

used to produce illustrations of the quadratic fitting results and weighted residuals.

Results

In this section we illustrate the results of the gating and fitting procedures on 11 different 

instruments and then focus on confirming the validity of the analytical methods used, the 

consistency of the results over variations in the measurement conditions and comparison of 

the results obtained from LED data with those from multi-level bead sets. The validity tests 

include results on the normality of the LED data and the distortion of low-level Height 

measurements. We carried out a series of consistency tests investigating the stability of the 

Spe scaling results with data sets taken at different times, at different PMT voltages, at 

different pulse widths (LED data only) and at different sample flow rates (multi-level bead 

data only). These consistency tests were all conducted on one LSR-II (LSRII-F) in the 

Stanford Shared FACS Facility.

Gating results for multi-level beads

Figure 1 illustrates the measurements on the Sph8 and TF6 bead sets and the results of the 

FSC-SSC gating on the main bead peak. Panel A shows the FSC-SSC pattern of Sph8 

beads, and panel B shows the events in the automated elliptical gate on the main peak 

region. Panel C shows all events in two fluorescence dimensions, and panel D shows the 

same plot for just the events in the main peak gate. Panels E, F, G and H show the parallel 

plots for TF6 beads. The Sph8 sample shows more events and low frequency populations 

outside the main FSC-SSC peak than the TF6 sample (compare panels A and E), but, 

within the main peak gated population, the Sph8 fluorescence populations are well defined 

with few events outside the peaks while the FSC-SSC gated TF6 fluorescence populations 

show more outliers (compare panels D and H). In the 23 instrument comparison series, the 

FSC-SSC gating procedure identified the main single bead FSC-SSC peak in all cases.

K-means segmentation results for multi-level beads and setting the logicle Width for 
reliably accurate peak assignments

The K-means assignment of the events to the appropriate bead peaks depends on having 

each bead peak resolved from the others in at least one fluorescence dimension. Both the 

Sph8 and TF6 samples showed good resolution of all peaks in at least one fluorescence 

dimension on each of the 23 instruments tested, and correct peak segmentation was achieved 

in all cases. Rather than attempting to identify dimensions with good peak separations, the 

automated method uses all fluorescence dimensions in the K-means procedure, and the 

dimensions in which peaks are well resolved dominate the results.

Parks et al. Page 12

Cytometry A. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The K-means procedure assigns each data point to the cluster center closest to it, but, in 

cases where the lowest population is spread too widely, K-means may divide it into two 

clusters and combine two other peaks as a single cluster. Since the Sph8 and TF6 bead sets 

have nearly equal frequencies of the different populations, this kind of clustering error 

results in two half-frequency clusters and one double-frequency cluster. Finding this pattern 

indicates that the Width must be increased. In the 23 instrument data series the initial logicle 

Width setting of 0.5 led to correct K-means segmentation of the Sph8 and TF6 bead peaks 

for all but one instrument (see (5) for an explanation of the logicle Width parameter). 

Increasing the logicle Width parameter to 1.0 gave accurate peak segmentation on all of the 

instruments. If necessary, an appropriate logicle Width could be determined for each 

measurement channel individually as described in (5).

Fitting results for multi-level beads

The upper and middle parts of Figure 2 illustrate the results of fitting Sph8 and TF6 bead 

peaks with the quadratic model, showing examples of two fluorescence channels (FITC and 

PE) for each bead set. To obtain graphical illustrations, we used a fitting procedure in JMP 

that is equivalent to the one we used in R for the main analysis. In the JMP results illustrated 

here, the fit parameters labeled Intercept, M and Mˆ2 correspond to c0, c1 and c2, 

respectively. The four fits are all reasonably good with no extreme residuals and relative 

standard errors on the linear term (M ⇔ c1) in the range of 3–8%. As long as there are at 

least 4 valid peaks in a data set, the fitting procedure provides estimates of the three fitting 

parameters (c0, c1 and c2) with standard errors for each of them. If there are only 3 valid 

peaks, the fitting parameters are evaluated, but no error estimates can be made. The 

weighted residuals indicate how much the fitted curve misses each point relative to the 

weighting for that point. For data that match the model perfectly with only the expected 

statistical variations, the weighted residuals should have a Gaussian distribution with mean 

of zero and standard deviation of 1. For real measurement samples under good conditions, 

the weighted residuals spread somewhat more than the theoretical expectation without any 

obvious pattern, but in some situations high residuals point to deviations from instrument 

linearity or to problems in particular samples or particular data collections.

Analysis of LED data – normality of the data distributions and uniformity of LED signals

For LED data, although we evaluate the Mean and Variance of each population by Gaussian 

fitting, we expect that the LED peaks will be normally distributed since the pulses are very 

uniform, and measurement variation should be dominated by the Poisson process of 

photoelectron production. We confirmed this expectation by testing some of the measured 

distributions for normality. Sample results are illustrated in Supplementary Material Figure 

S1 where the plots show that the data distributions are virtually identical to the theoretical 

expected distributions.

We tested the uniformity of the LED pulses by placing the LED directly in front of a PMT 

operating at a low 265V to allow signals producing high photoelectron counts to be on scale. 

With the electronic attenuation system, we measured signals at the minimum setting and 

compared them to signals with the LED at maximum level but with 1000× optical 

attenuation to achieve the same signal level on the PMT. The optically attenuated maximum 
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level signals were measured at 0.13% CV including Spe variance, indicating that they are as 

uniform as the system can reasonably measure. The LED signals with electronic attenuation 

were measured at 0.8% CV indicating some measurable variability but not enough to be a 

problem since, in the normal configuration, the observed CVs at minimum setting were 

much greater than this on all measurement channels.

Fitting results for LED data

An example of linear fitting to LED data (with lasers on) is shown in the bottom part of 

Figure 2 for the same instrument and measurement channels that were illustrated for the 

quadratic bead fits. In the JMP output, Intercept and M correspond to c0 and c1, 

respectively, and c2 is effectively set to zero. In both channels the linear fit is good with no 

excessive residuals, and the relative standard errors on the linear terms (M ⬄ c1) are very 

good at about 0.7% (compared to 3–8% for bead fits on the same channels).

Measurement distortion with low Height signals

As described above in the Methods section “Peak validity criteria for Area and Height 

measurements”, both Means and Variances of low-signal populations in Height 

measurements are distorted by selection of the highest point in a signal pulse as the Height 

value for the pulse. At high signal levels, we observe, as expected, that the ratios of Height 

to Area means and the ratios of Height to Area variances or standard deviations are constant 

over a range of signal levels. At lower signal levels, Me-H/Me-A rises, and SD-H/SD-A 

decreases, indicating that the Height evaluations are being affected by noise fluctuations 

around the peak. Figure 3 shows an example in which Me-H/Me-A is up by about 4% and 

SD-H/SD-A is down by about 6% in the region where the measured Height is 10 times the 

lowest Height value (with zero actual signal) compared to the plateau values at high signal 

levels. This suggests that peaks with Means less than about 10 times the minimum Height 

value should be excluded to avoid distorting the fit by including data that does not comply 

with the linearity expectations of the data model. For the current work, we use a 10x cutoff.

Examples of fitting procedure outputs and comparison of LED and bead results

The flowQB package produces a number of tables and other outputs that contain the primary 

fitting results and multiple types of other results that are useful for quality assurance and 

troubleshooting. An example of tables showing input Means, Variances and weights for LED 

fitting on one fluorescence channel and the weighted residuals for the resulting fit is in 

Supplementary Material Table S1. Table 1 shows an example of the primary results from 

LED and bead fits on 8 channels of one LSR-II instrument (LSR-IIF, later run). The upper 

part of the table is the direct output from the fitting procedure for LED quadratic, LED 

linear, Sph8 Beads and TF6 Beads. The lower part shows ratios among the components of 

the fit results and some results expressed in terms of CV0, QI and BSpe. The quadratic fit 

results include the c0, c1 and c2 parameters and their standard errors. The LED quadratic fit 

includes a c2 P-value line. In this example, the P values are all non-significant except for a 

0.001 for FITC and a 0.002 for PE, but the corresponding c2 values which represent CV0
2 

are both negative and cannot represent a real positive CV0. Therefore, we rely on the linear 

fit results for the LED data noting that the LED linear values for “c1 Relative StdErr (%)” in 
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the lower section are all smaller than the LED quadratic values except for FITC and PE, and, 

even for these the fitted c1 values differ by no more than 2%.

For the bead fits the CV0 estimates corresponding to the fitted c2 values are shown in the 

lower section where the CV0 values are all in the 1–2% range. The c0 and c1 relative errors 

for the bead fits are all higher than for the LED fits with some c1 relative standard errors 

close to 2% but with several over 10%. In the bottom section of the table, 11 of the 16 Sph8 

and TF6 bead fit c1 values are within 10% of the corresponding linear LED c1 values, and 

only one differs by more than 20%.

Comparison of c1 values and c1 standard errors between LED and bead fits on several 
instruments

Figure 4 shows the c1 parameter values and their standard errors relative to the LED c1 for 8 

measurement channels on a number of different instruments. Panels A and B show Area 

results for two runs on the same LSR-II (LSR-IIF) taken 8 months apart. The patterns are 

very similar indicating that both the measurements and their errors were stable over that 

period. Panel C shows Height fit results from the same run as Panel B. This is generally 

similar, but some bead evaluations show more deviation from the LED values and larger 

standard errors due to the need to omit some low signal beads in the Height fitting as 

described above in “Measurement distortion with low Height signals”. Figure 2 is based on 

FITC and PE channel data from the original run on this instrument (Figure 4, Panel A), and 

Table 1 is based on the run 8 months later (Figure 4, Panel B), leading to similar but not 

quite identical fitting results in the FITC and PE columns.

Panels D, E and F show data from a different LSR-II, a FACSAria and a Canto. The 

patterns show some similarities to the first LSR-II and some differences. Overall, the LED 

fits give much smaller standard errors than the bead fits. Most of the bead derived c1 

parameters are within 20% of the LED values except for the V450 channel. Panel G shows 

results for an Influx system with analog logamps that show periodic irregularities in their 

signal evaluations. These irregularities generate shifts in peak positions and variances that 

increase the uncertainties in the fit results leading to high variability in the bead fits and to 

much higher relative standard errors on the LED evaluations of c1 than are seen on the other 

instruments.

Panel H shows results for the Xitogen prototype instrument. This cytometer uses solid-state 

detectors and novel optics to achieve much higher Q values (as Spe per unit of dye) than any 

of the PMT detector instruments tested. The solid-state detectors do, however, have 

relatively high noise/background. The fitting works well on LED data and gives low relative 

errors on c1, but the bead fits give erratic values and large error estimates. It turns out that 

almost all of the observed variance in the bead peaks is accounted for by the background and 

CV0 (c0 and c2) components so that the c1 contribution is small and difficult to estimate. In 

this case where even the lower bead peaks are measured at relatively high Spe levels, 

differences among the intrinsic CVs of the bead peaks will produce anomalous contributions 

to the observed peak variances so that the assumption of equal intrinsic CVs for all stained 

beads in the set fails to be an acceptable approximation. Comparison of the CVs from LED 

pulses and from beads at similar signal levels on a Xitogen instrument showed the dimmest 
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beads in both bead sets to have higher intrinsic CV’s than the brightest beads in the set. This 

causes inaccurate estimation of c1 in bead fitting evaluations.

Monte Carlo modeling for the effect of CVo differences in fitting

We investigated the possibility that bead CV0 values in the 2% range in themselves lead to 

higher c1 relative standard errors compared to LED results. Monte Carlo modeling 

confirmed that this is the case. The test emulated TF6 bead data on an LSR-II with 6 peaks 

each containing 10,000 events at peak mean levels starting at 100,000 signal units and going 

down by a factor of 3.5 for each step. The procedure systematically probed the parameter 

space covering the actual range of results on the LSR-II instruments. An example of the 

results, presented as the relative error as a function of Spe per signal unit and CV0, is shown 

in the upper panels of Supplementary Material S2. The plots demonstrate that, in bead fits 

with relatively low error estimates, virtually all the additional error over the LED results can 

be accounted for by the loss of sensitivity due to CV0 > 0 and that, for both bead data with 

no special problems and for the LED data, the performance is close to the theoretical limit.

We also investigated the sensitivity of the fitting procedure to small deviations in the peak 

variances by multiplying each peak variance by a 5% CV pseudo-random factor to simulate 

random errors in the beads themselves with results illustrated in the lower panels of 

Supplementary Material Figure S2. The additional variation did increase the error as 

expected but did not appear to destabilize the model. Even if it were possible to measure 

these effects for real beads and correct the data to account for them, the accuracy would not 

be substantially improved as long as CV0 itself can't be reduced. This, of course, does not 

address the problems that any systematic errors would introduce. We also looked at models 

with a few different background levels and found that the results are not sensitive to this for 

realistic values (data not shown).

Are there differences in intrinsic CV among the populations in a multi-level bead sample?

In some cases the bead fit results are much worse than the Monte Carlo results can explain, 

so we analyzed some of the data for indications of substantial differences in the intrinsic 

CVs of the different bead peaks in a set. Such a violation of the assumptions of the quadratic 

model could cause the kind of consistently high standard errors seen in the V450 channel 

data on most instruments illustrated in Figure 4, especially among the TF6 results. We tested 

the data from 9 instruments on three spectrally separated measurement channels (APC, FITC 

and V450). We obtained a residual variance by subtracting the background variance 

contribution (c0) and a linear term variance (estimated from the LED linear fit c1′ value) 

from the observed total variance. Dividing this residual variance by the square of the mean 

signal level for each peak gives an effective c2 value for that peak. We subtracted the 

effective c2 for the highest peak used in the fit from the values for the other peaks leading to 

the results for “Excess c2” shown in Figure 5. Here positive values indicate excess variance 

in the particular peak relative to the highest one. In the left panels for Sph8 beads, peaks 2 

and, to a lesser extent, 3 show erratic differences between instruments and measurement 

channels, and the values for the higher beads are all small with no obvious pattern. Since the 

Sph8 peaks 2 and 3 are not very bright, the residual variance estimates are probably not very 

accurate and small differences in the effective CV will not have much effect on the c1 
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estimate. In the right panels TF6 peak 2, which is relatively brighter than the low Sph8 

peaks, stands out with high c2 increments in all three channels on all instruments. The 

average value in the range of 0.002 for peak 2 in the V450 channel would correspond to an 

intrinsic CV in the range of 5% when the other peaks are in the range of 2% or less. This is 

probably the reason for the poor V450 fits on most instruments. Interestingly, the smaller but 

detectable deviations for TF6 peak 2 in the APC and FITC channels are not associated with 

consistently bad fits, presumably because the measured CVs of peak 2 in those channels are 

higher than the peak 2 CVs in the V450 channel.

Under favorable conditions Bead fit estimates of c1 have relative standard errors of less 
than 10% and c1 values within 20% of the LED-based estimates

We evaluated the c1 (= 1/QI) values and their relative standard errors for selected 

instruments with good linearity to determine how well we can expect the bead fitting to 

work in general. Figure 6 shows the distribution of the LED c1/Bead c1 (= Bead QI/LED QI 

= Bead Spe/LED Spe) ratio in relation to the Bead c1 relative standard error for 7 

measurement channels of 10 instruments that should have good linearity and for which 

usable LED, Sph8 and TF6 data and fits are available. We consider points in the highlighted 

region with LEDc1/Beadc1 between 0.8 and 1.2 and Bead fit c1 relative standard errors no 

more than 10% to represent good results for the Bead fitting. Among the 140 data points, 

only 4 (3%) represent bead c1 values more than 25% above or below the LED c1 value. 

Overall, 89% of the points fall between 0.8 and 1.2, although some of these have relative 

standard errors greater than 10% so that we would not have high confidence in the c1 values. 

The “good” points in the 0.8 to 1.2 range with relative standard errors less than 10% 

constitute 78% of the total. The center of the LED c1/Bead c1 distribution is at about 0.95 

indicating that the bead fit Spe estimates average about 5% lower than the LED-based 

estimates.

We ran a series of 5 consistency tests to confirm that the fitting results and parameter 
values behave appropriately under various differences in measurement conditions. 

Besides the main investigation involving acquisition and analysis of parallel LED and multi-

level bead data on a series of cytometers, we tested the same instrument at different times, at 

different PMT voltages, at different bead flow rates (2 types of tests) and with different LED 

pulse widths.

Test 1: Consistent Spe scales were found on a single instrument over 8 months

The evaluation panel of LED and bead analyses was run again on LSR-IIF 8 months after 

the original multi-instrument program (see the c1 parameter results in Figure 4, Panels A 
and B). For each data source (LED, Sph8 and TF6) the ratio between the later and earlier 

Spe/Intensity values across 8 dye channels averaged close to 1.01 with a standard deviation 

among channels of about 4%.

Test 2: Spe scales measured at different PMT voltages show the expected gain 
proportional changes

LED data series and Sph8 and TF6 samples were recorded at three different PMT voltage 

levels on one instrument. The voltages were the standard starting voltages for the instrument 
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and voltages 10% and 20% above that to give signal gains of about 2 and 4 times the 

standard gain, respectively. The resulting data sets were analyzed by the usual fitting 

method, and the resulting c1 estimates were adjusted with the reference particle signal levels 

to give Spe values that would ideally be the same for the different PMT voltages. Averaging 

over 7 dye channels and LED, Sph8 and TF6 data, the Spe scale at +10% voltage averaged 

1.043 times that at the standard voltage with an SD of 0.043. The Spe scale at +20% voltage 

averaged 1.020 times that at +10% with an SD of 0.034. These results show that the 

estimated Spe scales shift appropriately with gain changes. The background or c0 term 

scaled in Spe decreased with increasing PMT voltages as expected. The adjusted 

background at +10% voltage was 74% of that at the standard voltage and decreased further 

to 60% at the +20% voltage indicating that the background at the standard setting included a 

substantial electronic noise contribution whose relative contribution decreased at higher 

gain.

Test 3: Higher sample flow rates increase c2=CV0
2 estimates but have little effect on 

c1=1/QI for Sph8 and TF6 analyses

Multi-level bead samples were run on LSR-IIF at three different sample flow rates with 

volume ratios close to 1:3:5. Over 18 fluorescence channels each for Sph8 and TF6 beads, 

the corresponding average ratios for c1 were 1:1.011:1.015 while the c2 averages were 

1:1.85:2.89. This shows that the c1 estimates were quite stable while the c2 values increased 

with flow rate as expected.

Test 4: Comparison of methods for estimating bead peak Mean and Variance

In the Sph8 and TF6 data collected at different flow rates, the narrower peaks are clearly 

unsymmetrical with low-side tails (skew) that are more prominent at higher flow rates. The 

automated procedure does a Gaussian fit for each bead peak in each fluorescence dimension, 

and the resulting SD estimates are lower than directly calculated SDs or robust SDs as 

shown in Supplementary Material Figure S3. The different methods all project to the same 

SD at zero flow rate, but the Gaussian fitted estimates are less affected by flow rate 

differences than the other estimators, so we consider them to be preferable for use in the 

quadratic fitting procedure.

Test 5: Comparison of Area and Height Spe values for different pulse widths

On instruments that offer both Area and Height measurements from the same signal inputs, 

differences in the Spe scales reveal differences in the relative efficiency with which the Area 

and Height evaluations use the available signal. To investigate this directly, we used the 

Agilent LED driver to generate pulses with different widths on LSR-IIF. Differences in laser 

focusing resulted in different bead pulse widths on different fluorescence channels, so we 

adjusted the LED driver to approximate the bead pulse widths with FWHM (Full Width at 

Half Maximum) 0.9 μsec (matching the 405 nm laser), FWHM 2.0 μsec (532 nm laser) and 

FWHM 2.7 μsec (488 nm and 640 nm lasers). The values of SpeH/SpeA were 0.88 at 0.9 

μsec, 0.58 at 2.0 μsec and 0.46 at 2.7 μsec. The Area processing should utilize the whole 

photoelectron pulse, so at 2.7 μsec pulse width the Height measurements utilize less than 

half of the available light. An example of parallel fitting of Area and Height measurements 

on the same set of signals is shown in Supplementary Materials Table S1.
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Discussion

Advantages and disadvantages of LED versus Bead-based estimation of background and 
Spe scales

The automated analysis method that we have developed works reliably for both LED and 

bead data. The LED method has the advantages of providing considerably more precise 

estimates for Spe scales and yielding good results on all measurement channels of almost 

any instrument that allows a path for the LED signals to reach the detectors (with rare 

exceptions like the Accuri noted below). The intrinsic CVs of the LED signal peaks should 

be essentially zero at all levels, and closely spaced peaks covering a wide range of signal 

levels can be used since the data collections are separate. This leads to results with very low 

relative standard errors unless the instrument electronics do not provide good linearity or 

something is actually wrong with the instrument. On most of the instruments we tested, the 

LED signal introduction does not block the normal light path, and background 

measurements can be made with lasers on (electronic noise plus continuous laser 

background) or off (electronic noise only). Knowing both of these backgrounds is valuable 

for selecting PMT voltages that optimize sensitivity for samples with minimal 

autofluorescence and can be useful in detecting light scatter leakage and Raman scatter 

contributions to background.

A special device is required to produce the LED signals, but a suitable signal generator is 

now commercially available as quantiFlash™ from A·P·E Angewandte Physik & Elektronik 

GmbH, Berlin, Germany. Use of LED pulses also requires access to light paths leading to 

the cytometer’s detectors both for threshold signals (usually the FSC or SSC channel) and 

for the fluorescence channel signals. Such signal introduction may be difficult or require 

unacceptable disassembly in some instruments. Also some measurement systems are 

incompatible with simple LED pulse inputs. In testing an Accuri instrument, we were able to 

deliver signals to each of the detectors individually, but the Area processing gave high 

variability on the blue laser channels, and the LED signals were fundamentally incompatible 

with the modulated red laser system. Some instruments offer no reasonable way to introduce 

LED signals in the light path unless the manufacturer were to build them in.

The multi-dye, multi-level bead sets are easy and convenient to run and require no skills 

beyond those needed to run typical test particles. Successful automated analysis relies on 

having good FSC-SSC data to obtain clean populations, and the instrument must show 

adequate separation of the different bead peaks on at least one measurement channel. The 

operator must exercise reasonable care in running the bead samples. We have observed some 

problems with excessive carryover of one sample into the next and with samples run at high 

flow rates spread out both the light scatter and fluorescence peaks. Fitting the three quadratic 

parameters requires three valid points to obtain a fit at all, and 4 or more points are needed to 

obtain error estimates. More points in the middle range where photoelectron statistical 

variation is usually the dominant source of variance is better for obtaining Spe estimates 

with low standard errors. The current 6 or 8 level bead sets are minimal in this regard since, 

for a given measurement channel, one or more peaks may be outside the good linearity 

range, and for Height data one or more peaks may have to be excluded at the low end. With 

Parks et al. Page 19

Cytometry A. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6 or 8 peak beads, we often find some channels with too few valid points for fitting with 

error estimates and occasionally for Height measurements even the minimum of 3 points is 

not maintained. The number of peaks in a mixed set is limited by the need to be able to 

resolve all of the peaks accurately, but separating alternate peak levels into two different 

samples might allow for more peaks with closer spacing.

Even if all aspects of the bead measurements are optimal, the fitting results show relative 

standard errors that are consistently higher than for good LED data with some errors above 

useful levels. Our Monte Carlo results indicate that the presence of a non-zero intrinsic CV 

limits the quality of the fits, and whatever differences in intrinsic CV exist among the bead 

populations in a set will make this worse. In the case of the second peak in the TF6 set we 

found clear evidence that it has a much higher intrinsic CV than the other members of the 

set. This was particularly clear for the V450 channel, and almost all instruments showed 

poor fits with the TF6 set on this channel. Manufacturers of the bead sets may find it useful 

to evaluate bead peak data in comparison to LED data as a quality control measure to 

identify any problems in consistency of different bead peaks in a set. We noted a similar 

problem on multiple channels of the Xitogen instrument where the dimmest beads were 

measured with low enough CVs for discrepancies in peak uniformity to degrade the 

estimates of fitting parameters.

Data acceptance and troubleshooting

The current flowQB output includes several kinds of analysis results that are useful in 

quality assurance and troubleshooting. We expect to develop warning flags to highlight any 

results that indicate problems in the data or unreliability in the results, but we have not yet 

settled on the appropriate trigger levels for issuing such warnings. The initial features to 

check are the relative standard errors on the c1 (=signal units/Spe) parameter that are usually 

below 3% for LED data (<10% for analog logamp systems) and less than 10% for most bead 

data (but 20–25% may be as good as the bead samples support in some measurement 

channels. For LED data, quadratic fit c2 parameters highly significantly different from zero 

indicate some sort of problem may result from inadequate instrument linearity or, if c2 is 

clearly positive, possible noise in the LED signals. When we see discrepancies in LED 

relative standard errors or c2 values, we go to the individual peak residuals to see if any are 

particularly high pointing to a problem in instrument linearity or, if c2 is clearly positive, 

possible noise in the LED signals. Table S1 shows an example of the input data points and 

weighted residuals in the resulting fit.

For bead fits, large relative standard errors in c1 and data peaks with high residuals on a few 

channels point to inconsistencies in the production of the bead populations at different 

levels. If these occur on most or all channels, the K-means peak segmentation may be 

incorrect. The outputs of the flowQB package include a color dot plot showing the events 

allocated to each of the K-means populations. Any problems in the segmentation will be 

clearly visible in this display, and, for well-balanced multi-level bead sets, large differences 

in number of events per population indicate allocation errors. Increasing the logicle 

transform Width parameter corrected the allocations of data events to bead populations in 

Parks et al. Page 20

Cytometry A. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the one case where we observed this problem. Excessive c2 values may point to a flow 

problem or excessive flow rate in the data collection.

Alternative methods for estimating population weights in the quadratic fitting

The evaluations presented here use the single pass weighting and fitting method described 

above in the section on “Fitting the LED and multi-level bead data”. We have also used an 

alternative method described there and included in the flowQB package that re-evaluates the 

weights after initial fitting and refits until the results to reach convergence. With LED data 

and with most bead data we have not seen substantial differences between the results of the 

two methods. We attribute the significant differences we have seen with some bead data to 

imperfect matching of the bead populations in the multi-level sample. Since the iterative 

method has different degrees of freedom than the single estimation method, it’s possible that 

the iterative method is overfitting or customizing the fit to imperfections in the bead 

samples. More investigation is warranted in this area, and different sets of multi-level beads 

might give different results, but, for the current evaluations, we have relied on the single pass 

method.

Availability and details of the flowQB R/BioConductor package

The flowQB - Automated Quadratic Characterization of Flow Cytometer Instrument 

Sensitivity R/BioConductor is available from http://bioconductor.org/packages/flowQB. 

Please see the package Vignette (http://bioconductor.org/packages/release/bioc/vignettes/

flowQB/inst/doc/flowQBVignettes.pdf) and manual (http://bioconductor.org/packages/

release/bioc/manuals/flowQB/man/flowQB.pdf) for a detailed description. The Vignette 

includes examples of the tables and other outputs produced by flowQB.

Data and fitting results are available in the FlowRepository

All of the cytometer data used in this work, as well as the fitting procedure results, is 

available in the FlowRepository at http://flow.org/id/FR-FCM-ZZTF.

Closing summary

We have demonstrated an automated analysis for evaluating backgrounds and Spe scales on 

fluorescence cytometers and applied it to a series of instruments using both LED signals and 

multi-level, multi-dye bead sets. The method has proved to be reliable and robust. Even in 

situations where high noise levels or poor linearity resulted in large errors of estimate, the 

computations worked properly, and the results were useful in identifying the problems.

On instruments with good linearity and reasonable noise levels, the LED method yields both 

Background and Spe scale estimates with standard errors usually under 1%. The results 

using multi-level, multi-dye bead sets give standard errors that are considerably higher and 

more variable. However, considering that individual PMTs can show efficiency differences 

up to a factor of 2, our finding that bead-derived Spe scale values are usually within 20% of 

those from LED data if the relative standard error estimates are not much over 10% confirms 

that the bead method can provide quite adequate accuracy for most instrument evaluation 

purposes.
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In order to make comparisons of sensitivity for particular dyes and effective backgrounds, 

we need to evaluate samples carrying these dyes of interest and, if possible, use samples 

with calibrated amounts of dye so that measurements taken at different times and in different 

places can be aligned. Combining such results with the Spe scale and background 

evaluations presented here gives Q values in Spe per dye unit and backgrounds in dye units. 

These values provide valid and useful comparisons of the capabilities of different 

instruments. We have tested promising samples of beads carrying specified dye levels of 

antibody reagents in lyophilized form. Having something like this generally available for a 

variety of common dyes would complement the work we report here to make high quality 

instrument evaluations routinely available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Light scatter gating on the main single particle population in Sph8 and TF6 bead samples. 

Panels A and E show the FSC-A vs. SSC-A light scatter patterns for Spherotech 8-peak 

(Sph8) and Thermo Fisher 6-peak (TF6) beads. After peak detection in each dimension and 

gating on the main single particle peak, the gated FSC vs. SSC distributions are shown in 

Panels B and F. The ungated distributions for FITC-A vs. PE-A signals are shown in Panels 

C and G, and the corresponding gated distributions are in Panels D and H. Note that Panels 

A, B, E and F show an enlarged view of the FSC-A and SSC-A dimensions starting at a 

signal level of 104.
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Figure 2. 
Examples of fitting procedure outputs for fit parameters, fit curves and weighted residuals on 

multi-level bead and LED data. The upper, middle and lower sections each show results in 

FITC and PE measurement channels for Spherotech 8-peak (Sph8), Thermo Fisher 6-peak 

(TF6) and LED measurements, respectively. These results were produced in JMP, and the fit 

parameters Intercept, M and M^2 correspond to c0, c1 and c2, respectively, in the R 

analysis. The population means M are in instrument measurement units. Linear fitting was 

used for the LED data, so there is no M^2 parameter in the results. The left plots show the fit 

Parks et al. Page 24

Cytometry A. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



curve in relation to the fitted data points. The right plots show the weighted residuals for 

each of the data points.
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Figure 3. 
Distortion of Height Mean and SD measurements at low signal levels relative to Area Means 

and SDs. LED measurements on the FITC channel of LSR-IIF were evaluated for both Area 

and Height Means and SDs. For each LED level, the Mean Height was divided by the Mean 

Height for a data set with zero LED signal (MeH/MeH0) to obtain the value displayed on the 

horizontal axis. The ratio of the Height Mean to Area Mean (MeH/MeA) and Height SD to 

Area SD (SDH/SDA) were evaluated for each LED level and normalized to the value at 

about MeH/MeH0 = 850.
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Figure 4. 
Relative c1 values and relative standard errors on c1 for LED, Sph8 and TF6 fits. Values for 

c1 and its relative standard error for LED signals, Sph8 beads and TF6 beads on several 

instruments and measurement channels were normalized to the corresponding LED c1 value. 

Panels A and B show results for the same instrument takes 8 months apart. Panel C shows 

Height data corresponding to the Area data in Panel B. Panels D, E, F, G and H show 

parallel results for 5 other instruments. Since 1/c1 = QI = Spe/signal unit, bead values 

greater than 1.0 correspond to Spe scale estimates lower than the LED estimates. In some 
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cases the c1 ratio for beads to LED is greater than the 1.7 maximum of the plot scale. In 

these cases, the bead fit had failed to produce a reasonable correspondence with the LED 

result, and the exact value is not relevant.
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Figure 5. 
“Excess c2” among lower signal bead peaks in Sph8 and TF6 is an indicator of differences 

in intrinsic CV among the bead populations. For each bead peak between the unstained and 

the brightest used in the fitting procedure, we calculated a residual variance by subtracting 

the expected background variance (c0) and the expected linear term variance using the c1′ 
value of the corresponding LED fit from the observed total variance. Dividing this by the 

square of the peak mean gives an effective c2 residual and subtracting the effective c2 for the 

highest peak in the fit from the others gives “Excess c2” values for the intermediate peaks 
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that can be compared among different peaks and instruments. The figure illustrates results 

for three measurements (APC, FITC and V450 dye channels) on nine instruments.
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Figure 6. 
LED c1/Bead c1 estimates (= Bead Spe/LED Spe) in relation to relative standard errors for 

Bead c1. The figure includes data on 7 measurement channels of 10 instruments that should 

have good linearity and for which usable LED, Sph8 and TF6 data and fits are available. We 

consider points in the highlighted region with LEDc1/Beadc1 between 0.8 and 1.2 and Bead 

fit c1 relative standard errors no more than 10% to represent good results for the Bead 

fitting.
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