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ABSTRACT

The RNA-binding ability of ribosomal protein L1 is of
profound interest since the protein has adual function
as a ribosomal protein binding rRNA and as a trans-
lational repressor binding its mRNA. Here, we report
the crystal structure of ribosomal protein L1 in com-
plexwith a specific fragment of its nNRNA and compare
it with the structure of L1 in complex with a specific
fragment of 23S rRNA determined earlier. In both com-
plexes, a strongly conserved RNA structural motif is
involved in L1 binding through a conserved network
of RNA—protein H-bonds inaccessible to the solvent.
These interactions should be responsible for specific
recognition between the protein and RNA. A large
number of additional non-conserved RNA—protein
H-bonds stabilizes both complexes. The added con-
tribution of these non-conserved H-bonds makes
the ribosomal complex much more stable than the
regulatory one.

INTRODUCTION

L1, one of the largest ribosomal proteins, is located on the side
protuberance, opposite the L7/L.12 stalk of the 50S ribosomal
subunit. In the isolated state L1 proteins have two different
conformations: a closed conformation in the case of bacterial
L1 from Thermus thermophilus (1) and an open one in the case
of its archaeal homologues from Methanococcus jannaschii
(2) or Methanococcus thermolithotrophicus (3). L1 is a
primary RNA-binding ribosomal protein, which associates
independently, specifically and strongly with 23S rRNA (4).
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We have recently determined the crystal structure of L1 in
complex with a specific 55 nt fragment of 23S rRNA (5).
It is known that L1 proteins in Escherichia coli and in
Methanococcus species regulate their own expression by bind-
ing to their mRNAs, thereby acting as translational repressors
(6-10). L1 from Escherichia coli (EcoLl) mediates auto-
genous regulation of translation by binding to a region within
the leader sequence, close to the Shine—Dalgarno sequence,
of the mRNA of the L11 operon coding for ribosomal proteins
L1 and L11 (6). L1 from M.vannielii (Mval.1) was shown to
be an auto-regulator of the MvaL.1 operon encoding ribosomal
proteins L1, L10 and L12 (8). It was also shown that EcoL.1
can inhibit the in vitro translation of MvaLl polycistronic
mRNA and, conversely, that MvalLl can inhibit the synthesis
of both L11 and L1 proteins of E.coli (9). However, there are
no structural data available on the conformation of the mRNA
to which L1 binds, either in isolation or with L1 bound.

In bacteria and archaea, the L1 regulatory target site
exhibits high similarity in both sequence and secondary struc-
ture to the L1 binding site on the 23S rRNA. L1 proteins from
mesophilic and thermophilic bacteria and archaea bind to the
specific site on 23S rRNA with 5- to 10-fold higher affinity
than to their regulatory binding site on the mRNA (10). This
difference fits the requirements of classical regulation of
ribosomal synthesis (feedback inhibition) based on direct
competition between the two binding sites. Direct comparison
of the structures of the complexes formed by regulatory ribo-
somal proteins with their targets on rRNA and mRNA is an
attractive task. Only one such investigation has been made
recently for ribosomal protein S8 (11).

We prepared and crystallized several complexes between
bacterial and archaeal L1 proteins and specific fragments of
their mRNAs (S. Tishchenko, unpublished). The structure
of one of these complexes, M.jannaschii L1 (MjalL1) with a
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fragment of its mRNA, has been determined and compared
with the structure of L1-rRNA complex. The comparison
revealed a network of strongly conserved H-bonds, which
are inaccessible to the solvent. Atoms involved in these H-
bonds must be responsible for the specific RNA—protein recog-
nition.

MATERIALS AND METHODS

Identification of a MjaL1ImRNA fragment suitable for
MjaL1-mRNA complex formation

The first aim was to design a ‘minimal’ mRNA fragment,
an RNA fragment as short as possible which still would retain
the full affinity for L1. From the structure of the L1-rRNA
complex (5), we concluded that, apart from the nucleotides
essential for L1 recognition (shown with black background in
Figure 1), the two helices flanking the asymmetric loop might
beessential forL1binding. Comparisonofthe L1bindingsiteson
the mRNA from M .jannaschii with that of the closely related
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Figure 1. Secondary structure of the regulatory L1-binding site on the
L1mRNA of M jannaschii and derivatives thereof used in binding experiments
and crystallization trials. (A) Localization of the L1-binding site and of the 30S
ribosomal subunit as part of the translation initiation complex on the LImRNA.
Nucleotides different in the M.vannielii LImRNA are shown with smaller sized
letters. (B) Fragment MjaL ImRNA-49 comprising nucleotides +28 to +68 with
four additional base pairs (italic) at the 3’ and the 5 end. Fragment
MjaL1mRNA-38a comprising nucleotides +24 to +38 and +54 to +72 is closed
by the tetraloop UUGC (italic). Fragment MjaL1mRNA-38b is similar to
MjaL.ImRNA-38a, but the free 3’ and 5" ends have been replaced by an ex-
tended helix as in MjaLImRNA-49. Fragment MjaL1mRNA-30 comprising
nucleotides +28 to +38 and +54 to +68 is closed by a tetraloop as in
MjaL1mRNA-38. The cluster of nucleotides conserved in all 23S rRNA and
mRNA binding sites is shown with black background.
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M .vannielii revealed that the 7 bp helix (nucleotides +28 to +34
and +62 to +68) flanking the asymmetric loop was identical in
both species, whereas the sequence of the upper part of the
stem—loop structure (comprising nucleotides +40 to +51) was
only poorly conserved between the two species (Figure 1A).
Thus, it was a reasonable assumption that this stem—loop
structure was not essential for L1 binding.

Several RNA constructs that included the regulatory MjaL.1
binding site were synthesized (Figure 1B) and tested for their
MjaL.1-binding activity using filter binding assays. As Table 1
shows, fragments MjaL1mRNA-49, MjaLImRNA-38a and
MjaL1mRNA-38b (Figure 1B) bind L1 with virtually the
same (full) affinity as a 250 nt MjaLImRNA fragment, con-
firming that the stem—loop structure distal to the asymmetric
loop does not contribute to the L1-mRNA interaction, and can
be shortened to a 3 bp helix closed by a tetraloop without any
loss of affinity for L1. Unexpectedly, the 30 nt fragment
MjaL1mRNA-30 (Figure 1B) does not exhibit any specific
affinity for MjaL 1, indicating that the 7 bp helix alone is not
sufficient for L1 binding. The apparent dissociation constant
determined for MjaLL1 in complex with the MjaL1mRNA-30
(Kqof 1077 M) is virtually the same as for MjaL.1 in complex
with a 16S rRNA fragment, which was used as a negative
control. MjaL1, in general, shows a rather high unspecific
affinity for any RNA. L1 from the closely related M.vannielii,
which does not show such an unspecific affinity for RNA, does
not bind to MjaLImRNA-30, but exhibits the full affinity for
the other three short mRNA fragments tested (data not shown).

All three transcripts exhibiting the full affinity for L1 were
used to prepare MjaL1-mRNA complexes for crystallization;
so far the best crystals were obtained with the 49 nt fragment.
Large single crystals of this complex containing SeMetL1
were used for the data collection and for structural studies.

Protein and RNA preparation

The fragment MjaL1mRNA-49 was obtained by transcription
from linearized plasmid DNA using T7 RNA polymerase.
RNA was purified on denaturing (8 M urea) 15% (w/v) acryl-
amide (19:1, acrylamide/bis-acrylamide) gels, using 90 mM
Tris-borate, pH 8.2, 1 mM EDTA, as running buffer. RNA was
eluted by 50 mM Tris—HCI buffer, pH 7.5 (25°C), 1 mM
EDTA, purified by anion-exchange (DEAE-Sepharose)
chromatography, precipitated by ethanol and dissolved in
1 mM sodium citrate, pH 6.4. The gene for MjaL.1 was cloned
and overexpressed in E.coli strain BL21(DE3) as a host (12).
To avoid the potential misincorporation of amino acids

Table 1. Binding of MjaLl to different RNA fragments

RNA Description K4 [M]
MjaL.ImRNA-250 250 nt fragment of the 50x 1071

MjaL1mRNA (22), comprising

nucleotides —29 to +220,

used as positive control
MjaL.1mRNA-49 Figure 1B 52x 1071
MjaL1mRNA-38a Figure 1B 58x 10710
MjaL ImRNA-38b Figure 1B 49 %1071
MjaL.1mRNA-30 Figure 1B 1.0x 1077
Mjal6SrRNA 145 nt fragment of 16S rRNA (23) 25x%x 1077

used as negative control

Binding was carried outin the presence of 350 mM KCl as described in Materials
and Methods.
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[e.g. lysine instead of arginine, as in (13)] the host strain was
co-transformed with pUBS520, a plasmid carrying the gene
for (RNARSR aGg (14). For MAD phasing, selenomethionine-
MjalLl was produced by essentially the same procedure but
with E.coli strain B§34(DE3) and minimal media containing
selenomethionine (15). Cells were suspended in 100 mM
Tris—HCl buffer (pH 7.5) (25°C), 0.8 M NaCl, 100 mM MgCl,,
0.2 mM EDTA, 5 mM [-mercaptoethanol, 0.1 mM PMSF
and disrupted by brief sonication. The cell debris and the
ribosomes were removed by centrifugation. The main con-
taminating proteins in the supernatant were then precipitated
by heating for 10 min at 65°C and removed by centrifugation.
The supernatant was diluted with 50 mM sodium acetate
(pH 5.5) to adjust the concentration of NaCl to 0.15 M and
the protein was purified by cation-exchange (CM-Sepharose)
chromatography. A linear gradient from 0.15 M to 0.8 M NaCl
was used for elution. The protein preparation was dialyzed
into 10 mM sodium cacodylate buffer, pH 6.0, containing
100 mM NacCl.

Filter-binding assay

Uniformly *?P-labeled RNA fragments were synthesized
in vitro from templates linearized by Smal in the presence
of [a-**P]JUTP (800 Ci/mmol; New England Nuclear Corp.)
using the MAXIscript T7 Kit (Ambion Inc., Austin, TX).
Unincorporated nucleotides were removed with QIAquick
Nucleotide Removal Kit (QIAGEN Inc.). The purity and
integrity of the transcripts were confirmed by electrophoresis
on 12.5% polyacrylamide gels containing 8 M urea. The affin-
ity of MjaLL1 to RNA-binding fragments was determined by
nitrocellulose filter-binding assay as described previously (10).
The binding buffer contained 50 mM Tris—HCI, pH 7.6,
20 mM MgCl,, 350 mM KCl, 1 mM B-mercaptoethanol and
0.04% BSA.

Crystallization

The RNA fragment and the protein were mixed in equimolar
amounts (3 mg/ml for RNA and 4.5 mg/ml for MjalLl).
Crystals were grown by the vapor diffusion method at 22°C.
Hanging drops were made by mixing MjaL1-mRNA complex
with 3% PEG 10 K, 300 mM KClI, 50 mM sodium cacodylate
buffer, pH 6.0 and 6% 2-methyl-2,4-pentandiol, 120 mM KCl
in a 6:1:1 volume ratio, respectively, and the well solution was
made from 30% PEG 10 K in 100 mM sodium cacodylate
buffer, pH 6.0. Crystals appear within five days. Before
freezing in liquid nitrogen, the crystals were transferred to
the solution composed of 21% butane-2,3-diol, 1.5% PEG
10 K, 60 mM KCI, 50 mM sodium cacodylate, pH 6.0.

Data collection and structure determination

Data were collected from a single SeMet crystal of MjaL1-
mRNA at the MPG/GBF beamline BW6, DESY (Hamburg,
Germany) using a MAR CCD detector and were processed and
merged with the XDS program suite (16). The crystal structure
of the regulatory complex MjaL1-mRNA was initially solved
by the MAD method in space group 1222. An electron density
map of a workable quality was obtained and allowed us to build
models of both mRNA and L1 molecules within the complex.
However, we could not refine this structure to an R-free value

less than 40%. Detailed analysis of experimental data shows
that crystals of the LI-mRNA complex are pseudohemihed-
rally twinned and belong to space group C2 with unit cell
parameters a = 212.3 A, b =689 A, ¢ =1159 A and
B = 123.0°, and two monomers in the asymmetric unit.
Because for these crystals a x cosP is almost equal to —c,
the cell can be indexed as 1222 with a = 68.9, b = 116.1 and
c=178.5 A, where orthorhombic a-axes are parallel to a* axes
of the monoclinic reciprocal unit. The cumulative intensity
distribution calculated with TRUNCATE of the CCP4 pro-
gram suite (17) indicated pseudohemihedral twinning in space
group C2. The twin law h+ 2/, —k, —/ describes a real space
rotation about an axis perpendicular to the crystallographic
2-fold. The twin fraction was estimated to be ~0.35 by the
Britton plot (18). The location of the complex in the correct
unit cell was done by the molecular replacement method using
the obtained structure as a model. The molecular replacement
yielded an unambiguous solution with a correlation coefficient
of 70.7% and R-factor of 41.2%. Unfortunately, the electron
density map calculated with detwinned structure-factor ampli-
tudes and model phases was of lower quality than with twinned
data. Therefore, we used twinned data for the model building
and refinement. The final model, refined to an R-factor of
27.5% and an R-free of 31.4% at 3.4 A resolution, includes
214 amino acid residues and 49 nt. Data and refinement statis-
tics are summarized in Table 2. Determination of heavy atom
positions, initial phasing, density modification and refinement
were executed using CNS (19). The map interpretation and
model building were performed with O (20). NCS restraints
were used during the early stages of refinement, but the
two molecules in the asymmetric unit were finally refined
separately. The structural data and the coordinates
have been deposited in the Protein Data Bank (accession
code 1U63).

Table 2. Data collection and refinement statistics

Crystallographic data®

Space group C2

Unit-cell parameters (A, %) a=2123,b=68.9,c=11509,
o =90° B =123.0°, y = 90°

Wavelength A) 1.05

Resolution (A) 30-3.40 (3.61-3.40)

Number of reflections 33549 (5012)

Number of unique reflections 17645 (2718)

Completeness (%) 89.4 (83.9)
Averaged redundancy 1.9 (1.84)
/o) 9.68 (2.79)
Roym(D) (%)° 6.2 (31.8)
Refinement statistics
Resolution range A 8-3.4
Reflections 16761 (2066)
R-factor (%) 27.5 (38.5)
Free R-factor (%) 31.4 (43.0)
r.m.s. deviation
Bond lengths A) 0.0104
Bond angles (°) 1.87561
Improper angles (°) 4.56
Mean B value (overall, Az) 70.4

“Values in parenthesis are statistics for the highest resolution shell.

Roym= 3|1 — (I} | /3°(I), where I is the measured intensity of each reflection
and (/) is the intensity averaged from several observations of symmetry-related
reflections.



RESULTS AND DISCUSSION
Structure of L1-mRNA complex

Here, we report the crystal structure of ribosomal protein L1
from M jannaschii in complex with the 49 nt fragment of the
M jannaschii L1 binding site on its mRNA. A stereo view
of the complex is shown in Figure 2A. L1 is an elongated
molecule with two domains connected by a hinge region. The
overall three-dimensional structure of MjalLl bound with
mRNA is close to that of MjaL1 in the isolated state described
earlier (2). In both cases, the protein is in the ‘open’ confor-
mation and the structure of each domain does not undergo
essential conformational change upon complex formation.
However, MjaL.1 in the mRNA-bound form displays a small
(about 2 A) closing of the cavity between the two domains
(Figure 2B), which might be dependent on the crystal packing.
The protein interacts with RNA mostly through domain I,
a ribbon representation of which is given in Figure 2C.

The fragment of mRNA is made of two regular double
helices separated by a sharp turn (Figures 2 and 3). The first
of these helices is terminated by the non-canonical A62-G34
base pair, the second one contains a bulged nucleotide A52 and
terminates with a tetraloop (the RNA is numbered from the
A of the AUG codon, Figure 1). Chain A27-G43 is bent
through 90° at position G36 whereas chain C48—-C68 forms
aloop A58—A61 in the middle part of the fragment. As a result,
ribose-phosphate groups of G37 and C63 are brought into
proximity. Phosphate groups of nucleotides G34—C38 and
U65-C66 are approximately in the same plane and surround
a slightly concave region of about 14 x 16 A? through which
mRNA mainly interacts with L1. The surface of the first helix
of the mRNA fragment is complementary to the surface of the
B-sheet of domain I.

Two monomers in the asymmetric unit are connected by a
non-crystallographic 2-fold axis and have slightly different
conformations at the regions of two flexible loops P12
and 08-B9 (Figure 2C), not involved in interactions with
mRNA and located in domain I. Superposition of domains I
yields an r.m.s. deviation of 0.89 A for all Car atoms; that of
domain 1T is 0.56 A. The two mRNA molecules have similar
conformations with r.m.s. deviation between P atoms of about
0.57 A, whereas those nucleotides that interact with the protein
coincide much better (r.m.s. deviation of 0.27 A). Two com-
plexes in the asymmetric unit form a tightly associated dimer,
where RNA molecules contact each other through the inter-
connecting loop and the bulged nucleotide A52. In the crystal,
symmetry-related dimers interact through the residues of
domain II or making a head-to-tail RNA arrangement.

Comparison of the structures of the L1I-mRNA
and L1-rRNA complexes

Earlier, we have published the crystal structure of ribosomal
protein L1 from Sulfolobus acidocaldarius in complex with a
specific 55 nt fragment of 23S rRNA from T.thermophilus (5).
Now it is possible to compare the structure of the riboso-
mal complex L1-rTRNA and the structure of the present regu-
latory complex L1-mRNA (Figures 3 and 4). The L1 proteins
in both complexes have similar overall three-dimensional
structures and demonstrate an ‘open’ conformation.
Schemes of the secondary and spatial structures of the
mRNA and rRNA fragments as well as their ribbon models
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Figure 2. (A) Stereo view of the LI-mRNA complex. The ribose-phosphate
backbone is in gold, bases are in green, B-strands in blue and o-helices in red.
Conserved nucleotides are shown in magenta and yellow. (B) Superposition of
the structures of the isolated MjaL 1 protein (gray) and MjaL1 from the present
complex (black) with least squares minimization of differences in Co. atom
coordinates of domain I. (C) Stereo view of the MjaL1 domain I.

are presented in Figure 3. It is seen that the rRNA molecule has
a more complicated three-dimensional structure, because of
two loops interacting with each other. In mRNA, one of these
loops (A), is absent, the other (B) is six residues shorter.
In spite of this difference, both RNAs have the same unique
region in the junction of two helices. In the rRNA fragment,
helices 76 and 77 form a co-axial helix that is perpendicular to
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Figure 3. Secondary structures, ribbon representation and schematic illustration of three-dimensional structures of the mRNA and rRNA fragments. Nucleotide
replacements, which were introduced to the RNA fragments to facilitate the complex crystallization, are in italic. Conserved nucleotides are shown with black
background.



Figure 4. Stereo ribbon representation of the L1-mRNA and L1-rRNA
complexes in the same orientation.

helix 78, similar to the structure formed by the two perpen-
dicular helices of the mRNA binding site. In both RNAs, the
junction of the two helices contains nucleotides strictly con-
served in all L1-binding sites in large rRNAs as well as in sites
specific for L1 in mRNAs from those bacteria and archaea, for
which feedback regulation has been experimentally proved.
These nucleotides are connected by a network of conserved
hydrogen bonds, most of which are inaccessible to the solvent.
This network strongly stabilizes the unique three-dimensional
structure of the region. Comparison of these unique sites in
both kinds of LI-RNA complexes shows that they are struc-
turally conserved with an r.m.s. deviation between P atoms
of ~0.50 A.

Comparison of the protein—RNA interactions in
the complexes

In the ribosomal and regulatory complexes, protein L1 inter-
acts with RNA through both domains. Domain I contacts RNA
via the slightly concave surface formed by the inner face of the
B-sheet and two spatially adjacent loops, containing residues
identical in all known L1 sequences. The number of residues
that contact the RNA is substantially less in domain II than in
domain I, particularly in the L1-mRNA complex.

The contact area between L1 protein and RNA is more
extensive in the ribosomal complex than in the regulatory
one due to differences in the spatial organization of the two
RNA . In each complex there are two sites of interaction with
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LI. In the mRNA, one site includes mainly nucleotides of
the first helix and of the junction region. On the rRNA surface,
the analogous site is formed by nucleotides of helix 77 and one
strand of helix 78. Both RNA molecules interact through this
site mainly with domain I of the protein. Highly conserved
nucleotides of this site (G33, G34, G36, C63 in the mRNA or
G2124, G2125, G2127, C2174 in the rRNA) form hydrogen
bonds with strictly conserved residues located in the beginning
of strand B1 and spatially adjacent loop B9-B10.

The second region of interaction is formed by nucleotides of
loop B in the rRNA or the interconnecting loop in the mRNA.
Nucleotides of this site interact with L1 residues of domain II.
The more than 2-fold shortening of the interconnecting loop
in the mRNA relative to loop B in the rRNA decreases
significantly the number of RNA-protein contacts in the
regulatory complex.

It should be noted that nucleotides at 3’ and 5’ ends, which
form 4 bp in the first helix of MjaLImRNA-49 fragment,
are not involved in interaction with L1. Consequently, we
can suggest that the absence of L1-binding capacity in the
30 nt fragment of MjaLImRNA may be associated with
some deformation of the unique RNA structure in this short
mRNA fragment. Probably, these 4 bp are needed for retention
of this unique spatial structure of L1-binding site on RNA.

RNA-protein recognition

Binding sites on the protein and RNA surfaces include regions
responsible for RNA-protein recognition (we call them
‘recognition modules’) and regions, which form additional
intermolecular contacts (21). It is known that many ribosomal
proteins are structurally and functionally interchangeable
between ribosomes from different species. These data suggest
that the structure of recognition modules on the proteins and
rRNAs should be highly conserved and complementary to
each other. The polar atoms of recognition modules usually
form a network of intermolecular RNA—protein hydrogen
bonds, some of which are inaccessible to the solvent. We have
recently suggested that atoms involved in these hydrogen
bonds are responsible for RNA—protein recognition (21).

Detailed analysis of all known crystal structures of L1 pro-
teins from different organisms revealed a structurally invariant
region in domain I. This region contains a cluster of strictly
conserved amino acid residues; their relative positions and
side-chain conformations are stabilized by intramolecular
hydrogen bonds. It is noteworthy that there is no difference
in the conformation of this region in the isolated L1 molecule
and in L1 bound to rRNA or mRNA (Figure 5A). It seems that
the structure of this site is preformed to bind RNA and does not
undergo sufficient conformational changes upon binding.
These data enable us to consider this region of the protein
as its RNA recognition module. It should be mentioned that we
suggested a key role of this region in RNA binding previously
(3), based solely on the analysis of crystal structures of isolated
L1 proteins. The comparison between the two LI-RNA com-
plexes proves this suggestion to be correct.

In two L1-RNA complexes, the rRNA and mRNA frag-
ments also possess practically identical structures in and around
the junction of two corresponding helices (Figure 5B). These
regions contain highly conserved nucleotides and form the
unique conformation strongly stabilized by intramolecular
hydrogen bonds.
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Figure 5. Invariant regions in L1 proteins and in the IRNA and mRNA fragments. Conserved H-bonds are shown with dotted lines. (A) The location of the invariant
structure on the surface of L1 proteins is shown in green on the MjaL1 model (right). Superposition of the corresponding regions in L1 proteins in isolated and
RNA-bound forms is shown on the left. Isolated Mjal.1 is in gray, Mjal.l complexed with mRNA in magenta and SacL1 complexed with rRNA in brown.
(B) Superposition of the mRNA (blue) and rRNA (green) fragments; the conserved unique structure is outlined (right).

In the L1-rRNA and L1-mRNA complexes, polar atoms
of the RNAs and L1 invariant regions form five conserved
RNA-protein hydrogen bonds inaccessible to the solvent
(Figure 5B). These bonds are formed by the atoms of amino
acid residues Ser25, Glu27, Thr204, Met205 and of nucleotides
G33, G34, C63. We have made three point mutations,
Thr204Gly, Met205Gly and Met205Asp, and characterized
them with respect to their RNA-binding potency by a filter-
binding assay. The analysis revealed that the above listed
mutants have decreased rRNA-binding ability compared with
the wild-type protein and do not bind the mRNA atall. Structural
modelling shows that these mutant proteins lose one of the con-
served hydrogen bonds with RNA. Thus, in both cases conserved
RNA-protein hydrogen bonds play a crucial role in L1-RNA
recognition and binding. However, the binding of mRNA to

L1 turned out to be more sensitive to point mutations than the
binding of rRNA. This may be the result of considerably fewer
contacts between L1 and mRNA than between L1 and rRNA.
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