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Abstract
The disorders of gastrointestinal (GI) tract including 
intestine and colon are common in the patients with 
diabetes mellitus (DM). DM induced intestinal and colonic 
structural and biomechanical remodeling in animals 
and humans. The remodeling is closely related to 
motor-sensory abnormalities of the intestine and colon 
which are associated with the symptoms frequently 
encountered in patients with DM such as diarrhea and 
constipation. In this review, firstly we review DM-induced 
histomorphological and biomechanical remodeling of 
intestine and colon. Secondly we review motor-sensory 
dysfunction and how they relate to intestinal and colonic 
abnormalities. Finally the clinical consequences of DM-
induced changes in the intestine and colon including 
diarrhea, constipation, gut microbiota change and colon 
cancer are discussed. The final goal is to increase the 
understanding of DM-induced changes in the gut and the 
subsequent clinical consequences in order to provide the 
clinicians with a better understanding of the GI disorders 
in diabetic patients and facilitates treatments tailored to 
these patients.

Key words: Diabetes; Intestine; Colon; Biomechanics; 
Motor-sensory; Gut microbiota; Symptoms
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Core tip: The disorders of intestine and colon are common 
in patients with diabetes mellitus (DM). DM induced 
intestinal and colonic structural and biomechanical 
remodeling are closely related to motor-sensory abnor
malities of gut in DM. These changes due to DM are 
associated with diarrhea, constipation, gut microbiota 
modification and colon cancer. Understanding the DM-
induced changes in the gut and the clinical consequences 
provides clinicians with a better understanding of the 
gastrointestinal disorders in diabetic patients and facilitates 
the improvement of treatments for these patients.
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INTRODUCTION
Diabetes mellitus (DM) is a popular metabolic disease 
which affects many populations worldwide[1]. Compli­
cations in different organ systems including the gastro­
intestinal (GI) tract will occur if the DM is treated 
inappropriately. NCD Risk Factor Collaboration has 
demonstrated that the number of adults with DM in the 
world increased from 108 million in 1980 to 422 million 
in 2014[1]. Furthermore, huge healthcare expenditures 
are needed in order to prevent and treat DM and its 
complications[2]. 

DM patients often suffer from GI disorders which 
are recently recognized as one of the most common 
complications in DM[3]. The whole GI tract can be 
affected in the DM and common complaints include 
diarrhea, constipation and fecal incontinence[4]. The 
symptoms are usually non-specific, but occasionally 
they may be severe enough to decrease the quality 
of life. The pathophysiological mechanisms of the 
symptoms are very complex; they may involve multiple 
factors and are inadequately explored. However, it is 
well known that the motor-sensory dysfunctions often 
seen in the DM patients are closely associated with 
diabetic autonomic neuropathy (DAN)[5-7]. Furthermore, 
it has been recently recognized that DAN also includes 
the disorders of the enteric nervous system (ENS)[7]. 
It is well known that DM induces histomorphological 
and biomechanical remodeling of small intestine and 
colon in type-1 DM patients[5] and in DM animals[8-10]. 

Such remodeling is closely related to motor-sensory 
dysfunctions in DM patients[9]. Understanding the 
mechanisms of DM-induced changes of the intestine 
and colon is of key importance for the optimization of 
treatment and for finding new therapeutic approaches.

In this review, we discuss: (1) DM-induced intes­
tinal and colonic histomorphological changes and 
biomechanical remodeling; (2) intestinal and colonic 
sensory-motor dysfunction in relation to DM and its 
relation to the remodeling of intestine and colon; and 
(3) the clinical consequences of DM-induced changes 
in intestine and colon including diarrhea, constipation, 
GM change and colon cancer. It is well known that 
esophageal and gastric motility disorders are also 
very common in DM patients; however, these have 
been reviewed in detail recently (see references[11,12]). 
Furthermore, as we focus on the topic of DM-induced 
mechanophysiological changes in the small intestine 
and colon, the topic of esophageal and gastric disorders 
in the DM are not included in this review.

NORMAL ANATOMY, STRUCTURE AND 
BIOMECHANICAL PROPERTIES IN THE 
INTESTINE AND COLON
Anatomy and structure of normal intestine and colon
Understanding the anatomy and structure of normal 
intestine and colon is essential in order to gain an 
insight into the biomechanical properties and the DM-
induced remodeling. Intestine and colon are tubular 
organs. From proximal to distal, the intestine consists of 
duodenum, jejunum and ileum. The ligament of Treitz 
marks the anatomical demarcation between duodenum 
and jejunum, whereas there is no distinct demarcation 
between jejunum and ileum. A mesentery anchors the 
jejunum (proximal 40%) and ileum (distal 60%) to 
the posterior wall of abdomen and allows the intestine 
to be freely moveable within the peritoneal cavity. The 
distal end of the intestine is in continuity with colon 
and the transition is marked by the ileocecal valve 
which prevents the retrograde flow of colonic contents 
into the small intestine[13]. The colon is composed of 
five parts namely cecum, ascending colon, transverse 
colon, descending colon and sigmoid colon. The exter­
nal appearance of colon is distinctly different from 
that of the intestine. The longitudinal layer of muscle 
fibers forms three discrete bands named tenia, and 
the formation of sacs filled with adipose tissue on the 
inner surface gives the colon a segmented appearance 
characterized by small pouches named haustra. 

The histologic characteristics of the intestine and 
colon shares many similarities. The wall is composed 
of four layers: Mucosa, submucosa, muscularis, and 
serosa with the mucosa being the innermost layer. The 
mucosa consists of sublayers of glandular epithelium, 
lamina propria, and muscularis mucosae. The glandular 
epithelium forms cylindrical structures called crypts. 
The lamina propria serves to support the epithelium 
and consists of reticular connective tissue with elastin, 
reticulin, and collagen fibers and cellular components 
such as lymphocytes, plasma cells, and eosinophilic 
granulocytes, as well as lymphatics and capillaries. The 
muscularis mucosae is a thin layer of smooth muscle 
intertwining the mucosa and submucosa. The submucosa 
is a fibrous connective tissue layer that contains 
fibroblasts, mast cells, blood and lymphatic vessels, and 
extraordinarily an autonomous nerve plexus called the 
Meissner’s plexus which consists of non-myelinated, 
postganglionic sympathetic fibers and parasympathetic 
ganglion cells[14,15]. The muscularis propria beneath the 
submucosal layer consists of smooth muscle fibers and 
is responsible for the contractility of the intestines. The 
muscle fibers are arranged in a helicoidal pattern in two 
layers, an inner circular layer and an outer longitudinal 
layer. Between these two muscle layers there is a 
second autonomous nerve plexus named the myenteric 
plexus or Auerbach’s plexus[15,16]. Parasympathetic 
and postganglionic sympathetic fibers in the plexus 
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terminate in parasympathetic ganglion cells; from here, 
the postganglionic parasympathetic fibers terminate in 
smooth muscle and influence the intestinal contractility 
by the release of neurotransmitters. The serosa is 
the outermost layer of the intestines and consists of 
connective tissue. Interstitial cells of Cajal (ICC) are 
present in both the small intestine and the colon and 
influence the contractility of the smooth muscle fibers. 
These cells act as pacemaker cells and are located 
in the myenteric plexus, the muscularis propria and 
the submucosa[17]. The ICCs express the receptor for 
tyrosine kinase (c-kit). Thus, immunohistochemical 
stains that utilize antibodies against c-kit allow the ICCs 
to be labeled[18]. 

Biomechanical properties of normal intestine and colon
One important function of both small intestine and colon 
is the transportation of food by peristaltic contraction. 
Furthermore, the mixing function by segmental contrac­
tion is also important for small intestine in order to 
establish close contact between the food and mucosa 
and fully absorb the nutritional contents. Both types of 
contraction are involved in the force (stress) changes and 
deformation (strain) in the wall of intestine and colon. 
Therefore, understanding the normal biomechanical 
properties is essential for the understanding of the 
physiological functions of small intestine and colon. 
Descriptions of biomechanical properties include elasti­
city such as tension-strain or stress-strain relations, 
and viscoelasticity such as creep and stress relaxation. 
Generally the biomechanical properties of small intestine 
and colon display an exponential behavior and are 
anisotropic with large axial and location variations[19-40]. 
The biomechanical characteristics of the normal small 
intestine and colon can be summarized in Table 1.

The variation of biomechanical properties along and 
across the wall of intestine and colon have important 
physiological significance. The residual strain makes 
the stress distribution through the wall more uniform 
in the pressurized state[27]. The compression residual 
stress reduces the stress concentration at the inner 
wall, thereby offering a better protection of intestine 
and colon against injury due to contractile activity and 
against the flow of luminal contents. Furthermore, the 
different stiffness has been demonstrated in different 
segments of intestine and colon. For example, the 
duodenal segment is stiffest whereas the ileum is 
softest in the small intestine. These may relate to the 
specialized functions in the proximal and distal locations. 
Duodenum acts as a capacitative resistor during gastric 
emptying whereas the transit of distal ileum is slow and 
acts as a reservoir[32]. The flow patterns of intestine 
may also relate to biomechanical properties. The stiff 
duodenal wall will be in favor of a lesser degree of bolus 
passing whereas the soft ileal wall will be in favor of 
pooling of luminal content and decreased flow. 

DIABETES-INDUCED 
HISTOMORPHOLOGICAL AND 
BIOMECHANICAL CHANGES IN THE 
SMALL INTESTINE AND COLON
Histomorphological remodeling
DM-induced histomorphological changes involve dif­
ferent tissue components of the intestinal and colonic 
wall including epithelia, smooth muscle cell (Figure 1A, 
Figure 2), neurons, ICC and extracellular matrix (Table 
2). Many animal and human studies have demonstrated 
that DM generally induces changes in the proliferation 
of different layers[5,8,10,41-51]. Increased expression of 
advanced glycation end of product (AGE) and AGE 
receptor (RAGE) has been demonstrated in the DM 
intestinal and colonic wall[49,51,52]. Furthermore, the 
number and density of neurons and ICC are changed, 
and the expressions of some neuropeptides alter as well 
(Table 2). 

Biomechanical remodeling
In comparison with DM-induced histomorphological 
remodeling, there are not so many data in relation to 
the biomechanical remodeling in the small intestine 
and colon. Data on tension-strain relations has demon­
strated that the stiffness of wall in the rat jejunum and 
ilem increases in DM rats[53]. Lately, the research group 
of Zhao et al[8,25] and Sha et al[48] did a series of studies 
investigating the histomorphological and biomechanical 
remodeling of small intestine in STZ-induced DM rats. 
They found in diabetic rats that (1) the opening angle 
and residual strain became smaller in the duodenum 
and larger in the jejunum and ileum; (2) the stiffness 
of the intestinal wall increased as function of time of DM 
development (Figure 1B and C); and (3) the stress of 
intestinal wall relaxed less(Figure 1D). More recently, 
remodeling of the jejunal wall in type 2 DM rats (GK rat) 
has been reported[47]. It was shown that the opening 
angle and residual strain were reduced and the wall 
stiffness increased in the circumferential direction. 
Furthermore, we demonstrated that increasing blood 
glucose level and the increased AGE/RAGE expression 
were associated with the remodeling. However, data on 
biomechanical changes in the diabetic colon is sparse. 
We have also investigated DM-induced biomechanical 
and morphometric remodeling in rat colon[10]. It was 
found in diabetic colon that the opening angle and 
residual strain became bigger and the stiffness of the 
colon wall increased with the duration of DM both in the 
circumferential and longitudinal directions (Figure 2). 
More recently, the remodeling of the distal colon in DM 
was studied by Siegman et al[51] in rats. A major finding 
from the study was the marked decrease in resting 
compliance and increase in stiffness of the smooth 
muscle cells of the distal colon in DM rats. Such changes 
are associated with increased production of type 1 

Zhao M et al . Diabetes-induced intestinal and colonic changes
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collagen and AGEs.

Mechanisms of histological and biomechanical 
remodeling
Hyperphagia: There is study which suggests that 
hyperphagia is related to DM-induced GI growth[54]. 
However, other researchers have found that when DM 
rats and normal rats are fed with same caloric diets, the 
intestinal mass and DNA synthesis in crypt still increases 

considerably in diabetic rats[55,56]. This indicates that 
DM-induced GI growth depends not only on increased 
nutrient consumption but also on other adaptation 
factors. It has been demonstrated that there is a close 
relation between glucagon-like peptide-2 (GLP-2) and 
DM-induced GI growth[57]. Increasing blood GLP-2 could 
precede the changes of intestinal mass[57]. Therefore, 
the increased nutrient in DM-induced GI growth may 
relate to its role in the stimulation of hormonal release 

Biomechanical properties

  Intestine Tension-strain or stress-strain curves show an exponential behavior[19-23]

The stiffness differs between the duodenal, jejunal and ileal segments[20,21,24] 

All segments are stiffest in longitudinal direction[20,21,24]

The opening angle and residual strain shows a large axial variation[25]. The axial variation correlates to the morphometric variation[26]

The serosal residual strains are tensile and the mucosal residual strains are compressive[24,25,27]

The residual strains in longitudinal direction are smaller than those in circumferential direction[24], especially on the mucosal side 
The opening angle changes over time for all the small intestine segments. The viscoelastic constant of the rat small intestine is fairly 
homogenous along its length[28] 

The collagen in submucosa layer is important for the passive biomechanical properties[29,30]

The villi are important for the biomechanical properties of the small intestine in circumferential direction[31]

  Colon The rat colon has a tensile strength of around 50 g/mm2 and increases in strength from proximal to distal[33]

Quasi-static P-V curves in colon are approximated to a power exponential function and revealed hysteresis, indicative of viscoelasticity[34] 

The opening angle vary along the rat colon with the highest values in the beginning of the proximal colon[35]. The residual strain is negative 
at the inner surface and positive at the outer surface[35] 

The stress-strain curves are exponential. All segments were stiffer in longitudinal direction than in the circumferential direction[35] 

In human sigmoid colon, the spatial distributions of the biomechanical parameters are non-homogeneous. The circumferential length, 
strain, pressure and wall stress increase as a function of bag volume[36] 

The wall stiffness of human sigmoid colon is reduced in response to butylscopolamine[36] 

The phasic and tonic responses to the meal in two colonic regions of human are quantitatively different but qualitatively similar[37] 

Smooth muscle cells in the gastrointestinal tract are constantly being deformed due to forces generated by the muscle cells themselves or 
by the surroundings[38,39] 

A mechanical creep behavior in the isolated rat colon smooth muscle cells could be described by a viscoelastic solid model[40]

Table 1  Biomechanical properties of normal small intestine and colon

Intestine Colon

  Mucosa Increased thickness[5,8,47,49]; Damaged tight junctions[260]; Proliferation 
of villi and crypt[41]; Decreased membrane fluidity[110]; Enhanced 

transport of glucose, amino acid, bile salts, phosphate, fatty acids, 
fatty alcohols, and cholesterol[110]; Decreased protein synthesis[261]; 

Increased expression of the monosaccharide transporters[262,263]; 
Increased expression of AGE and RAGE[47,49]

Increased thickness[10,49]; Increased thickness of the 
subepithelial collagen layer[276,277]; Abnormalities of endocrine 

cells[278]; Increased expression of RAGE[49]; Increased 
expression of AGE, RAGE, TGF-β1 and TGF-β1 receptor[52] 

  Submucosa Increased thickness[5,8,47] Increased thickness[10]; Increased expression of AGE, RAGE, 
TGF-β1 and TGF-β1 receptor[52]

  Muscle Increased thickness[8,47]; Increased expression of AGE and RAGE[49] Increased thickness[10]; Hypertrophy of smooth muscle 
cells[51]; Increase type I collagen and expression of AGE[51]; 
Increased expression of AGE, RAGE, TGF-β1 and TGF-β1 

receptor[52]

  Wall as a whole Increased thickness[8,47-50]; Increase expression of substance P[264] and 
neuronal nitric oxide synthase[265]; Dcreased expression of substance 
P[266], vasoactive intestinal polypeptide[262] and neuronal nitric oxide 

synthase[267]; Increased RAGE mRNA level[50]

Increased thickness[10,49]; Increase in substance P levels[264]

  Nerve and ICC Nuroaxonal dystrophy[48,268]; Decreased myenteric ganglia[269]; 
Decreased nitrergic neuronal cell number[270]; Decreased density 

of myenteric neurons[120]; Decreased number of myenteric 
neurons[271,272]; Increased expression of RAGE[49]; Decreased myosin-

V-immunoreactive neurons[273]; Decreased ghrelin cell density[274]; 
Reduced number of ICC[99,275]

Impairment of nitrergic enteric neurons[111]; Decrease density 
and size of the myenteric neurons[15]; Decreased nitrergic 

neuronal cell number[280]; Decreased the numbers of nNOS, 
CHAT neurons and total neurons[279]; Increased expression 

of RAGE[49]; Apoptosis of neurons[244]; Decreased ghrelin 
cell density[274]; Reduced number of ICC[99,110,124,280] and 

impairment in the ultrastructures of ICC[99] 

Table 2  Diabetes mellitus-induced histomorphological changes of intestine and colon

AGE: Advanced glycation end of product; RAGE: Advanced glycation end of product receptor; ICC: Interstitial cells of Cajal.

Zhao M et al . Diabetes-induced intestinal and colonic changes
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in the GI tract. The nutrient content in the small intes­
tine is greatly increased due to hyperphagia and fast 
gastric emptying[56] in DM rats. It is well known that the 
luminal nutrients such as fat and carbohydrate could 
stimulate physiological L cells[58], therefore the increased 
luminal nutrients could stimulate GLP-2 secretion and 
its action on the intestinal epithelium. Furthermore, 
the balance of the epithelial homeostasis is regulated 
by cell proliferation and death. It has been shown that 
apoptosis is inhibited in DM rats which in turn results in 
the increase of mucosal mass in the small intestine[44]. 

Non-enzymatic glycation of protein: Hyperglycemia 
is the most important feature of DM. The increased 
glucose can induce AGEs formation through non-
enzymatic glycation of protein amino groups and by 
oxidation reaction[59]. The overproduction and accumula­
tion of AGEs in the tissues could alter the structure 
and function of proteins[60] in the intestinal wall such as 
collagen. Such changes cause cross-linking of collagen, 
basement membrane thickening and the loss of matrix 
elasticity[61-63]. AGEs and corresponding receptors 
(RAGE) have been demonstrated to be up-regulated 
in the GI tract both in the experimental type 1[49] and 
type 2[64] DM rats. Furthermore, there is an association 
between AGEs and RAGE with DM-induced intestinal 

and colonic remodeling[47,51]. Two major mechanisms 
are mainly involved in the link between AGEs and 
DM-induced GI morphological and biomechanical 
remodeling. One is a receptor-independent pathway 
where the AGEs induce changes in the extracellular 
matrix architecture through the formation of protein 
cross-links. The other is a receptor-dependent pathway 
where the AGEs modify cellular functions through the 
RAGE[65-67]. 

AGEs and RAGE also play an important role for 
DAN[68-70]. The expression of AGEs has been demon­
strated in the peripheral nerves in DM animals[71] and 
in the axons and Schwann cells of patients with DM[72]. 
Increased expression of RAGE in peripheral nerves in 
DM rats has also been demonstrated[73]. The AGEs-
induced changes of proteins could cause structural 
and functional changes in the peripheral nerves[74]. 
Modification of major axonal cytoskeletal proteins such 
as tubulin, neurofilament, and actin by AGEs impairs 
axonal transport and contributes to the development of 
atrophy and degeneration of nerve fibers[75,76]. Micro-
vessels in peripheral nerves affected by AGEs may 
also contribute to the damage of peripheral nerves[77]. 
Therefore, long-term hyperglycemia induced GI tissue 
nonenzymatic glycation appears to play an important 
role in the remodeling of GI wall in DM.
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Figure 1  Duodenal remodeling in STZ-induced diabetic rats. A: The micro-photographs showed the normal (left) and 4 wk diabetic (right) duodenal histological 
sections. It clearly demonstrated that the muscle and submucosa layers in the diabetic duodenum became much thicker than in the normal duodenum. The bar is 
100 mm; B: The circumferential stress-strain relations; C: The longitudinal stress-strain relations. The stress-strain curves in both directions (B and C) shifted to the 
left during experimental diabetes indicating the duodenal wall became stiffer during the development of diabetes; D: The mean reduced relaxation function curves 
in the time period of 600 s. The curves appear in the order of largest-to-smallest G (t) as W4, W1, 4d and N. The stress relaxation of duodenum decreased with the 
development of experimental diabetes. N: Normal control; 4d: 4 d of diabetes; W1: 1 wk of diabetes; W4: 4 wk of diabetes; W8: 8 wk of diabetes.
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DIABETES-INDUCED SENSORY-MOTOR 
CHANGES IN THE INTESTINE AND 
COLON
DM-induced GI remodeling likely affects the sensory-
motor function through the modification of the mechani­
cal environment and structural basis around the motor 
and sensory nerves in the wall of intestine and colon. 
DM-induced increase in wall stiffness can change the 
tension and stress distribution around the mechanosen­
sitive afferents. DM-induced structural and deformational 
changes can alter the relative position and response 
rate of the motor-sensory afferents. Furthermore, DAN 
involves both the sensory nerve supply to the intestine 
and colon, the ENS and processing in the central nerve 
system (CNS). Therefore, it is important to explore DM-
induced sensory-motor changes in the intestine and 
colon and its mechanisms.

Diabetes-induced motor changes in the intestine and 
colon
Small intestine (Table 3): Both delayed and 
rapid transit has been demonstrated in DM animal 
models[78,79]. It has been found in DM rats that the 

increase in transit time and decrease in intestinal 
tone are associated with up-regulated cholinergic 
activity and low-regulated beta-adrenergic receptor 
activity[80]. Stress-strain analysis of jejunal contractility 
in response to flow and ramp distension demonstrated 
that the jejunal contractility was hypersensitive to 
stimulations after carbachol application[81,82] in type 2 
DM rats (Figure 3). However, the force generated per 
unit of smooth muscle was decreased in the DM rats, 
and could be partly compensated by hyperplasia and 
hypertrophy of the smooth muscle[82]. Furthermore, it 
was demonstrated that the ileal segment from type-1 
DM rats was hypersensitive to distension for contraction 
induction[83]. However, the contraction force produced by 
smooth muscle was lowest in DM rats. Increased AGE 
and RAGE expressions were found to be associated with 
contractility changes in DM rats.

In DM patients, the delay in intestinal transit time has 
also been demonstrated by using different tests such 
as breath hydrogen appearance time[84], radiopaque 
markers[85] and metal-detector[43]. On the contrary, 
increased intestinal transit time has been found in 
insulin-dependent DM (IDDM) patients[86]. In patients 
with long standing IDDM, it has been demonstrated 
that the duodenal transit is disturbed and the chyme 
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Figure 2  Colonic remodeling in STZ-induced diabetic rats. The top-left figure showed the no-load tissue rings of colon from control (left) and 8W streptozotocin-
induced diabetic rats (right). It clearly demonstrated that the wall thickness increased in the diabetic colon. The low-left figure showed micro-photographs of the control 
(left) and 8 wk diabetic (right) colonic histological sections. It clearly demonstrated that the mucosa and muscle layers in the diabetic colon became much thicker than 
in the normal colon. The bar is 100 mm. The right figures showed the relation between circumferential (top) and longitudinal (bottom) stress and strain. Both in the 
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colon wall stiffness increased in both directions during the development of diabetes. Control: Normal control; 8W DM: 8 wk of diabetes.
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clearance activity is decreased87]. In one study, it 
has been reported that about 80% of patients with 
long-standing DM had abnormal motility of the small 
intestine[88]. The DM-induced dysmotility can occur either 
in the postprandial or fasting state[89,90]. In noninsulin-
dependent DM (NIDDM) patients with diarrhea and 
DAN, grossly disordered motility such as migrating 
motor complex disorders has been reported[89]. Although 
disorders of postprandial motility in small intestine 
have been reported in DM patients, the findings are 
inconsistent[90]. 

Colon (Table 3): Colonic dysmotility is often seen 
in DM patients[85,91-97] and animal models[97-103]. DM 
patients with DAN are expected to have delayed 
transit in the entire gut, this finding is apparent to 
some extent in the distal colon but not in the proximal 
colon[92]. Delayed transit is most frequent in male 
patients with long-term IDDM where the total colonic 
transit time is prolonged[93]. Even in type II diabetic 
patients without clinical presentation of neuropathic 
symptoms, significant elongation of the transit time has 
been observed in the lower digestive tracts compared 
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Figure 3  Jejunal contractility in response to flow and ramp distension in type 2 diabetic GK rats after carbachol stimulation. Top figures showed the pressure 
(A) and circumferential stress (B) at the contraction threshold during ramp distensions. The pressure and stress thresholds were significantly decreased in GK group 
but not in Normal group after carbachol application (compared with without carbachol application, bP < 0.01). Furthermore, the pressure and stress thresholds were 
significantly smaller in the GK group than in Normal group after carbachol stimulation (compared with Normal group, cP < 0.05; dP < 0.01). Middle figures showed the 
maximum contraction pressure (C) and stress (D) during basic contraction. After carbachol application, the maximum contraction pressure and stress significantly 
increased both for Normal and GK groups (compared with without carbachol application bP < 0.01). Bottom figures showed the maximum contraction pressure (E) and 
stress (F) in the flow-induced contraction after carbachol application. Compared to the Normal group, the maximum contraction pressure and stress were significantly 
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to control subjects[85]. Jorge et al[95] found that at 
24 h after ingestion, there was no difference in the 
number of radiopaque particles in the colon between 
DM patients and controls. However, at 72 h past 
ingestion, the mean number of radiopaque particles in 
the colon was significantly higher in DM patients than 
in healthy controls. Furthermore, The DM patients with 
constipation had longer colonic transit times than those 
without constipation[94,96]. Hyperglycemia could inhibit 
long and short neural reflexes to modulate colonic 
motility which may contribute to constipation in DM[104]. 
The postprandial colonic motility is increased in DM 
patients with mild constipation but not in DM patients 
with severe constipation, the later may be due to DAN-
induced absence of the postprandial gastrocolonic 
response[91]. Chandrasekharan et al[105] demonstrated 
that colonic circular muscle strips from DM subjects 
showed impaired contraction and relaxation responses 
compared to that of healthy controls. Such changes 
may be caused by the loss of enteric neurons in the 
colon due to increased oxidative stress and apoptosis.

Results from animal studies are ambiguous and have 
shown both delay and enhancement in the colon transit 
time in DM. Similarly, both reduced and increased 
colon contractility for whole segment or muscle strips 
in DM animals are reported. Delayed colonic transit 
has been found in alloxan-induced DM mice[98], db/db 
mice[99] and DM rats[101,102]. The prolonged transit time 
in db/db mice is associated with reduced areas of ICC 
and the expression of SCF in colon[99]. Insulin-like 
growth factor 1 (IGF-1) treatment can inhibit the DM-
induced colonic smooth muscle cell apoptosis and may 
be involved in the alleviation of colonic dysmotility in 
DM rats[102]. However, Domènech et al[106] reported that 
DM RIP-I/hIFNβ transgenic mice showed an enhanced 
gut transit associated with gut remodeling including 
neuroplastic changes and overt myenteric neuropathy. 
In relation to the contractility, however, carbachol-
induced and Ems-induced contractions in the colon 
muscle were significantly reduced in DM mice[107]. 
Wang et al[101] showed that endogenous IGF-1 and SCF 
protein and their mRNA expressions were significantly 

reduced in the DM colonic muscle tissues. Kim et al[100] 
demonstrated that spontaneous contractility decreased, 
carbachol-induced contractility decreased and the 
number of interstitial cells of Cajal networks was greatly 
reduced in the proximal colon of DM rats. In addition, 
the degree of relaxation in response to nitric oxide 
in the proximal colon of DM rats also appeared to be 
attenuated. Their results suggest that the decrease of 
interstitial cells of Cajal network, cholinergic receptors, 
and neuronal nitric oxide synthase in the proximal colon 
plays important roles in DM-related dysfunction of colon. 
Touw et al[108] showed that Type 1 DM is associated 
with decreased depolarization-induced Ca(2+) influx in 
colonic smooth muscle, leading to attenuated myosin 
light chain phosphorylation and impaired colonic con­
tractility. Sung et al[103] showed that the frequency, not 
the amplitude, of colonic spontaneous contraction in 
vitro was significantly decreased in DM rats compared 
to control rats. However, enhanced contractility of the 
colon in the DM animals has also been reported[109,110]. 
The increased contractility is associated with loss and 
injury to ICC in the submucosa and muscle layers[110]. 
Yoneda et al[111] showed that the colonic peristaltic 
reflex is enhanced by impairment of enteric nitrergic 
inhibitory neurons in spontaneous DM rats. Xie et al[112] 
demonstrated that carbachol-induced contractions of 
distal colonic strips were greater in DM rats in which 
β-arrestin2 is involved in the increase of distal colonic 
contraction in DM rats. Chang et al[113] indicate that the 
increased contractions of distal colon in DM rats are 
partly mediated by the IL-6 receptor pathway. 

Diabetes-induced sensory changes in the intestine and 
colon
Compared with published studies on motor disorders 
in DM, only few studies have addressed the sensory 
function of intestine and colon in the DM (Table 3). In 
relation to the small intestine, it has been demonstrated 
in a human study that there was an overall hyposen­
sitivity to the combination of all stimulations including 
mechanical, thermal and electrical stimulations in the 
duodenum in the DM patients[114]. Furthermore, it 

  Changes Intestine Colon

  Motor Transit time ↑↓[43,78-80,84,87]

Muscle tone ↓[80]

Jejunal contractility in response to flow and ramp distension 
after carbachol application ↑[81]

Ileal contractility in response to distension ↑[83] 
The force generated by the smooth muscle per unit ↓[82,83]

Dysmotility DM patients[88,90]

Migrating motor complex disorders[89] 

Transit time ↑[85,92-99,101,102,106] 

Contractility ↑↓[104,108,109,111-113]

Carbachol induced contractions in muscle ↑↓[100,107,112]

Spontaneous contractility ↑↓[100,102] 
Contraction and relaxation of circular muscle strips from DM were 

impaired[105] 

  Sensory Sensitivity of human duodenum to the combination of 
mechanical, thermal and electrical stimulations ↓[114]

Sensitivity of rat jejunum to the 
mechanical stimulation ↑

Sensitivity of rat colon to the mechanical stimulation ↑[103,115,116] 

Table 3  Diabetes mellitus-induced motor and sensory changes of intestine and colon

DM: Diabetes mellitus.
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was found that these patients demonstrated a 46% 
increase in the somatic referred pain areas. This may 
indicate that central neuronal changes are involved in 
the sensory changes of gut. Thus, the mechanisms of 
GI symptoms in long-standing DM patients are likely to 
involve the interactions between peripheral and central 
systems[114]. In relation to the colon, Grabauskas et 
al[115] showed that visceromotor responses to colorectal 
distension were significantly higher in STZ-induced 
DM rats 8 wk after the induction of DM. Such visceral 
hypersensitivity is mediated by abnormal IA current 
resulting from an increased phosphorylation of MAPK 
and Kv4.2 in dorsal root ganglion neurons. Similarly 
Hu et al[116] has also demonstrated that STZ-induced 
DM rats had colonic hypersensitivity to mechanical 
stimulation. The hypersensitivity was associated with 
an enhanced neuronal excitability of primary sensory 
neurons that showed an up-regulated expression of 
voltage-gated sodium channels (VGSCs, i.e., NaV1.7 
and NaV1.8 subunits). Visceral hypersensitivity is also 
demonstrated in a rat model of type 2 DM accompanied 
by weight loss[103]. 

Mechanism of sensory-motor function changes
It is important to understand the mechanism behind 
the DM-induced sensory-motor changes of gut in 
order to enhance treatment approaches for the DM 
patient with gut disorders. As mentioned previously, 
the histomorphological and biomechanical remodeling 
could alter the baseline of the mechanosensitive 
afferents activity and the biomechanical environment 
around the mechanosensitive afferents. Therefore, DM-
induced changes of gut structure and biomechanical 
properties can induce the changes observed in sensory-
motor functions. On the other hand, the sensory-
motor changes of the gut may reflect the structural 
and functional changes of peripheral nerve, ENS and 
the CNS in patients with DM. It seems that the more 
severe the neuropathy, the greater the likelihood of the 
involvement in gut sensory-motor disorders is[9]. 

More than 30% long-standing DM patients have DAN, 
therefore DAN is the most prevalent DM complication 
which is also related to other diabetic complications 
including GI complications[117]. The sensory nerves and 
ENS can be affected by peripheral DAN[7,118,119]. There 
is proof that the nerves in different layers of the GI wall 
undergo DAN changes and that the parasympathetic 
fibers in the gut are disrupted in DM patients[114]. 
Furthermore, ICCs are pacemaker cells in the GI tract 
distributed along the GI wall[120]. In GI tract, ICCs play 
an important role for the link between the autonomic 
nervous system, enteric neurons and smooth muscle 
cells[121]. Animal studies have demonstrated that the 
number of ICCs is reduced in different parts of GI tract 
such as the stomach[99,122], small intestine[99,123] and[99,124] 
colon. Therefore, the mechanisms of DM-induced 
sensory-motor function changes extensively involve the 
autonomic nervous system, ENS and ICCs. 

Many factors are related to DAN. As mentioned 

above, the formation and accumulation of AGEs in 
peripheral nerves are associated with DAN directly by 
affecting structural and functional proteins and indirectly 
by activating receptors for AGEs. In addition to the 
formation of AGEs, the microvascular complications 
to DM causing neuropathy include other biochemical 
pathways. For example, DM can induce oxidative 
stress which is enhanced by AGE formation and polyol 
pathway activation[125]. Many data have shown that 
oxidative stress-induced tissue injury is associated to 
DAN[77]. Experimental and clinical data provide evidence 
that C-peptide is related to nerve dysfunction in DM 
since the C-peptide administration by subcutaneous 
injections seems to ameliorate nerve dysfunction in 
DM[126]. Human and animal studies have demonstrated 
that Na+, K+-ATPase activity is impaired in the cell 
membrane of many tissues (see details in review)[127]. 
Thus, the impairment of Na+, K+-ATPase activity also 
plays an important role in the development of DAN by 
different pathways[128]. Furthermore, increased polyol 
pathway in DM has long been regarded as important in 
DAN[129]. Animal data suggests that glucose shunting 
through the polyol pathway alters nerve excitability 
due to the formation of sorbitol[130]. Furthermore, 
structural alterations of the nerves including thickening 
of the capillary basal membrane, loss of capillary 
pericyte coverage and endothelial hyperplasia, all lead 
to disturbances in capillary flow compromising the 
exchange of oxygen and glucose[131]. 

CLINICAL CONSEQUENCES OF 
DIABETES-INDUCED CHANGES IN 
INTESTINE AND COLON
DM-induced sensory and motor dysfunction can affect 
part of or the entire GI tract, therefore, the perceived 
symptoms may be associated with one or several 
parts of the GI tract. In the patients of both IDDM and 
NIDDM, the GI symptoms are very common and can 
reach 75%[132-138]. Due to the non-specific nature of GI 
symptoms in DM patients, differential diagnoses should 
be considered when clinicians deal with GI symptoms. 
As DM-induced DAN can affect the enteric nerves 
supplying the small intestine and colon, abnormal 
motility, secretion, absorption and transportation can 
occur as possible outcomes. The clinical manifestation 
of these can be symptoms such as central abdominal 
pain, bloating, diarrhea, incontinence and constipation. 
An overrepresentation of celiac disease has been 
observed in insulin dependent DM patients, as this is a 
known etiologic factor of severe diarrhea, celiac disease 
should be excluded when clearing up the matter of 
general DM diarrhea[139]. Recent evidence indicates that 
GM is strongly associated with the development of type 
1 and type 2 diabetes[97,140,141]. Furthermore, a close 
relationship between DM and increased risk of colon 
cancer has been demonstrated in both women and 
men[142,143]. DM is considered an independent risk factor 

Zhao M et al . Diabetes-induced intestinal and colonic changes



258 June 15, 2017|Volume 8|Issue 6|WJD|www.wjgnet.com

for colon and rectal cancer[144].

Diarrhea and diabetes
Chronic diarrhea is a frequent presenting symptom, 
seen by both general practitioners and gastroen­
terologists. The differential diagnosis is broad, and 
diagnostic evaluation may be complicated[145,146]. 
Diarrhea is an important and often debilitating feature 
of DM enteropathy occurring in up to 20% of the 
patients[147]. It has also been reported that chronic 
diarrhea is more frequent in type I DM patients[148]. The 
diarrhea is typically painless, may be associated with 
fecal incontinence and occurs more often at night[149]. 
Therefore when gastroenterologists are confronted with 
patients suffering from chronic diarrhea, DM should be 
considered as a differential diagnosis, especially poorly 
controlled DM with co-existing DAN. 

Many factors may relate to diarrhea in DM patients. 
These include food composition, intestinal motility 
disorders, GM changes, excessive loss of bile acids, 
pancreatic insufficiency and etc.[148,150-152]. Both increasing 
and decreasing GI transit time in DM patients may 
cause diarrhea. If the transit time become fast, intra-
luminal contents reaching the caecum will increase[153]. 
If the transit time is slow, there is a risk of bacterial 
overgrowth. Therefore, both conditions can potentially 
induce DM diarrhea[154]. The etiology of DM diarrhea is 
not fully understood and is most likely multifactorial[4,155], 
involving reversible and irreversible processes. The 
diarrhea does not always correlate with the duration of 
DM or glycemic control, therefore DAN is thought to be a 
main underlying mechanism[156]. 

The colon likely plays a secondary or permissive 
role in patients with steatorrhea which could be caused 
by pancreatic insufficiency, celiac disease, or bacterial 
overgrowth[157]. However, the colonic dysfunction may 
be a primary contributor in DM diarrhea where the 
steatorrhea is absent. Other causes of diarrhea also 
need to be excluded, such as infectious diarrhea, celiac 
disease, bile salt diarrhea, and the concomitant use 
of drugs that may cause diarrhea such as metformin, 
GLP-1 receptor agonists, dipeptidyl peptidase 4 inhi­
bitors, proton pump inhibitors, and statins[158] as well as 
functional diarrhea[159]. 

Constipation and diabetes
Constipation may be the most common GI complaint in 
DM patients[4,96,147,157,160-165]. Constipation also represents 
the most severe symptomatic problem[132]. The severe 
constipation may clinically present as obvious abdominal 
distention, severe nausea and vomiting as well as 
electrolyte disturbances[157]. Long-term and severe 
constipation may also cause stercoral ulcerations and 
perforation. 

The etiology of DM constipation is not well under­
stood; however, all factors in the DM patients affecting 
motor-sensory function of the colon are likely associated 
with constipation[164]. Among these factors, hyperglycemia 
is suggested to be the most important one. Inadequate 

glycemic control and consequent DAN have great 
influence on the sensory and motor functions of the GI 
tract[105]. DM angiopathy and vascular complications 
secondary to chronic hyperglycemia can also cause 
intestinal ischemia and impair nerve and muscle function 
resulting in DM gastroenteropathy[166]. Hyperglycemia 
causes apoptosis of enteric neurons and changes in 
their chemical code, resulting in motility changes[105]. It 
is well known that long-term hyperglycemia can induce 
the formation and accumulation of AGEs which play 
an important role for DAN[68-70]. ICC, together ENS and 
smooth muscles, play an important role in the regulation 
of motility[120]. One study demonstrated that a high 
dietary saturated fat intake is associated with significant 
increase in the prevalence of constipation in patients 
with uncontrolled DM[167]. The long term high dietary 
saturated fat consumption leading to slower GI motility 
and constipation may be related to gastrocolic reflux by 
several mechanisms. In addition, other factors such as 
stress, inflammation and functional changes in relation 
to DM may also be associated with constipation in DM 
patients[164]. 

Gut microbiota modification
The greatest concentration of microorganisms is found 
in the GI tract, and they consist mostly of bacteria[168]. 
The GM plays an important role in normal intestinal 
function and maintenance of the host health[168]. 
Composition of GM is affected by many factors such 
as diet, disease state, medications as well as host 
genetics. Therefore, GM has been associated with 
immune functions, immune mediated diseases, energy 
homeostasis and obesity[169,170]. To date, it has become 
increasingly evident that GM contributes to both type 1 
and type 2 DM[140,141,171]. In recent years, many reviews 
have discussed the impact of GM on the development 
of obesity and DM[140,171-174]. However, to the best of our 
knowledge, there are few reviews which discuss how 
the DM-induced GI changes in turn affect the GM. It is 
well known that the GM inhabits the gut, therefore the 
DM-induced intestinal and colonic changes are likely to 
modify GM composition, in turn, the GM changes may 
also affect intestinal structure and motility. 

As we discussed above in this review, motility 
disorders are common in diabetic patients[78-97]. There is 
evidence to suggest that modification of GI transit time 
can affect the composition of the GM community[175-177]. 
A close relationship exists between transit time and GM 
mass[175] and the motility shapes the composition and 
function of GM[176]. Therefore, the abnormal motility of 
gut in DM such as decreased or increased transit time 
can be an independent factor affecting the amount, the 
composition and the function of GM[178]. The changes of 
GM may further affect gut function through the brain-
gut-axis[179]. The GM can interact with the gut-brain-axis 
by means of the modulation of afferent sensory nerves 
to modulate the motility of the intestine[180,181]. The GM 
can also directly affect the ENS by different molecular 
pathways[182,183]. Furthermore, the GM can modulate 
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gut motility by nitric oxide generating pathway[184] and 
by interacting with the vanilloid receptor on capsaicin-
sensitive nerve fibers[185]. 

The DM-induced intestinal histomorphological 
changes such as mucosa damage may also be related 
to GM modification and function. The leaky epithelium 
presumably alleviates the penetration of bacteria 
through the intestinal epithelium, initiating a pathologic 
cascade and disturbing the intestinal immunology, 
which is a critical element in the development of type 
1DM[169]. On the other hand, the GM changes may also 
affect the integrity of intestinal mucosa[186] and smooth 
muscle functions[187]. The bidirectional interplay between 
GM and DM-induced intestinal changes contributes to 
the pathogenesis of GI disorders in DM. 

GLP-1 regulates glucose homeostasis by stimulating 
the secretion of insulin from pancreatic β-cells[188] and 
plays important roles in metabolism as well as GI 
motility[188-190]. In relation to DM, GLP-1 acts as a phar­
macological agent with definite therapeutic potential in 
DM treatment, regulating blood glucose by stimulating 
insulin secretion from insulin-producing β-cells in a blood-
glucose dependent manner and inhibiting glucagon 
secretion from the glucagon-producing α-cells[191,192]. 
On other hand, it has been demonstrated that GLP-1 
is progressively up-regulated in pancreatic islets during 
type 2 DM development[193]. More recently, the link 
between GLP-1/GLP-1 receptor (GLP-1R) expression and 
GI motility mediated by GM has been investigated[194]. 
They found that the expression of GLP-1R in myenteric 
neural cells in the GI tract was suppressed and the GI 
transit time became shorter in Germ-free (GF) mice after 
transplantation of GM. Therefore, they suggest that the 
GM accelerates the GI motility while suppressing the 
expression of GLP-1R in myenteric neural cells throughout 
the GI tract. There are also other anti-diabetic agents 
which act in the GI tract such as alpha-glucosidase 
inhibitors[195] and GLP-1 receptor agonists[196,197]. It is 
interesting to notice that alpha-glucosidase inhibitors 
and GLP-1 receptor agonists also affect the GM[198-200]. 
Alpha-glucosidase inhibitors such as acarbose treatment 
has been demonstrated to increase the content of 
gut Bifidobacterium longum and partially restore the 
imbalance of GM in patients with type 2 DM[198], and the 
changes in GM are strongly associated with the levels 
of various metabolic indicators[200]. In contrast, GLP-1 
receptor agonists such as liraglutide seem to modulate 
the composition of the GM[199]. Other therapeutic agents 
targeting DM such as metformin[201] and antibiotics[202] 
also affect the GM. Thus, there is an interplay between 
drugs used for DM and the GM, however, the exact 
mechanism of the interaction is complex and needs to be 
investigated more thoroughly. 

Colon cancer and diabetes
Type 2 DM mellitus has been reported to increase the 
risks of a wide spectrum of cancers including colorectal 
cancer[142-144,203-206]. Colorectal cancer is a significant 

health problem; it is one of the most common mali­
gnancy of the GI tract[207]. Therefore, understanding the 
association between DM and the risk of colon cancer is 
crucial. 

Although some studies have reported no overall 
associations between DM and colon cancer risk[208-211], 
most studies support the finding of an association 
between DM and colon cancer. Large prospective 
studies have demonstrated that DM is associated 
with an increased risk of colon cancer in people 
investigated[211-217]. Many meta-analysis studies also 
support a correlation between DM and increased risk 
of colon cancer[142-144,218-222]. A population-based cohort 
study investigating the overall sex- and age-specific risks 
of colorectal cancer in association with DM was done 
by Chen et al[223]. They showed that DM significantly 
increased the risk of colorectal cancer, especially in 
patients aged 45-64 years. A multiethnic Cohort 
study also found that DM is a risk factor for colorectal 
cancer[224]. In addition, DM was found to negatively 
impact the survival outcomes of patients with colon 
cancer[225].

The mechanisms to explain the association between 
DM and increased colon cancer risk remain unclear. It 
has been demonstrated that AGEs and RAGE are up-
regulated in the DM GI tract[49,64], and AGEs and RAGE 
are associated with DM-induced intestinal and colonic 
histomorphological remodeling[47,51] and DAN[125] which 
is closely related to motor-sensory disorders[9]. High 
glucose levels and AGEs increase the proliferation 
and migration of cultured colon cancer cells[226]. 
Hyperglycemia and AGEs could also induce oxidative 
stress and inflammation, which can cause further 
damage to the cellular components and contribute to 
malignant cell transformation[227]. Inflammation is a 
critical component of DM-induced target organ injury 
and colon cancer initiation and progression[228,229]. 
The inflammasome regulates the microbiota and the 
inflammatory response of epithelial cells to the GM[230], 
and the GM has been shown to be associated with 
GI malignancy including colonic cancer[231,232]. Recent 
studies suggest that RAGE signaling plays an important 
role in colorectal tumor progression[233]. Furthermore, 
AGEs may promote cancer cell proliferation through 
the activation of the RAGE signaling[234,235]. Therefore, 
hyperlipidemia, AGEs, inflammation, extracellular matrix 
alterations, and altered microbiota may induce GI tissue 
injury that may favor the development of colonic cancer. 
It has also been demonstrated that the slower bowel 
transit time in DM patients could enhance the exposure 
of the colorectal epithelium to carcinogens such as bile 
acids, nitrosamines and polycyclic hydrocarbons[236]. The 
above-mentioned findings show a possible link between 
DM-induced intestinal mechanophysiological changes 
and colonic cancer. The potential molecular mechanisms 
mediating the link between DM and colon-rectal cancer 
have been reviewed in detail recently[237], however 
the exact mechanisms need to be explored further. 
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Furthermore, other factors as mentioned below are also 
likely associated with colon cancer. Metabolic syndrome, 
characterized by abdominal obesity, hyperglycemia, 
raised blood pressure, elevated triglyceride levels, and 
low high-density lipoprotein-cholesterol levels, is often 
seen in diabetic patients and has been reported to be 
associated with colon cancer[238-241]. As dietary fibers 
reduce the risk of metabolic syndrome, dietary fibers 
may have a role in the prevention of colon cancer in 
patients with type 2 DM[242]. Chronic hyperinsulinemic 
state and the elevation of insulin-like growth factor-1 
levels may play a crucial role in the proliferation of cells 
and the occurrence of colon cancer[243] by different 
molecular mechanisms[244]. Elevated insulin receptor 
protein expression in colonic tumors has also been 
proposed as a possible biological mechanism for colonic 
tumorigenesis as in vivo studies have shown that insulin 
receptors contribute to cell transformation[245]. Different 
treatments of DM may also be related to colon cancer in 
DM patients. Chronic insulin therapy has been reported 
to be associated with an increased risk of colorectal 
adenoma[246] and cancer risk[247] among type 2 DM 
patients. Sulfonylureas stimulate endogenous insulin 
secretion and have therefore been suggested to be 
associated with an increased risk of colon cancer[248], 
however other reports showed that sulfonylurea use 
was associated with a lower colon cancer risk in DM 
patients[249]. Data on potential carcinogenic effects of 
thiazolidinediones are inconsistent, but most studies 
have found no increased risk of colon cancer[244,250,251] 
or even reduced risk of colon cancer. Metformin lowers 

the amount of circulating insulin and there is evidence 
on Metformin acting as a protective agent against colon 
cancer[234,252-254], this may be due to a reduction of the 
formation of precancerous lesions[255,256]. GLP-1-based 
therapeutic approaches have also been suggested as 
potential carcinogenic factors[102]. However, animal 
studies have shown that GLP-1 receptor activation 
reduced growth and survival in mouse CT26 colon 
cancer cells[257] and GLP-1 receptor agonists did not 
accelerate neoplasia in carcinogen treated mice[258]. A 
recent study also demonstrated that DM medication in 
general did not impact cancer recurrence or survival[259]. 

CONCLUSION
DM-induced intestinal and colon changes are sum­
marized in Figure 4. DM is a chronic disease and is 
one of the major public health problems worldwide. 
Disorders of intestine and colon are common in 
DM. DM is associated with structural changes in the 
connective tissue matrix and in the muscles in the wall 
of intestine and colon and further causes biomechanical 
remodeling. As demonstrated in the text above, many 
mechanophysiological changes occur in the diabetic 
intestine and colon such as changed dimensions and 
changed passive and active tissue properties. Remode­
ling also occurs in the nerve structure and function. 
The interplay between these changes is extremely 
complex and need a scientific base to be explored fully. 
The changes may to various degrees be part of the 
mechanisms responsible for the intestinal and colonic 
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Figure 4  The diagram shows the diabetes mellitus-induced 
intestinal and colonic changes and clinical consequences. CNS: 
Central nerve system; PNS: Peripheral nerve system; ENS: Enteric 
nervous system; GM: Gut microbiota.
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sensory-motor disorders causing a variety of symptoms. 
The complexity is even more difficult to deal with since 
the symptoms are associated with changes in the central 
processing of visceral afferent signals from the gut 
wall. As DM-induced DAN can affect the enteric nerves 
supplying the intestine and colon, abnormal motility, 
secretion, absorption and transportation can occur. 
This presents clinically as symptoms including central 
abdominal pain, bloating, diarrhea, incontinence and 
constipation. The DM-induced structural changes and 
motility disorders of the intestines are associated with 
GM changes in DM, on the contrary the GM changes 
may in turn affect intestinal structure and motility. 
Furthermore, studies suggest an association between 
DM and increased risk of colon cancer in both women 
and men, and the link between DM-induced intestinal 
mechanophysiological changes and colon cancer need 
to be explored further. Therefore, an insight into DM-
induced intestinal and colonic changes and the clinical 
consequences is important in order to explore better 
treatment approaches for the gut disorders in diabetic 
patients. 
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