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ABSTRACT

Molecular dynamics simulations have been performed
on netropsin in two different charge states and on
distamycin binding to the minor groove of the DNA
duplex d(CGCGAAAAACGCG)�d(CGCGTTTTTCGCG).
The relative free energy of binding of the two non-
covalently interacting ligands was calculated using
the thermodynamic integration method and reflects
the experimental result. From 2 ns simulations of the
ligands free in solution and when bound to DNA,
the mobility and the hydrogen-bonding patterns of
the ligands were studied, as well as their hydration.
It is shown that even though distamycin is less
hydrated than netropsin, the loss of ligand–solvent
interactions is very similar for both ligands. The relat-
ive mobilities of the ligands in their bound and free
forms indicate a larger entropic penalty for distamycin
when binding to the minor groove compared with net-
ropsin, partially explaining the lower binding affinity of
the distamycin molecule. The detailed structural and
energetic insights obtained from the molecular
dynamics simulations allow for a better understanding
of the factors determining ligand–DNA binding.

INTRODUCTION

The DNA molecule is a target of various antitumour active
drugs that form covalent and non-covalent molecular com-
plexes when binding to the minor or major groove (1–5). The
first DNA-interactive anticancer drugs belong to the family
of the covalently binding DNA alkylating agents (6,7). In
recent years, ligands that bind non-covalently in the
minor groove have attracted considerable attention because
of their pronounced sequence specificity (8). Netropsin and

distamycin (Figure 1) are two naturally occurring amide-
linked oligopyrole antibiotics with affinity for A-T rich regions
of the DNA minor groove (9,10). Their interaction with the
minor groove is non-covalent and non-intercalative, and it is
based on hydrogen bonding (11,12), van der Waals contacts,
hydrophobic effects and electrostatic effects of the charged
ends with netropsin having two cationic charges and distamy-
cin having one (13–18). Both molecules possess a crescent
shape that is complementary to the shape of the minor groove.
At least four consecutive A-T base pairs are involved in the
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Figure 1. Structures of netropsin (A) and distamycin (B). The netropsin
molecule consists of two methylpyrole rings, three amide linkages,
a guanidinium and a propylamidinium part. The components of distamycin
are three methylpyrole rings, three amide linkages, a formamide and a
propylamidinium part. Atoms within the rectangles are changed during the
TI calculation.
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interaction of DNA with one netropsin or distamycin molecule
(13–17). The introduction of a G-C base pair in the A-T rich
region disturbs the binding of the netropsin molecule due to
sterical hindrance of the exocyclic C2 amino group of guanine
(Figure 2) (9,10). However, distamycin can occupy such sites
in a 2:1 side-by-side head to tail orientation (19–21). The
formation of a 2:1 distamycin–DNA complex versus a 1:1
complex is known to be highly DNA sequence dependent (22).
In case of oligomer duplexes with AAAAA binding sites,
1:1 complexes are formed at low distamycin:DNA ratios
and 2:1 complexes are formed at the ratios >1 (22). On the
contrary, AAGTT binding sites are occupied in a 2:1 manner
even at low distamycin:DNA ratios (23), suggesting that
the wider minor groove of these sites requires two ligand
molecules to establish close contacts with the walls of the
groove. Furthermore, the thermodynamics of the binding of
netropsin and distamycin to DNA is strongly dependent on the
binding sequence (24,25). It is well established, for example,
that binding of netropsin to a homogenous A-T sequence is
an entropy-driven process while binding of the same molecule
to an alternating ATAT sequence is an enthalpy-driven pro-
cess (24,25). The enthalpy–entropy compensation results in a
similar favourable net free energy of binding in either case.
Considering only the enthalpy of binding may, therefore, lead
to poor correlations with the observed binding affinities. For
an accurate determination of the DNA–drug binding strength,
calculation of the free energy differences, which include
entropic contributions, is required.

In this paper, we present the calculation of relative free
energies of binding of netropsin and distamycin to the oligo-
nucleotide sequence d(CGCGAAAAACGCG) in a DNA
duplex with its complement using molecular dynamics (MD)
simulations in explicit aqueous solvent. Free energy calcula-
tions of binding for these and similar ligands to different
DNA sequences have already been performed earlier
(26–28). In our calculations, we have employed the thermo-
dynamic integration (TI) approach (29) utilizing two different
GROMOS force fields for the perturbed or changing part of
the ligand. MD trajectories of 2 ns were generated for the
ligands free in solution and for the ligands bound to DNA.
Structural and hydration characteristics of the ligands in solu-
tion and of their complexes with DNA were analysed and the
results were compared with the experimental data.

MATERIALS AND METHODS

System set-up

Since a crystal structure of either of the complexes is
not available, spatial structures of the DNA duplex
d((CG)2A5(CG)2)–d((CG)2T5(CG)2) in an ideal B-DNA
conformation were obtained using the INSIGHTII software
package (Accelrys Inc., San Diego, CA). Structures of netro-
psin and distamycin were taken from the crystal structures
PDB ID 101D (30) and PDB ID 267D (31), in which netropsin
and distamycin are complexed to slightly different DNA
sequences. Initial structures of the DNA–drug complex were
obtained by placing the netropsin and distamycin molecules
(in their X-ray structures) into the minor groove. A dual topo-
logy and coordinates were obtained for a ligand that contained
both sets of atoms that are shown within the rectangular boxes
in Figure 1. The complex was solvated in a periodic truncated
octahedron using 11 034 simple point charge (SPC) water
molecules (32) with a minimum distance of 0.23 nm from any
(non-hydrogen) solute atom to the water oxygen. The coordin-
ates of water were optimized by steepest descent energy mini-
mization in which DNA and ligand were positionally
restrained using a harmonic interaction with a force constant
of 2.5 · 104 kJ mol�1 nm�2. Using the PROION utility of the
GROMOS software package (33), 20 Cl� and 43 Na+ ions
were added to the system in order to obtain an overall neutral
system at an experimental salt concentration of 110 mM NaCl.
The same procedure as for the complex was employed for the
ligand in water resulting in a computational box containing
3225 water molecules, 6 Na+ and 7 Cl� ions.

Parameters

The parameters and the charges for netropsin and distamycin
were selected in analogy to existing parameters in the
GROMOS force field. At pH 7, netropsin has a total charge
of +2 e, while distamycin has a charge of +1 e. In order to
investigate the effect of ligand charge on the binding free
energy differences, we decided to use two different sets of
parameters for the perturbed part of the netropsin molecule,
force-field parameters 45A4 and force-field parameters 45B4.
The latter distinguishes itself from the 45A4 set by charged
moieties being neutralized (33,34). When using force-field
parameters 45A4, the charge of the perturbed part (atoms
within the rectangular boxes in Figure 1) changed from +1 to
0 during the mutation of netropsin (Net) into distamycin (Dist).
When using the force-field parameters 45B4, the perturbed
part remained neutral throughout the calculation (NetN to
Dist). The force-field parameters used for the ligands are avail-
able as Supplementary Information. For DNA, the GROMOS
force-field parameters 45A4 were used (35). This parameter
set was recently optimized resulting in modified nucleotide
backbone torsional-angle parameters and explicit hydrogens
and revised charge distributions on the nucleotide bases. This
new parameter set leads to an improved DNA stability and
smaller deviations between simulated and experimental
observables.

Molecular dynamics simulations

All MD simulations were carried out using the GROMOS96
biomolecular simulation package (33). Prior to the free energy

Figure 2. Schematic representations of A-T and G-C base pairs with hydrogen-
bond donors and acceptors indicated. The exocyclic C2 amino group of guanine
that interferes with netropsin binding in the minor groove is encircled and
the major and minor groove positions are marked. The arrows indicate possible
ligand–DNA hydrogen bonding.
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calculations, the solvated complex and ligand were each
equilibrated in an 80 ps MD simulation. First, the system
was heated at constant volume over 30 ps from 50 to 300 K,
using the weak coupling approach (36) with a relaxation time
of 0.1 ps. The solvent and the solute were coupled to separate
temperature baths. During the heating, the DNA and ligand
positions were harmonically restrained with a stepwise
decreasing force constant, initially at 2.5 · 104 kJ mol�1 nm�2.
After this, the system was coupled to a constant temperature
bath at 300 K and to a constant pressure bath of 1 atm with
a relaxation time of 0.5 ps and an estimated isothermal com-
pressibility of 4.575 · 10�4 (kJ mol�1 nm�3)�1. During all
simulations, we used the SHAKE algorithm to keep all bonds
rigid allowing for a time step of 2 fs (37). Non-bonded inter-
actions were calculated using a triple-range cut-off scheme.
Interactions within a short-range cut-off of 0.8 nm were
calculated at every time step from a pair list that was generated
every five steps. At these time points, interactions between
0.8 and 1.4 nm were also calculated and kept constant between
updates. To account for a homogenous medium outside the
long-range cut-off, a reaction-field contribution (38) was added
to the electrostatic interactions and forces, using a relative
permittivity of 61 (39).

Trajectory structures for analysis were saved at 0.2 ps
intervals from 2 ns MD simulations of the ligands in solution
and from the simulations of the complexes of the ligands with
DNA. Atom-positional root-mean-square deviations (RMSDs)
from the initial conformation were calculated for the DNA-
backbone atoms, DNA-base atoms and the atoms of the ligand
that were bound in the DNA minor groove. The DNA back-
bone atoms were used in the least-squares translational and
rotational superposition. The flexibility of the ligands was
investigated in terms of the atom-positional root-mean-square
fluctuations (RMSFs) for all non-hydrogen atoms. In the
analysis of interactions, the following geometrical criterion for
hydrogen bonds was used: a donor–acceptor distance <0.25
nm and a donor–hydrogen–acceptor angle of at least 135�.
Hydration shells around the atoms of a ligand in solution
and when bound to the DNA were determined based on the
radial distribution function g(r) for all ligand atoms with water
oxygen atoms. The number of water molecules in the first
hydration shell of a solute atom can be calculated as

Nshell
w‚at ¼

Z Rc

0

rwg rð Þ4pr2 dr‚ 1

where rw is the number density of water in the computational
box and Rc is a cut-off distance, set to 0.245 nm. The number
of hydration shell water molecules of a molecule (ligand),
Nshell

w is just taken as the sum of Nshell
w‚at over all atoms.

Free energy calculations

The TI method was used to calculate the relative free energy
differences of binding of netropsin and distamycin to the
d((CG)2A5(CG)2)–d((CG)2T5(CG)2) DNA duplex. In this
method, the system is mutated from one state to another
by changing the interaction parameters that define the
Hamiltonian H as a function of a coupling parameter l. The
free energy difference, DG, between two states of a system,

state A defined by a Hamiltonian H(l = 0) = HA and state B,
defined by a Hamiltonian H(l = 1) = HB, is calculated
as follows:

DGBA ¼ GB�GA ¼
Z 1

0

dG lð Þ
dl

dl ¼
Z 1

0

qH lð Þ
ql

� �
l
dl‚ 2

where h il denotes ensemble averaging at a given l value. The
system is perturbed from state A to state B in discrete steps.
The Hamiltonian of the system at any intermediate state can
be defined as

H lð Þ ¼ 1�lð ÞHA þ lHB: 3

The integrand in Equation 2 is evaluated numerically
from MD simulations at specified values of l and the value
of DGBA is then calculated using the trapezoid rule.

The TI method can be used to determine the relative bind-
ing free energies between two ligands as is shown in Figure
3. Net, NetN and Dist states refer to the netropsin (charge
+2 e), netropsin (charge +1 e) and distamycin (charge +1 e)
molecules, respectively, in solution (solvent) or in the
complex with DNA. In this study, we report 12 TI simula-
tions. Both netropsin with a net charge of +2 (Net) and
netropsin with a net charge of +1 (NetN) were changed
into Dist. To be able to close the thermodynamic cycles,
the mutation from Net into NetN was performed as well.
All mutations were performed in both directions in the solv-
ated state of the ligand and in the complexed state (Figure 3).
In addition, the four end-states involving Net and Dist in
the free and the complexed state were simulated for 2 ns.
Experimentally determined values for the free energy of
binding of netropsin to DNA, DGbind(Net), and the free
energy of binding of distamycin to DNA, DGbind(Dist) are
available (25). Because these are virtually impossible to cal-
culate directly, we use the fact that the free energy is a state

Figure 3. Thermodynamic cycles used for the calculation of relative
free energy of binding of netropsin and distamycin to the
d(CGCGAAAAACGCG)�d(CGCGTTTTTCGCG) duplex. Net corresponds
to the netropsin molecule with a net charge of +2 e parameterized with the
force field 45A4. NetN corresponds to the same molecule but having a net
charge of +1 e. The perturbation part of NetN (boxed atoms in Figure 1) is
parameterized with force field 45B4 (non-charged version of the guanidinium
group). Dist is the distamycin molecule. The abbreviations ‘solvent’ and
‘complex’ correspond to the ligand that is free in solution and to the one that
is in complex with the DNA.
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function, so it follows that

DDGbinding Net‚Distð Þ ¼ DGbind Netð Þ�DGbind Distð Þ
¼ DGDist�Net solventð Þ
�DGDist�Net complexð Þ‚

4

where Net can also be replaced by NetN. To calculate
the relative binding free energy DDGbinding, free energy
changes for conversion of netropsin into distamycin both
in solution and when bound to the DNA minor groove
need to be evaluated.

In our free energy calculations, we converted netropsin into
distamycin by switching off the non-bonded interactions
of the –CH2–NH–C(NH2)2 group of the netropsin tail while
simultaneously switching on the non-bonded interactions of
the –Py–NH–COH group of the distamycin tail (Py indicates
the methylpyrole ring). The perturbed parts of both molecules
are shown within the rectangular boxes of Figure 1. During the
conversion, the bonded interactions and atomic masses remain
unchanged. The TI simulations were started after the system
was equilibrated for 80 ps.

In the perturbation simulations, separate simulations were
performed at 11 equally spaced l values, from l = 0 to l = 1.
At each point, the system was first equilibrated for 40 ps after
which the data were collected during 80 ps simulations. Later,
up to seven additional l values were added and simulations at
particular l values were prolonged for 40 or 80 ps in order to
obtain a smooth free energy profile and to reduce the error
estimates per l value. The hystereses of all the perturbations of
one ligand into another were determined by performing the
mutations in both the forward and the backward direction. In
the backward calculations, the final coordinates of the forward
set of runs were used as the starting points.

RESULTS AND DISCUSSION

Molecular dynamics simulations

In Figure 4, the atom-positional RMSD of the DNA backbone,
base and the ligand atoms in the trajectory structures from
the initial structure is shown for the netropsin–DNA and
distamycin–DNA complexes. The backbone and the ligand
geometries diverge from the geometries of the starting
structure in the first part of the simulation. However, after
1 ns, the RMSD returns to smaller values. The simulation
of the DNA–Dist complex was started from the endpoint of the
perturbation simulation that had changed netropsin into dis-
tamycin in the complex. Hence, for this simulation the RMSD
values already have higher values at the starting time. These do
not change much over the course of the simulation. Through-
out the simulation, the double-helical DNA structure was well
maintained. The occurrence of Watson–Crick hydrogen bonds
between the base pairs in the end-state simulations of both
complexes is shown in Figure 5. The hydrogen bonds are well
preserved between all the base pairs except for the GC-base
pairs at the end of the double helix. However, an increased
flexibility of the first and last nucleotides is commonly
observed in MD simulations of polynucleotides (35,40).

Table 1 lists the occurrence of hydrogen bonds involving the
ligands in solution and when bound to the DNA minor groove.
From a comparison of the hydrogen bonds, it can clearly be
seen that both ligands were oriented with the amide hydrogens
(H3, H5, H7) pointing towards the DNA double helix, while
the amide carbonyl oxygens (O1, O2, O3) remain in contact
with water. In fact, owing to the orientation of the ligands the
carbonyl oxygens are exposed to bulk water and show slightly
more hydrogen bonding with water in the complex than in the
solution. The tails of both ligands are strongly involved in
hydrogen bonds to both the DNA and the solvent. In the
simulations, three-centred hydrogen bonds were also observed

Figure 4. Atom-positional RMSD of the DNA backbone, base and the ligand atoms in the trajectory structures from the initial structure, for the simulated
DNA–Net (A) and DNA–Dist (B) complexes. The black line corresponds to base pair atoms, the red line to the backbone atoms and the green line to the ligand atoms.
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Figure 5. Occurrence of Watson–Crick hydrogen bonds in simulations of netropsin–DNA (A) and distamycin–DNA (B) complexes. For every GC-pair three
hydrogen bonds and for every AT-pair two hydrogen bonds are given. Along the x-axis, the sequence of the primary DNA strand is given. For the definition of
a hydrogen bond, see the caption to Table 1.

Table 2. Occurrence of three-centred hydrogen bonds (%) to DNA for

netropsin and distamycin

Netropsin Distamycin
Three-centred hydrogen
bond

Occurrence
(%)

Three-centred hydrogen
bond

Occurrence
(%)

N1–H12! 5Ade N3 5 N1–H12! 5Ade N3 11
6Ade O40 6Ade O40

N2–H22! 5Ade N3 9 N1–H12! 5Ade N3 1
6Ade O40 10Cyt* O2

N2–H22! 5Ade N3 1 N2–H22! 5Ade N3 7
10Cyt* O2 6Ade O40

N3–H3! 6Ade N3 2 N2–H22! 5Ade N3 1
7Ade O40 10Cyt* O2

N3–H3! 6Ade N3 3 N3–H3! 6Ade N3 2
9Thy* O2 7Ade O40

N7–H7! 8Ade N3 7 N3–H3! 6Ade N3 6
7Thy* O2 9Thy* O2

N7–H7! 7Thy* O2 2 N7–H7! 7Thy* O2 3
8Thy* O40 8Thy* O40

N9–H92! 9Ade N3 1 N9–H9! 8Ade N3 2
10Cyt O40 9Ade O40

N10–H102! 6Thy* O2 10 N9–H9! 9Ade O40 2
7Thy* O40 9Ade N3

N9–H9! 9Ade N3 1
6Thy* O2

The occurrence of hydrogen bonds larger than 1% is given. Nucleotides in the
second strand of the DNA duplexare marked with an asterisk after the nucleotide
name and ribose atoms with a prime (0) after the atom name. Three-centred
hydrogen bonds are defined for a donor atom D, hydrogen atom H, and
two acceptor atoms A1 and A2 if (i) the distances H–A1 and H–A2 are within
0.27 nm; (ii) the angles D–H–A1 and D–H–A2 are >90�; (iii) the sum of the
angles D–H–A1, D–H–A2 and A1–H–A2 is at least 340�; and (iv) the dihedral
angle defined by the planes through the atoms D–A1–A2 and H–A1–A2 is
at most 15�.

Table 1. Occurrence of hydrogen bonds (%) to DNA and water, and hydration

shell number of water molecules for netropsin and distamycin free in solution

and in complex with DNA

Netropsin Distamycin
Atoms Free

water
Complex Atoms Free

water
Complex

DNA Water DNA Water

N1–H11! 76 1 76 N1–H11! 76 0 81
N1–H12! 82 35 31 N1–H12! 83 45 22
N2–H21! 72 0 81 N2–H21! 76 0 80
N2–H22! 82 46 26 N2–H22! 82 36 30
N3–H3! 59 41 0 N3–H3! 60 44 0
O1 76 0 90 O1 72 0 91
N4 14 0 14 N4 13 0 17
N5–H5! 58 33 0 N5–H5! 58 43 0
N5 4 0 2 N5 4 0 0
O2 84 0 91 O2 85 0 90
N6 14 0 11 N6 13 0 20
N7–H7! 77 61 0 N7–H7! 66 76 0
N7 3 0 0 N7 5 0 1
O3 66 0 69 O3 84 0 89
N8–H8! 79 13 56 N8 14 0 16
N8 0 0 0 N9–H9! 71 41 0
N9–H91! 67 0 68 N9 6 1 4
N9–H92! 57 9 41 O4 86 0 76
N10–H101! 67 1 73
N10–H102! 59 47 5
Total 11.9 3.1 8.1 Total 11.2 3.2 7.5
Nshell

w 10.2 5.5 Nshell
w 7.3 2.7

For every hydrogen bonding atom in the ligands, the occurrence of hydrogen
bonds (>1%) to (!) and from ( ) water and to and from DNA is given.
A hydrogen bond is defined by a donor–acceptor distance <0.25 nm and
a donor–hydrogen–acceptor angle >135�. The atom labelling is indicated in
Figure 6. The average number of hydrogen bonds between ligands on the one
hand and DNA and water on the other is given in the row labelled ‘Total’. The
average number of water molecules within a shell of radius 0.245 nm around the
atoms of the ligand is given in the row labelled Nshell

w .
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and they are listed in Table 2. A three-centred hydrogen bond
is defined for a donor (D), hydrogen (H) and two acceptors
(A1 and A2) if (i) the H–A1 and H–A2 distances are within
0.27 nm; (ii) the D–H–A1 and D–H–A2 angles are at least 90�;
(iii) the sum of the angles D–H–A1, D–H–A2 and A1–H–A2 is
at least 340�; and (iv) the dihedral angle defined by the planes
through D, A1, A2 and H, A1, A2 is <15� (41). In accordance
with the previous experimental studies (13,14,30), some of the
three-centred hydrogen bonds form a bridge between the bases
and riboses of the two DNA strands. Three-centred hydrogen
bonds are also observed for the bases and riboses of the same
strand. The different (normal) hydrogen bonds between both
ligands and the DNA are displayed graphically in Figure 6.
The average number of hydrogen bonds in which the ligands
are involved are given in the one to last row of Table 1. It can
be seen that upon binding each ligand replaces on an average 3
out of 11 hydrogen bonds to water with 3 to DNA. The average
number of ligand–solvent hydrogen bonds for netropsin is
slightly higher than for distamycin, both in solution as well
as in the complex. The average number of hydrogen bonds
that are formed to the DNA is very similar to both ligands and
each ligand looses on an average half a hydrogen bond upon
binding.

Geometrical parameters characterizing the spatial arrange-
ment and conformation of the nucleotides along the DNA

helix were calculated according to the 3DNA convention
(42,43) over the simulations of the DNA–netropsin and
DNA–distamycin complexes as well as for a very similar
simulation of the uncomplexed DNA sequence in solution.
Even though the structural parameters are not direct experi-
mental observables, a comparison between uncomplexed
DNA and DNA–netropsin or DNA–distamycin can be
made. Some of the structural parameters for the binding
site changed upon complexation of netropsin and distamycin.
In particular, the roll was reduced from an average of 6.3� for
uncomplexed DNA to 3.6� in the complexes, the propeller was
reduced from �4.1� to �9.4�, the inclination was reduced
from 12.2� to 6.6� and the x-displacement was increased
from �0.32 to �0.20 nm. Interestingly, the opening for the
5Ade–9Thy base pair (forming hydrogen bonds with the
charged side of the molecules; see Figure 6) changes from
�4.2� in uncomplexed DNA to +4.3� in the complexes.

A stronger interaction of netropsin with water can also be
observed from the number of water molecules that are in close
contact with the ligands. The number of water molecules
within a cut-off distance of 0.245 nm of the ligand were cal-
culated according to Equation 1 and are given in the last row
of Table 1. Netropsin is tightly bound to 10.2 water molecules
in solution, which is being reduced to an average of 5.5 water
molecules upon binding to the DNA. Distamycin looses a very

A

B

Figure 6. A schematic representation of the hydrogen bonds that netropsin (A) and distamycin (B) form with the DNA and with water when they are bound to the
minor groove of the d((CG)2A5(CG)2)-d((CG)2T5(CG)2) duplex in aqueous solution. The occurrence of hydrogen bonding in the simulation is given in Table 1.
Hydrogen bonds with DNA are shown in red and hydrogen bonds with water are shown in blue. Nucleotides in the second strand of the DNA duplex are marked with
the asterisks. Not all hydrogen bonds in Table 1 are displayed.
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similar amount (4.6) of short-distance water interactions upon
binding, but is interacting with fewer short-distance water
molecules than netropsin. This can be explained from the
larger hydrophobicity of distamycin compared with netropsin.

From the simulation trajectories, the atom-positional
RMSFs of both ligands in water and in complex with the
DNA have also been calculated. The average flexibility per
atom is reduced upon binding to DNA for both molecules.
For netropsin, the average RMSF value is reduced from
0.088 nm in solution to 0.055 nm when bound to DNA. For
distamycin, these values are 0.092 and 0.050 nm in solution
and when bound to DNA, respectively, resulting in a larger
loss of mobility for this ligand. In terms of binding affinities,
this may indicate a higher entropic penalty for the binding of
distamycin. This is in agreement with entropy determinations
from recent experiments (25). Closer examination of the atom-
positional RMSF values reveals that the most mobile parts of
netropsin and distamycin are the tails of both molecules, while
the central part is more rigid (44,45).

Relative binding free energies

The values of qH=qlh il for the perturbation simulations
performed in the present study are shown in Figure 7. All curves
are relatively smooth and can be integrated quite accurately.
The free energy differences as assigned in the thermodynamic
cycles of Figure 3 are collected in Table 3. In the second
column, the results for the perturbation of netropsin at a net
charge of +2 e into distamycin are collected. The third column
lists the free energy differences between the results obtained
with the use of the 45B4 parameter set for the perturbed part of
netropsin (resulting in a net charge of +1 e for the ligand). The
fourth column presents the free energy change between the
two descriptions of the netropsin molecule. Finally, the fifth
column gives the free energy of the cycle defined as

DGcycle ¼ DGDist�Net�DGDist�NetN�DGNetN�Net: 5

Theoretically, the value of DGcycle should be equal to zero.
For all perturbations the results from the forward and the
backward perturbations are given, as well as their average
values. It can be seen that for most perturbations the hysteresis
(difference between forward and backward results) is of the
order kBT, except for the mutation of NetN to Dist in the
complex, where it is 7.2 kJ mol�1. The cycle closures (DGcycle)
that can be calculated are within the error bars of the theor-
etical value of 0 kJ mol�1. These values are quite reasonable
in view of the large change in qH=qlh il value in Figure 7.

The results for the relative free energies of binding of
both the forms of netropsin with respect to distamycin do
reflect the experimental results (25). For the simulations

Figure 7. Free energy profiles for the changes of Net to Dist (A and B), NetN to Dist (C and D) and Net to NetN (E and F) when the ligand is free in solution (A, C
and E) and when bound to the minor groove of DNA (B, D and F). The values of the integrand qH=qlh il are plotted as a function of the coupling parameter l for
the forward (black solid line) and backward (red solid line) perturbation of one ligand into another. The error bars correspond to statistical errors from block
averaging (46).

Table 3. Results of TI calculations for ligands free in solution and

complexed to DNA

DGDist–Net

(kJ mol�1)
DGDist–NetN

(kJ mol�1)
DGNetN–Net

(kJ mol�1)
DGcycle

(kJ mol�1)

Free (solvent)
Forward 69.2 – 2.9 117.0 – 2.8 �50.7 – 2.6 2.9 – 8.3
Backward 68.7 – 4.7 119.0 – 3.6 �50.7 – 3.1 0.4 – 11.4
Average 69.0 – 3.8 118.0 – 3.2 �50.7 – 2.9 1.7 – 9.9

Complex
Forward 108.3 – 5.6 119.4 – 5.3 �5.3 – 5.3 �5.8 – 16.2
Backward 105.6 – 6.7 126.6 – 4.5 �6.1 – 4.2 �14.9 – 15.4
Average 107.0 – 6.2 123.0 – 4.9 �5.7 – 4.8 �10.3 – 15.9

DDGbinding

Simulation �38.0 – 10.0 �5.0 – 8.1 �45.0 – 7.7 12.0 – 25.8
Experiment �11.3 – 1.2

For each of the free energy changes, DG, the results obtained from forward and
backward simulations are reported as well as their average. Indicated free
energies are defined in Figure 3. DGcycle is defined as the free energy change
along the closed triangles in Figure 3, in a clockwise sense. The relative free
energy of binding for the two ligands, DDG, was calculated as in Equation 4
and is compared to the experimental value (25). Errors on calculated values
were obtained from block averaging of the integrand in Equation 2 according to
Allen and Tildesley (46).
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that involve the annihilation of a full charge (Net to Dist),
the relative free energy of binding of �38 kJ mol�1 over-
estimates the experimental value (�11 kJ mol�1), while in
the overall neutral perturbation a value of �5 kJ mol�1 is
obtained, which slightly underestimates the experimental
value. For both simulations, netropsin is seen to bind more
favourably than distamycin. It is interesting to note that the
removal of a full charge in solution leads to a reduction in
the free energy by 50 kJ mol�1, while in the DNA complex,
the effect of the charge accounts for a reduction of only 6 kJ
mol�1. The high-electrolytic environment of the DNA seems
to have a reducing effect on the usually larger values involved
with changes of a full charge. The many positively charged
ions (43 Na+) present can easily compensate for local elec-
trostatic effects on the removal of a charge in the ligand.

From the analysis of the end-state simulations of netropsin
and distamycin in solution and when bound to DNA, it was
determined that the DNA–ligand interactions and the changes
in ligand–solvent interactions were very similar to both ligands.
A slightly larger loss of mobility upon ligand binding was
found for distamycin, giving rise to a larger entropic cost
when binding this ligand to DNA. This agrees with the experi-
mentally obtained relative entropy as well as with the relative
free energy of binding of the two ligands.

CONCLUSIONS

The TI method was applied in a study of binding free
energy differences of netropsin in two different charge
states and distamycin to the oligonucleotide duplex
d(CGCGAAAAACGCG)�d(CGCGTTTTTCGCG). The pref-
erential binding of netropsin over distamycin was reproduced
in agreement with the experimental data. Interestingly, the
results that were obtained from a perturbation that did not
involve a change of a full charge on netropsin, agreed closest
to the experiment. Owing to the electrolytic nature of the
system consisting of DNA, water and ions, the effect of
removing a full charge is reduced significantly.

From four simulations of the ligands, in solution and when
bound to the DNA minor groove, a comparison of the binding
characteristics between the two ligands was performed. Over-
all, it was shown that distamycin interacts with fewer solvent
molecules than netropsin, which corresponds to the higher
hydrophobicity of the distamycin molecule. However, the
loss of ligand–solvent hydrogen bonds upon DNA binding
was very similar to both ligands and was almost exactly com-
pensated by the formation of DNA–ligand hydrogen bonds.
A corresponding result was obtained from an analysis of the
number of water molecules in the first solvation shell around
the ligand. Slight differences between the ligands were seen
in the loss of mobility of the ligand atoms upon binding to
DNA. This loss was more pronounced for distamycin, leading
to a more unfavourable entropic contribution to the free energy
of binding for this molecule, which partially explains its lower
binding affinity and agrees with the experimental findings.

It has been shown that the energetic and structural informa-
tion can be obtained from MD simulations of the two ligands
bound to the AAAAA site of a duplex oligonucleotide with
a thermodynamically calibrated biomolecular force field.
The explicit treatment of solvent molecules ensures adequate
solvation behaviour of DNA and ligands and allows for a

close examination of the changes in solvation of the ligands.
This would provide an improved basis for the design of
DNA-binding drugs.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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