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The permeabilization of the mitochondrial outer membrane by Bax and
Bak during apoptosis is considered a key step and a point of no return in
the signalling pathway. It is always closely related to the reorganization of
mitochondrial cristae that frees cytochrome c to the intermembrane space
and to massive mitochondrial fragmentation mediated by the dynamin-
like protein Drpl. Despite multiple evidence in favour of a functional link
between these processes, the molecular mechanisms that connect them
and their relevance for efficient apoptosis signalling remain obscure.
In this review, we discuss recent progress on our understanding of how
Bax forms pores in the context of Drpl-stabilized signalling platforms at
apoptotic foci in mitochondria.

This article is part of the themed issue ‘Membrane pores: from structure
and assembly, to medicine and technology’.

1. Introduction: role of mitochondria in apoptosis

Mitochondria are eukaryotic organelles that function as essential hubs in the
coordination of a wide variety of metabolic reactions and signalling processes
within the cell. For instance, they are considered the powerhouse of the cell
due to their important role in respiration (i.e. ATP production). Among other
things, they are also key players in lipid biosynthesis, calcium homeostasis
and in the intrinsic pathway of a type of programmed cell death termed
apoptosis.

Mitochondria are composed of a double [1-4] membrane system known as
the mitochondrial outer and inner membranes (MOM and MIM, respectively).
These membranes differ in protein and lipid composition as well as in mor-
phology [5]. The transmembrane protein channels at the MOM make this
membrane fluid and permeable to small polar molecules (up to 3-5 kDa). In
contrast, the MIM shows restricted metabolite permeability and is folded into
invaginations called cristae where specific proteins involved in relevant mito-
chondrial functions are located (e.g. the components of the electron chain
transport, including cytochrome c, and the ATP synthase) [6]. The proton grad-
ient that drives the ATP synthase during oxidative phosphorylation is indeed
created and maintained across the MIM. The two spaces enclosed by the
MOM and MIM are known as the mitochondrial matrix, which is inside the
MIM and hosts the mitochondrial DNA, ribosomes and metabolic enzymes,
and the intermembrane space, with a composition similar to the cytosol. Both
membranes are connected at specific contact sites where the exchange of pro-
teins and lipids between both membranes is enhanced [7]. Cardiolipin (CL) is
an anionic phospholipid with four acyl chains that is specifically located at
mitochondria of eukaryotic cells. It is mainly enriched in the MIM and found
at lower levels at the MOM [8]. However, due to its special structure, it has
been proposed that mitochondrial contact sites are enriched in CL and also
phosphatidylethanolamine (PE), which share in common their tendency to
form non-lamellar structures. This ability might allow them to stabilize the
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connections between both membranes, and they have also
been proposed to play an important role as specific death
foci during apoptosis [5,8—13].

It is widely assumed that mitochondrial shape and ultra-
structure are closely linked to function. In this regard,
mitochondria are able to change their morphology depend-
ing on the cell type and in response to cellular signalling
and differentiation. They can vary from an interconnected
filamentous network to separated spherical structures,
where the cytoskeleton plays a crucial role in their morpho-
logical plasticity by controlling their distribution, motility
and dynamics [14,15]. In particular, mitochondria undergo
dramatic alterations in their structure and function under
apoptotic stimuli [1,4,16,17].

Apoptosis at mitochondria is largely controlled by the
members of the Bcl-2 family. They are mainly located at
the MOM, where they form a complex
network whose outcome controls MOM permeabilization
(MOMP). Concretely, the pro-apoptotic Bcl-2 proteins Bax
and Bak are the direct executioners of this event [18-20].
Upon activation in apoptosis, they permeabilize the

interaction

MOM and enable the release of the so-called apoptotic fac-
tors, including cytochrome ¢ or SMAC/DIABLO, from the
intermembrane space into the cytosol. This is considered
the point of no return in the cell’s commitment to death,
and it leads to the activation of the caspase cascade, the
dismantling of the cellular components and finally to cell
death [21].

Besides MOMP, mitochondria also undergo a number
of additional alterations during apoptosis, such as changes
in lipid transfer between the MIM and the MOM [22],
and between the mitochondria and other organelles [23],
loss of mitochondrial function, including loss of trans-
membrane potential and incapability to maintain calcium
homeostasis [24,25], mitochondrial fragmentation and cristae
remodelling [1,4,16,17,26]. In this review, we focus on
the current understanding of three mechanisms, mito-
chondrial fragmentation, cristae remodelling and MOMP,
which occur close in time at specific mitochondrial foci
during apoptosis. We pay special attention to new evidence
related to Bax pore formation and the interconnection
between these processes.

2. Structural changes in mitochondria during
apoptosis

One of the first mitochondrial changes during apoptosis
affects the lipid composition of its membranes. This alteration
occurs at two different levels, involving the modification of
the lipid species at mitochondria, as well as the lipid transfer
between MIM and MOM, or between mitochondria and
other cellular organelles (i.e. endoplasmic reticulum (ER))
[27]. At an early stage, there is an increased CL transfer
from the MIM to the MOM [22,28]. This is accompanied by
an early oxidation of CL mediated by the specific peroxidase
activity of CL-bound cytochrome c, which plays a role in the
release of the apoptotic factors [22,29]. Although it has been
suggested that mitochondrial contact sites might be the
specific foci for CL recruitment to the MOM, it is not clear
yet what is the process that induces CL translocation [7].
One possible explanation for CL redistribution from the
MIM to the MOM could be associated with the non-lamellar

structures proposed for the membrane fusion sites between
both membranes at these foci [7]. Other lipid alterations,
like the accumulation at mitochondria of products of sphin-
golipid metabolism transferred from the ER, have also been
shown to affect Bax/Bak activation and MOMP [30,31].
Indeed, the mitochondria/ER contact sites have been pro-
posed to organize into lipid microdomains where proteins
involved in mitochondrial fission are recruited [32,33]. At
these sites, lipids and calcium are exchanged during apopto-
sis. For example, increased calcium flux from the ER to the
mitochondria can easily derive in apoptosis by inducing the
generation of CL microdomains, reactive oxygen species
and CL peroxidation [29,34] (figure 1).

(a) Mitochondrial outer membrane permeabilization
The members of the Bcl-2 family are key mediators of the pro-
cess that involves the permeabilization of the mitochondrial
outer membrane. There are about 20 proteins in this family,
which are further classified into three groups depending on
their role in apoptosis: (i) anti-apoptotic proteins (e.g. Bcl-2,
Bcl-xL and Mcl-1) that inhibit apoptosis by interacting with
the pro-apoptotic proteins; (ii) the pro-apoptotic members
Bax and Bak, which are considered direct executioners of
MOMP by directly affecting the membrane integrity; and
(iii) the pro-apoptotic BH3-only proteins (e.g. Bid, Bim, Bad
and Bik), which have evolved to sense apoptotic stimuli
and are able to induce Bax/Bak activation directly and/or
by blocking the function of anti-apoptotic proteins during
apoptosis [19,35,36].

Under physiological conditions, Bax and Bak are continu-
ously translocating between cytosol and mitochondria in a
steady state. Differences in the translocation rates lead to
a major population of Bax being cytosolic in healthy cells,
whereas most Bak molecules locate at the MOM [37,38]. In
the presence of apoptotic stimuli, BH3-only proteins trigger
the activation of Bax and Bak, leading to their recruitment
and accumulation at discrete mitochondrial foci. There, Bax
and Bak undergo conformational changes that allow exten-
sive insertion into the membrane, oligomerization and pore
formation. These sequential steps lead to MOMP and to the
subsequent release of apoptotic factors [19,39]. The anti-
apoptotic proteins of the Bcl-2 family block this process by
acting at different levels, which include: (i) promoting the ret-
rotranslocation of Bax and Bak from the MOM, (ii)
sequestering the BH3-only activators, and (iii) directly bind-
ing and inhibiting the oligomerization of Bax and Bak at
the MOM [40-44].

The Bcl-2 interaction network is very complex and many
models have been postulated in order to explain how they
orchestrate MOMP. The ‘direct activation’ model [45,46]
suggests that Bax and Bak require direct interaction with acti-
vator BH3-only proteins in order to become activated. In
contrast, the ‘neutralization” model [47] assumes that Bax
and Bak are constitutively active but kept in check by the
pro-survival family members. Induction of the BH3-only pro-
teins would then displace the executioners from these
inhibitory complexes and promote MOMP. In addition, the
‘embedded together’ model [48,49] emphasizes the role
of the membrane as the ‘locus of action” for MOMP and Bcl-2
interactions, where CL also plays a role in Bax/Bak action
[11,39,50,51]. Hence, the membrane environment is fully
required to achieve the active conformation and stoichiometry
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Figure 1. Scheme of structural changes in mitochondria during apoptosis: MOMP (a), cristae remodelling (b), mitochondrial fragmentation (bottom).

of the complexes between Bcl-2 proteins, which will then deter-
mine whether apoptosis is induced or not [49,52]. More
recently, the “unified” and ‘hierarchical’ models [53,54] provide
more sophisticated scenarios that account for the relative
importance of the interactions between Bcl-2 proteins in the
cytosol and the membrane environment.

(b) Mitochondrial fragmentation: a constant event
in apoptosis

During apoptosis, and close in time with MOMP, mitochon-
dria undergo massive fragmentation, which appears to be
universally associated with this type of cell death [55,56]. In
mammals, the main protein responsible for mitochondrial fis-
sion is a GTPase mechanoenzyme called dynamin-related
protein 1 (Drpl) [57]. This protein shuttles between the cyto-
sol and the MOM, where it binds when mitochondrial fission
is required. Once at the MOM, it associates with specific
adaptors and it oligomerizes into a spiral-like scaffold
around the fission sites in mitochondria leading to organelle
division [58]. From the literature currently available, it seems
that different Drpl adaptors can independently recruit Drpl
to the MOM, like mitochondrial fission factor (Mff) [59,60]
and mitochondrial dynamics proteins of 49 and 51 kDa
(MiD49 and MiD51, respectively) [61-63]. Recent studies
suggested that the role of each Drpl adaptor in the recruit-
ment of Drpl to the MOM could represent distinct cellular
pathways [64,65]. The complexity of this process is further
increased with new evidence underscoring that fission sites
are determined by interactions between mitochondria and
ER [33]. These sites, which had already been established as
sites for lipid and calcium transfer, are now considered as
functional platforms where the coordinated polymerization
of actin filaments could drive Drpl assembly to mediate
mitochondrial fission [66,67].

In the apoptotic context, Drp1 transitions from fast recy-
cling to stable membrane association. This phenomenon
seems to occur downstream of the recruitment of Bax and
Bak but before cytochrome c release [68]. It is achieved
thanks to the SUMOylation (small ubiquitin-like modifier)
activity of MAPL, a mitochondrial anchored RING-finger
containing protein with SUMO E3 ligase activity [69]. Thus,

MAPL-induced covalent SUMOylation of Drpl enables the
stabilization of Drpl scaffolds on ER-mitochondria contact
sites [70,71]. Interestingly, Drpl SUMOylation co-localizes
with Bax/Bak at defined mitochondrial foci during cell
death. However, the relevance of Drpl recruitment to these
foci for apoptosis progression remains undefined (see
below). This notion has been challenged by some authors
who reported little [72] or partial [73] resistance to apoptosis
in Drp1-deficient cells, and Drpl-independent mitochondrial
fission Drpl knockout cells [73].

(c) Release of cytochrome ¢ by cristae remodelling
The release of the apoptotic factors from the intramembrane
space is dependent on their location within mitochondria
[74]. For instance, SMAC/DIABLO is located at the inner
boundary area of mitochondria, whereas cytochrome c is
mainly sequestered at cristae structures. Consistent with this
notion, Bax/Bak-induced MOMP can directly provide the
release of SMAC/DIABLO, while the egress of cytochrome ¢,
which is located within the cristae space, requires the
remodelling of the highly stacked cristae structures [74-76].

The structure of the cristae junctions that physically separ-
ate the cristae contents from the intermembrane space is
stabilized by optic atrophy 1 (OPAl)-complex formation
[77,78]. OPA1 is a GTPase located at the MIM, where it is
responsible for MIM fusion and for the maintenance of cristae
junction integrity [75,77,79]. During apoptosis, OPA1 oligo-
mers are disassembled, cristae become open to the
intermembrane space and cytochrome c is finally released
from these structures to the cytosol [77,80]. It has been
described that this process is closely linked to mitochondrial
fragmentation [55,81,82] and downstream of Drpl fission
activity [83]. However, it is still unclear how cristae
remodelling is regulated during apoptosis.

Previous investigations have speculated that some BH3-
only proteins from the Bcl-2 family could also be involved
in this process [16,77,84,85]. For instance, it has been
described that the lipid transfer activity of tBid may help
for CL translocation from MIM to MOM, favouring CL redis-
tribution into microdomains and generating local alterations
in the membrane curvature, somehow promoting cytochrome
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c release [12,86-88]. Similarly, another BH3-only protein
termed Bik also seems to induce dynamic mitochondrial
transformation, initiating the cristae remodelling regulated
by Drpl [85]. The latter study, together with recent reports,
highlights the essential role that Drp1 may play in this process
[71,74,76,89]. In fact, it has been proposed that the membrane
remodelling function of Drp1 in this process could be different
from its recognized role in regulating mitochondrial fission
[85], although some authors suggest that both membrane con-
striction and lipid remodelling activities are also required for
membrane fission [90,91]. Along these lines, current research
focused on Drpl adaptors has shed light on the specific contri-
bution of MiD49/51 to this process [89]. Experiments
performed in knockout cells for Drp1 or these adaptors con-
firmed that Drpl-mitochondrial fission through MiD49/51,
but not Mff, facilitated cristae remodelling required for cyto-
chrome c release during intrinsic apoptosis. Disassembly of
OPAL1 oligomers was not sufficient to enable cytochrome c
release from the cristae space. Moreover, both the transmem-
brane domain and the Drpl-binding site of MiD51 were
essential for cytochrome c release, suggesting that this adaptor
may function as a spatial-temporal coupler to the cristae
remodelling machinery in the presence of Drp1 [89].

3. Bax pore formation during apoptosis

The molecular mechanism by which Bax (and Bak) mediate
MOMP has remained one of the key questions in the field.
A lot has been learned from in vitro reconstituted systems,
where Bax displays membrane-permeabilizing activity
characterized by the formation of large and long-lived mem-
brane pores, which are tunable in size and of toroidal nature
[42,51,92,93]. Of note, the toroidal pore model implies that
not only proteins, but also lipid molecules are exposed at
the rim of the pore and thus also play a role in pore dimen-
sions and stability [94]. Only recently Bax-mediated
membrane pores could be directly visualized in the
mitochondria of apoptotic cells [76,95].

(a) Assembly path of Bax

Bax/Bak activation is an essential step towards MOMP. This
process involves the change from a monomeric, globular
structure found in the cytosol or loosely associated to the
MOJM, into a partially unfolded, membrane-inserted, oligo-
meric conformation capable of disrupting the membrane
integrity. Several lines of evidence support the role of the
membrane to provide the right physical-chemical environ-
ment that stabilizes the active conformation of Bax
[39,41,96]. It is therefore difficult to conceive that the active
structure of Bax is long-lived in the absence of a lipid bilayer
or a chemical environment that mimics it.

This also implies that Bax activation first starts with mem-
brane association. Bax binds to the membrane as a monomer
and rapidly self-assembles into higher oligomers [44]. The con-
formational changes that allow Bax activation are promoted by
interaction with activator BH3-only proteins, which bind via
their BH3 domains to a conserved hydrophobic groove or to a
rear pocket situated between helices a1 and o6 [97,98]. Binding
to an activator BH3-only protein is thought to induce a confor-
mational change that displaces the hydrophobic C-terminal
helix a9 from the hydrophobic groove, which inserts into
the membrane and acts as an anchor to the MOM [99].
This is followed by exposure of the N-terminal helix al and

(a) Bax pores: SMLM

(b) Bax pores: AFM

membrane
N
\l\/ J] 1 nm

50 nm

(c) toroidal pore

Figure 2. Bax pore architecture. (a) Magnified reconstructed super-resolution
images of Bax pores in apoptotic Hela cells corresponding to arc (left) and
ring (right) structures (with permission from [95]). SMLM stands for Single
Molecule Localization Microscopy. Scale bars, 100 nm. (b) Three-dimensional
atomic force microscopy (AFM) topography of a Bax structure in a supported
lipid bilayer (right) and its height profile (left) corresponding to the pore rim.
(c) Representative scheme of Bax toroidal pore (top view) where both Bax
dimers and lipids cooperate for pore formation. The structure of active, mem-
brane-inserted Bax dimer is used based on the ‘clamp’ model [100].

rearrangement of the a2/BH3 domain. As a result, the BH3
domain of one Bax molecule is exposed and displaces the acti-
vator BH3-only from the groove in another Bax molecule, thus
leading to the formation of Bax dimers. Structural data of active
Bax in the membrane reveal a well-defined ‘dimerization” or
‘core’” domain stabilized via BH3 domain/groove interactions,
and a rather flexible “piercing’ or ‘latch” domain, which unfolds
from the rest of the protein via partial opening of the hairpin
of helices o5 and a6 [98,100]. As a result, most of activated
Bax lies on the membrane surface shallowly inserted, while
only the C-terminal domain is believed to adopt a canonical
transmembrane orientation [101].

After dimer formation, Bax continues to self-assemble in
order to form higher order oligomers. Stoichiometry analysis
at the single-molecule level revealed that Bax does not adopt
a unique oligomeric form in the membrane, but rather
organizes into a mixture of species that are based on dimer
units [44]. While cBid was important for activation, it did not
affect the final distribution of oligomers. In contrast, Bel-xL
was able to disassemble existing Bax complexes, suggesting
that Bax oligomerization is a reversible process. The question
remains whether there is a maximum or preferred oligomeric
state for Bax. In addition, the role of Bak and other interacting
proteins on Bax assembly needs further investigation (figure 2).
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Concomitant with oligomerization, Bax induces the formation
of membrane pores that mediate MOMP. These pores were
recently visualized in the mitochondria of apoptotic cells
thanks to superresolution microscopy [76,95]. Permeabilized
MOM contained large openings heterogeneous in size that,
importantly, included Bax molecules enriched at the pore
rim. These structures were very similar to membrane pores
induced by Bax in liposomes and supported bilayers [95,102],
suggesting that the properties of Bax pores discovered from
in vitro studies also apply to the mitochondrial pores. For
example, the heterogeneity of pore size in mitochondria is in
line with in vitro experiments with Bax, where it was shown
that Bax is capable of forming pores of tunable size. This fits
well with a toroidal pore model where Bax oligomers reduce
the stress caused by membrane distortion and curvature for-
mation at the pore edge [51,92,93]. Nevertheless, it is likely
that in the context of the cell, other proteins, like Bak or
Drp1, and maybe lipids, also participate in MOM pores thereby
modulating the features of Bax-mediated pores. Indeed, in
the absence of Drpl, Bax continued to form large pores but
cytochrome ¢ release was hampered [76].

Bax clusters at the MOM exhibited a diverse mixture of dis-
tinct structures, including lines, arcs and full rings, which
correlated well with Bax assemblies detected in vitro [95]. All
these structures could represent different stages in the assembly
of nascent evolving Bax pores. Bax molecules would initially
organize into line and arc structures that further evolve into
full rings. However, it cannot be discarded that they correspond
to kinetically trapped intermediates during the assembly pro-
cess. Interestingly, not only full rings but also a significant
fraction of arc-shaped structures correlated with membrane
pores. The architecture of the arc-shaped pores implies that
Bax oligomers only cover partially the pore edge, which results
in a fraction of the pore structure being formed only by lipids.
This partial coverage of the pore edge by protein molecules
constituted a demonstration of the toroidal pore model for
Bax and confirmed the continuous membrane organization at
the pore rim detected by X-ray for a peptide derived from
helix a5 of Bax [103], which reproduces the pore activity of
the full-length protein [104,105]. This reveals a scenario where
Bax forms oligomers that are dynamic and heterogeneous,
and that give rise to membrane pores of diverse sizes. Such
diversity is in good agreement with the variety of oligomeric
species detected at the membrane and with the flexible nature
of the piercing domain in the structure of active Bax. Indeed,
the recently proposed three-dimensional model for active, mem-
brane-inserted Bax (i.e. the ‘clamp’” model based on double
electron—electron resonance spectroscopy data) provides a
physical—chemical basis for the stabilization of the pore edge
by Bax assemblies at the membrane [100]. However, it is still
unclear which is the minimum amount of Bax molecules able
to stabilize a membrane pore capable of releasing the apoptotic
factors. Studies with lipid nanodiscs suggest that it could be a
number as small as monomers or dimers, although the exact
assembly state of Bax in those systems was not conclusive [106].

To date, several contradictory studies challenge the interplay
between the alterations occurring at the mitochondria during

(a) Drpl recruitment to mitochondria

Figure 3. Role of Drp1 in mitochondrial fission and apoptosis. (a) Drp1 shut-
tles between cytosol and mitochondria for membrane division under
physiological conditions. Overview (top panel) and zoomed image of the
white box (bottom panel). Immunostaining of endogenous Drp1 (green)
and mitochondrial staining with Mitotracker Red (magenta). Scale bar,
5 m. (b) Drp1 (green) and Bax (magenta) binding to giant unilamellar ves-
icles composed of phosphatidylcholine: phosphatidylethanolamine: cardiolipin
(54:20: 26, mol : mol) at 42° for 30 min. Drp1 and Bax are concentrated at
contact surfaces between two vesicles. Bax clusters at highly curved edges
between vesicles. Scale bar, 10 pm.

intrinsic apoptosis. Among the open questions, it still remains
unresolved whether the concentration of CL at the MOM
under apoptotic conditions resembles the high concentration
used in vitro to regulate the activity of Bcl-2 proteins. Simi-
larly, there is an active debate regarding the link between
MOMP and mitochondrial fragmentation. Although these
two events occur very close in time and space, a number of
reports in the literature suggest that they may not be strictly
correlated [73,107-109].

However, a recent study brings together mitochondrial
alterations with the efficient execution of apoptosis [71].
The authors claim that it is not necessarily mitochondrial fis-
sion that is required for Bax/Bak-mediated cytochrome c
release, but rather the stabilization of specific interorganellar
platforms that favour metabolite flux and membrane curva-
ture. This is in line with previous work showing that
hyperfragmented mitochondria could not support Bax-
induced cytochrome c release because ER/mitochondria
contact sites were abolished [110,111]. Similarly, Drpl
promotes tethering and hemifusion of membranes in vitro
that might be linked to the stimulation of tBid-induced Bax
oligomerization and cytochrome release during apoptosis
[112,113]. Consistent with this notion, Bax/Bak-induced
Drpl SUMOylation at the ER/mitochondria interface stabil-
izes signalling platforms for calcium and lipid transfer
between both organelles, as well as for cristae remodelling
and cytochrome c release [30,71,114].

The current data available support two alternative models
for the role of Drpl in apoptosis: (i) Drpl-mediated cristae



remodelling, independent of Bax activity; and (ii) Drpl-
induced Bax oligomerization, independent of cristae
remodelling. Nevertheless, the fact that these proteins co-
localize at the same mitochondrial foci during apoptosis
suggests that there could be a direct interplay between
them in order to regulate structural changes at mitochondria
in apoptosis. Bcl-2 proteins could cooperate with the mito-
chondrial fission machinery to efficiently mediate cristae
remodelling, fragmentation and MOMP during apoptosis.
Further research will be needed to fully understand the
molecular mechanisms involved in this interplay (figure 3).

The multiple alterations that mitochondria undergo during
apoptosis include the remodelling of the cristae ultrastruc-
ture, the permeabilization of the MOM and dramatic
fragmentation. Recent data reveal that during apoptosis Bax
undergoes a conformational change and organizes into
dimer units with a well-defined dimerization domain and a
flexible piercing or latch domain. These dimers continue to

self-assemble into multiple oligomeric species that organize
into diverse structures at the MOM, including lines, arcs
and rings, and concentrate at distinct foci. Both arcs and
rings delineate membrane pores that mediate the release of
the apoptotic factors. In parallel, Drp1 also becomes enriched
in these foci where, together with MiD49/51, it stabilizes sig-
nalling platforms that modulate lipid and calcium exchange
between the ER and mitochondria and play a role in mito-
chondrial fragmentation and in the reorganization of the
MIM cristae. Exciting research lies ahead to uncover the mol-
ecular mechanisms that interconnect these processes and
their functional relevance for efficient apoptosis induction.
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