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Apoptotic cell death via the mitochondrial pathway occurs in all vertebrate

cells and requires the formation of pores in the mitochondrial outer mem-

brane. Two Bcl-2 protein family members, Bak and Bax, form these pores

during apoptosis, and how they do so has been investigated for the last

two decades. Many of the conformation changes that occur during their

transition to pore-forming proteins have now been delineated. Notably, bio-

chemical, biophysical and structural studies indicate that symmetric

homodimers are the basic unit of pore formation. Each dimer contains an

extended hydrophobic surface that lies on the outer membrane, and is

anchored at either end by a transmembrane domain. Membrane-remodelling

events such as positive membrane curvature have been reported to accom-

pany apoptotic pore formation, suggesting Bak and Bax form lipidic pores

rather than proteinaceous pores. However, it remains unclear how sym-

metric dimers assemble to porate the membrane. Here, we review how

clusters of dimers and their lipid-mediated interactions provide a molecular

explanation for the heterogeneous assemblies of Bak and Bax observed

during apoptosis.

This article is part of the themed issue ‘Membrane pores: from structure

and assembly, to medicine and technology’.
1. Introduction
Apoptosis is essential for normal development and tissue homeostasis, and its

perturbed regulation contributes to numerous pathological conditions, includ-

ing cancer and autoimmune and degenerative diseases [1]. Apoptosis is

regulated principally by interactions within the Bcl-2 family of proteins,

whose members fall into three subclasses (figure 1a). The eight or more pro-

apoptotic BH3-only proteins (e.g. Bid and Bim) act as sensors of specific

types of cellular stress, and signal by engaging other family members. The

pro-survival proteins (e.g. Bcl-2 and Mcl-1) act by sequestering the pro-

apoptotic members. Finally, pro-apoptotic Bak and Bax act as critical effectors

of apoptosis, as they are required for mitochondrial permeabilization in cells

and in mice [2,3]. As illustrated in figure 1b, upon receiving an apoptotic stimu-

lus, upregulated BH3-only proteins bind to Bak and Bax to induce major

conformation changes, resulting in Bak and Bax oligomerization and subsequent

outer membrane permeabilization. This leads to the release of mitochon-

drial proteins including cytochrome c, which in turn triggers caspase-driven

cell demolition (reviewed in [4]).

The three-dimensional structures of non-activated Bak and Bax resemble

those of the pro-survival proteins, comprising nine a-helices that form a tight

globular bundle (figure 2). Two important features are a surface hydrophobic

groove (a2–a5) and a buried BH3 domain in a2 that mediate contact with

other family members. A major distinction between Bak and Bax is that Bak

is mostly inserted into the mitochondrial outer membrane in healthy cells,

whereas Bax is mostly cytosolic and translocates to mitochondria following

apoptotic stimuli (figure 1b). Bax translocation is triggered by binding of
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Figure 1. Bcl-2 proteins regulate the mitochondrial pathway of apoptotic cell death. (a) Three subfamilies of Bcl-2 proteins. (b) Bak and Bax activation by the
BH3-only proteins is followed by their oligomerization in the mitochondrial outer membrane to release cytochrome c and induce apoptosis.
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BH3-only proteins, which releases a9 from the hydrophobic

groove [5]. Once the released a9 inserts as a transmembrane

domain into the mitochondrial outer membrane, Bax has the

same topology as non-activated Bak [6].
2. Conversion of Bak and Bax into symmetric
homodimers with flexible extremities

Bak and Bax undergo major conformation changes as they

convert into pore-forming proteins (figure 2; reviewed in [4]).

The changes are triggered by the binding of BH3-only pro-

teins to a hydrophobic surface groove, which generates a

cavity underneath both the N- and C-termini [7–9]. Destabi-

lization allows the protein to unfold as three segments: the

a1-helix dissociates [10], and the core (a2–a5) separates

from the latch (a6–a9) [7,8]. Several newly exposed hydro-

phobic regions then associate with the mitochondrial outer

membrane to lie in-plane (figure 2, activated Bak monomer)

[11,12]. The core remains largely folded, but within it the

newly exposed hydrophobic BH3 domain (in a2) then

binds to the hydrophobic groove of another activated Bak

or Bax molecule in a reciprocal manner to form symmetric

homodimers (figure 2, BH3:groove dimer). Evidence for sym-

metric homodimers originated from biochemical studies in

mitochondria [13–15] and is supported by X-ray structures

of the a2–a5 dimers [7,8] and biophysical studies[12,16–20].

Together these studies support the in-plane model of

a Bak dimer (figure 3a) [11,22]. The region in contact
with the membrane (a2–a9) resembles an extended flexible

amphipathic polypeptide anchored at either end with a trans-

membrane domain—an unusual structure for a pore-forming

protein. Several helices may embed into the outer leaflet of

the membrane, encouraged by aromatic residues on one sur-

face of the a2–a5 core dimer (figure 3b) and on one face of

the a6–a8 helices (figure 3c). At the N-terminus, the first

70 residues become exposed and do not re-engage with

either membrane or protein [10,22,23]. Bax dimers also dis-

play aromatic residues on one surface (figure 3b,c) and a

similar membrane topology [6,11,16,19], although complete

solvent exposure of the N-terminus has not yet been

shown. Thus, Bak and Bax homodimers show several fea-

tures of antimicrobial peptides such as human LL-37 and

magainin 2 (figure 3d ) that are proposed to form toroidal

pores, rather than of the a-helical ClyA and actinoporin pro-

teins that form more structured proteinaceous pores [24,25].

There are few examples of a homodimer as the building

block of a pore that might provide insight into pore formation

by Bak and Bax. One such example is the plant defensin

NaD1, whose structure comprises seven antiparallel dimers

[26]. However, unlike Bak and Bax, the NaD1 complexes

are not promoted by major conformation change but by bind-

ing of the PIP2 phospholipid, and the oligomers lack

transmembrane domains and flexible membrane-associated

regions. Members of the colicin family of pore-forming pro-

teins may also assemble as multiples of dimers to form

small ring-shaped oligomers (approx. 8 nm in diameter)

[25,27,28]. Curiously, the first structure of a Bcl-2 protein
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Figure 2. Bak activation and conformation change results in symmetric homodimers. A schematic showing that Bak unfolds by the N-terminus (a1, blue) and the
C-terminal latch (a6 –a8, magenta) separating from the a2 –a5 core (orange, red). Hydrophobic regions of the core and latch then collapse onto the membrane,
while the exposed BH3 domain (in a2) binds to the hydrophobic groove in another activated Bak molecule. Reciprocal BH3:groove binding results in symmetric
homodimers. The indicated crystal structures demonstrate the major conformation changes involved. Equivalent changes are observed for Bax.
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and its similarity to the colicins and diphtheria toxin

prompted the idea that, as proposed for those proteins, Bak

and Bax might form channels or pores by inserting a helical

hairpin (a5/a6) through the membrane [29–31]. Notably,

hairpin insertion is not consistent with the in-plane model

in which a5 remains with the a2–a5 dimer and a6 lies

in-plane in the outer membrane (figures 2, 3 and 4) [11,12].

A recent study proposed that Bax a2–a5 dimers can progress

to a2–a3–a4 dimers after separation of a5 to allow a5/a6

insertion [16]. However, it was not clear whether those

dimers were functional [16], and in other studies separation of

Bax a5 from a4 was not required for cytochrome c release [7].

Even so, further comparison of pore formation by the Bcl-2

and colicin families may prove informative.
3. Dimer – dimer interactions are not via a single
protein – protein interface

It is thought that homodimers of Bak or Bax must then associ-

ate to higher order oligomers to porate the mitochondrial

outer membrane. Such oligomers of Bak and of Bax are gener-

ated in mitochondria during apoptosis, as evident by gel

filtration, blue native PAGE and linkage studies [32–34].
In addition, recombinant Bak and Bax form high order

oligomers in liposome experiments (table 1). High order oligo-

mers observed biochemically correlate with the clusters

observed in early microscopy studies (table 1). And these clus-

ters are sometimes apparent at points of mitochondrial

fission/fusion [59]. Higher-resolution microscopy shows

Bak and Bax complexes of various shapes and sizes in lipo-

somes and mitochondria, including clusters, rings and arcs

(table 1). Thus, there is strong correlation between high

order oligomers and pore formation. Nevertheless, it is yet

to be shown that specifically inhibiting dimer–dimer

interaction blocks pore formation.

While either Bak or Bax is sufficient to form pores

(table 1), the two proteins locate to the same complexes in

apoptotic cells [32,34], suggesting that mixtures of the two

proteins may be able to generate pores. The mixtures may

include heterodimers of Bak and Bax, although heterodimers

form only a minor population compared with homodimers

[13,60]. The low frequency of heterodimers may be explained

by a degree of incompatibility due to the limited sequence

similarity of the BH3 domains and grooves of the two pro-

teins. Mixtures may also include homodimers of Bak and

of Bax, as Bax is able to intermingle with pre-formed Bak

dimers [22]. If mixtures of Bak and Bax homodimers can
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and Bax a2 –a5 core dimers. (c) Aromatic residues can position on one edge of the flexible a6 –a8 latch. (d ) Examples of antimicrobial peptides thought to form
lipidic pores, with aromatic residues indicated. Colour coding as in figure 2.
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actually generate pores, this would provide further evidence

that protein–protein interactions between dimers are not

important for high order oligomers or pore formation.

Molecular structures of Bak or Bax as high order oligom-

ers or pore complexes are currently not available. However,

a range of biochemical approaches have been used to examine

how activated Bak and Bax interact to generate pores. Most

prominent have been linkage studies showing that homodi-

mers can associate via interactions at a-helices 1, 3, 5, 6 and

9 [6,12,13,15,16,19,61–64]. Our initial studies showed that link-

age between the a6-helices could link dimers of Bak and Bax

[13,15], suggesting that an a6:a6 interface may drive high

order oligomers and pore formation. However, there was no

evidence that mutations in a6 could block apoptosis [4,65],

and several groups reported linkage between additional

regions. Thus, some or all of these linkages may be due to col-

lisions rather than to stable complex formation. Flexibility of

the N- and C-termini, as depicted in figure 4a, may allow
linkage between multiple regions, and would also limit inter-

action between the a2–a5 core dimers [8,22]. Based on the

linkage pattern throughout the full-length of Bak, we recently

proposed that dimers form disordered clusters during apopto-

sis (figure 4a), and this was supported by mathematical

simulation of linkage within the whole population of Bak

dimers in the sample [22]. It is yet to be determined if only a

small subpopulation of dimers directly participates in a pore

complex. If so, within this subpopulation the core dimers

may adopt an ordered arrangement, e.g. end-to-end or side-

by-side.
4. Formation of lipidic (toroidal) pores
Several lines of evidence indicate that Bak and Bax form lipi-

dic rather than proteinaceous pores (table 1). Amphipathic

peptides based on the Bak and Bax a5 and a6 helices can
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permeabilize membranes (table 1), as do amphipathic antimi-

crobial peptides that act via forming lipidic pores. As the Bak

and Bax dimers resemble a flexible amphipathic polypeptide

(figure 3a), their shallow insertion into the outer leaflet

[11,18,19] may destabilize the lamellar structure of the bilayer

to induce lipidic pores. This mechanism of pore formation

may be related to the ‘carpet’ model proposed for antimicro-

bial peptides. In the Shai–Matsuzaki–Huang version of the

carpet model [66–68], peptides can disrupt membranes with-

out disintegrating the membranes in a detergent-like manner

[69]. The peptides insert close to the membrane surface to

promote a convex curvature of the outer leaflet. As the pep-

tide concentration increases, membrane defects occur, and

in some cases may be resolved by peptide (or phospholipid)

equilibrating across the bilayer. As Bak and Bax are unlikely

to equilibrate across the bilayer due to their size and trans-

membrane domains, the membrane defects may progress to

pore formation. There is evidence that pore formation is

associated with lipid transbilayer movement [35,42,46].

During pore formation, parts of the dimer may line and

stabilize the pore (figure 4b) [11,19,70]. According to the
clamp model (figure 4b, right) [19] the core dimer positions

roughly perpendicular in a circle to line the pore. Several fea-

tures of this model are attractive. The length of the core dimer

(approx. 4 nm) is the approximate width of the MOM, and

the bend observed in the structures (Bak and Bax a2–a5

dimers; figure 3b) may be accommodated by the curved

edge of the pore. In this position, the a6–a8 latch would dis-

turb the outer and inner leaflets equally, and the core dimer

could contribute a large surface area to stabilize the pore.

In addition, the core dimers could pack tightly side by side

around the pore. However, one side-by-side orientation of

Bak a2–a5 dimers observed in a crystal structure was not

supported by linkage studies in mitochondria [8,22]. More-

over, the clamp model suggests that the a9 transmembrane

domains become antiparallel within a dimer, presumably

after the charged residues (e.g. RRFFKS in human Bak) at

the far C-terminus of one activated molecule flip through

the hydrophobic bilayer. While such flipping may be similar

to insertion of the transmembrane domains of non-activated

Bak (and Bax), direct evidence of antiparallel a9-helices in

Bax or Bak oligomers is required to support this model.



Table 1. Heterogeneity of Bak and Bax complexes and pores. AFM, Atomic Force Microscopy; CD, Circular Dichroism; Cryo-EM, Cryo-Electron Microscopy; DC,
C-terminally truncated; FCS, Fluorescence Correlation Spectroscopy; GUV, Giant Unilamellar Vesicles; IVT, In Vitro Translated; LUV, Large Unilamellar Vesicles; OG,
Octyl Glucoside; OMV, Outer Membrane Vesicles; PALM, Photo-activated Localization Microscopy; TEM, Transmission Electron Microscopy; TIRF, Total Internal
Reflection Fluorescence Microscopy; SMLM, Single Molecule Localization Microscopy; STED, Stimulated Emission Depletion microscopy.

Bak/Bax

membrane

type resolution method

characteristics of complexes and pores,

including effect on membranes references

peptides Bax a5,

a6

LUV

planar bilayer

AFM

CD spectroscopy

confocal

X-ray diffraction

toroidal pores of diameter approximately

5.8 nm

decreased membrane line tension at pore rim

lipids with positive intrinsic curvature enhance

pore formation

lipid transbilayer redistribution activity for

Bax a5

Garcia-Saez 2005, 2006, 2007;

Qian 2008 [35 – 38]

recombinant

proteins

BaxDC

Bax

liposome

planar bilayer

patch clamping

Fl-dextran release

Bax forms pH dependent ion-conduction

channels/pores

maximum of 4 molecules, pore diameter

approximately 2.2 nm

Antonsson 1997, Schlesinger

1997, Saito 2000 [39 – 41]

BaxDC

IVT-Bax

Bax

(bovine)

LUV

liposome

planar bilayer

voltage clamp

membrane lifetime

measurements

decrease in membrane lifetime and linear

tension

increase in positive monolayer curvature stress

lipid transbilayer redistribution

Basanez 1999, Basanez 2002,

Terrones 2004, Landeta 2011

[42 – 45]

Bax

BaxDC

LUV AFM toroidal pores of diameter approximately

100 – 300 nm

small ring-like structures on bilayer surface

structures contain clusters of approximately

22 Bax monomers

lipid transbilayer redistribution

Epand 2002, 2003 [46,47]

Bax

OG-Bax

liposome

OMV

TEM

dextran release

supramolecular lipid pores

allowed release of approximately 2000 kDa

dextran

Kuwana 2002 [48]

Bax

BakDC

LUV

GUV

mitochondria

Cryo-EM

FCS

time and protein concentration dependent lipid

pores

pores of diameter approximately 3 – 140 nm

induction/stabilization of curved membrane

structures

reduction in vesicle size due to budding, fission,

tethering

Bleicken 2013a, 2013b, 2016

[49 – 51]

Bax bilayer

nanodiscs

Cryo-EM active Bax monomers form pores of diameter

approximately 3.5 nm

Xu 2013 [52]

Bax

Nanogold

labelled

Bax

liposome

LUV

OMV

TEM

Cryo-EM

pore-like openings with diameter approximately

25 – 100 nm

growing pores in the range of approximately

100 – 300 nm

solitary dynamic pores with negative curvature

at edges

complete rings of Bax exclusively associated

with pore rims

Schafer 2009, Gillies 2015,

Kuwana 2016 [53 – 55]

Bax LUV

planar bilayer

AFM

TIRF

multiple oligomer species of dimers

round heterogeneous pores of diameter

approximately 24 – 176 nm

Bax along pore rim

Subburaj 2015, Salvador-Gallego

2016 [17,56]

(Continued.)
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Table 1. (Continued.)

Bak/Bax

membrane

type resolution method

characteristics of complexes and pores,

including effect on membranes references

cells GFP-Bax HeLa

Cos-7

TEM

confocal

large clusters containing 1000 – 20 000 Bax

molecules

Nechushtan 2001 [34]

CFP-Bax HeLa quantitative

fluorescence

imaging

Bax complexes with approximately

150 – 1000 molecules per cluster

620 nm average cluster size

Zhou 2008 [32]

mEos3-Bak MEF PALM heterogeneous Bak clusters of diameter

approximately 70 – 600 nm

each cluster contains approximately 20 – 2000

Bax molecules

no pores evident in clusters (using resolution of

20 nm)

Nasu 2016 [57]

Endog.

Bax

HeLa

U2OS

HT1080

SH-SY5Y

CV-1

STED large compact clusters

rings up to 400 nm diameter

Grosse 2016 [58]

GFP-Bax HeLa

HCT-116

TEM

STED

SMLM

heterogenous distribution of:

clusters

rings (35 nm diameter)

arcs (100 – 500 nm diameter)

lines

Salvador-Gallego 2016 [56]
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5. Heterogeneity of Bak and Bax complexes and
pores

Consistent with forming a lipidic pore, significant heterogen-

eity is observed in the characteristics of the Bak and Bax

complexes and the actual pores formed by Bak and Bax

(table 1). Differences may be due to the levels of Bak and

Bax (and pro-survival Bcl-2 proteins), lipid composition and

diameter of the mitochondria or liposome, and even the pres-

ence or absence of the mitochondrial inner membrane and

matrix. Detectable pores in the membrane were not always

evident in the clusters, suggesting that at least some clusters

may form upstream or downstream of pore formation. Nota-

bly, Bax pore size in liposomes increased with higher protein

concentration and over time [39,49,53,71], and pore size in

Xenopus laevis mitochondria increased in response to a cyto-

solic factor that was more potent in the presence of caspase

inhibitors [72]. Thus, both protein and lipid appear able to

enlarge apoptotic pores, a process that would ensure rapid

cell death. It will be interesting to determine the role of

pores that are not detectable by microscopy. Can a pore

stay small, and what is the composition of such a ‘minimal’

pore? Are there multiple small pores in a mitochondrion, per-

haps even in a single cluster? Might a single small pore in

each mitochondrion be sufficient for apoptosis? Answers to

these questions may help to regulate apoptosis at the step

of pore formation, including reversing the process.
6. Concluding remarks
Increasing evidence indicates that symmetric homodimers of

Bak and of Bax form the structural building block of the

apoptotic pore. As there is a strong correlation of higher

order oligomers with pore formation, it is important to

understand how symmetric dimers can form these oligo-

mers. Within each dimer, the N-terminus is solvent-exposed

and flexible, implicating the membrane-associated regions

(a2–a9) in driving pore formation. Flexibility of the latch

(a6–a9) implies several arrangements of dimers may occur

and contribute to the heterogeneity of clusters and pores

observed. Notably, insertion of the core and latch into the

outer leaflet may remodel the bilayer to form a small lipidic

pore, which may then grow considerably. Obtaining struc-

tures of small apoptotic pores may yet be possible, and

these structures may be the key to understanding how this

central step of cell death might be regulated.
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