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Biological nanopores are a class of membrane proteins that open nanoscale

water conduits in biological membranes. When they are reconstituted in arti-

ficial membranes and a bias voltage is applied across the membrane, the ionic

current passing through individual nanopores can be used to monitor chemi-

cal reactions, to recognize individual molecules and, of most interest, to

sequence DNA. In addition, a more recent nanopore application is the analysis

of single proteins and enzymes. Monitoring enzymatic reactions with nano-

pores, i.e. nanopore enzymology, has the unique advantage that it allows

long-timescale observations of native proteins at the single-molecule level.

Here, we describe the approaches and challenges in nanopore enzymology.

This article is part of the themed issue ‘Membrane pores: from structure

and assembly, to medicine and technology’.
1. Introduction
In recent years, nanopores have emerged as powerful tools to observe single mol-

ecules. In nanopore analysis, the signal is given by the flux of ions passing

through individual nanopores embedded in an insulating membrane under an

externally applied bias voltage. Molecules diffusing inside the nanopore can be

recognized or studied by monitoring the changes in the nanopore current. Initial

work with nanopores focused on the detection of single molecules [1,2], investi-

gated mechanisms of chemical reactions at the single-molecule level [3] and, most

notably, developed sensors for nucleic acids [4]. Only recently researchers have

started using nanopores for the detection and analysis of more complex analyte

molecules such as proteins. The aim of this review is to highlight the work that

has been done towards the analysis of enzymatic reactions with nanopores. We

will start by describing the nanopores used to monitor proteins and then we

will introduce three different approaches used to monitor enzymatic reactions

with nanopores: (i) the engineering of a nanopore with an enzymatic function,

(ii) the monitoring of enzymes moving a polymer across a nanopore, and (iii)

the observation of the binding of ligands to enzymes confined inside a nanopore.
2. Nanopores
Nanopores can now be fabricated using a variety of materials, including

solid-state membranes [5–8], glass [9,10], carbon nanotubes [11–13] or DNA

origami [14–19]. Solid-state nanopores have the advantage that their size and

the thickness of the insulating material can be readily controlled, and that their

surface properties can be chemically modified to acquire new properties [20].

Notably, mono- and bi-atomic membranes can now be used to form nanopores

[21–27]. However, the reproducible fabrication of artificial nanopores with sub-

nanometre precision, which is important to obtain consistent molecular recog-

nition, is still a major challenge. While DNA nanopores have just begun to

reveal their potential [28], the ease with which protein nanopores can be reprodu-

cibly fabricated and engineered with atomic-level precision means that, at least for

now, they remain superior to their artificial counterparts.
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Figure 1. Biological nanopores. Cartoon representation and estimated nanopore diameters of: (a) a-hemolysin (aHL, PDB ID ¼ 7AHL) [29], (b) Mycobacterium
smegmatis porin A (MspA, PDB ID ¼ 1UUN) [41], (c) Ferric hydroxamate uptake A (FhuA, PDB ID ¼ 1BY3) [42], (d ) outer membrane porin G (OmpG, PDB ID ¼
2IWV) [43], (e) aerolysin (AeL, PDB ID ¼ 5JZT) [44], ( f ) Fragaceatoxin C (FraC, PDB ID ¼ 4TSY) [45], (g) F29 portal protein (F29p, PDB ID ¼ 1FOU) [46], and
(h) Cytolysin A (ClyA, PDB ID ¼ 2WCD) [47] nanopores. The figures were prepared with PyMOL [48].
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Owing to an early available crystal structure [29], the

alpha-hemolysin (aHL) nanopore has been widely engin-

eered over the last 20 years. The rigidity of its b-barrel

made aHL particularly amenable to mutagenesis [30,31],

chemical engineering [32] and rational design of binding

elements [33]. Later, other b-barrel pores, such as MspA

[34], OmpG [35], aerolysin [36] and FhuA [37] were also

characterized by single-molecule electrophysiology. The

Guo laboratory showed that a F29 portal protein can be

engineered to reversibly insert itself into lipid bilayers,

demonstrating that biological nanopores may be obtained

from soluble proteins [38]. Recently, we showed that the

properties of a-helical Cytolysin A (ClyA) [39] and Fragacea-

toxin C (FraC) [40] nanopores could be improved or tuned
by directed evolution. Most notably, ClyA nanopores with

higher oligomeric states could be isolated [39]. The difficulty

modulating the size and shape of protein nanopores is one of

their biggest limitations, as the ability to obtain nanopores

with a larger diameter is particularly sought after.
3. Approach 1: engineering nanopores with
catalytic functions

One possibility for sampling enzymatic reactions with a

nanopore is to engineer an enzymatic function into the nano-

pore itself. In a first approach to build a catalytic nanopore,

we designed an aHL nanopore with the co-catalytic function
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Figure 2. Nanopores with enzymatic functions. (a,b) A co-chaperonin nanopore. (a) A nanopore-GroES was engineered by inserting the flexible loop of GroES into
the aHL nanopore. (b) Catalytic cycle of dihydrofolate reductase (DHFR) refolding by a single-ring GroEL molecule atop of a nanopore-GroES nanopore in the
presence of ATP. The L1 to L6 current level indicate the intermediates of the enzymatic reaction. Adapted from [49]. Reprinted with permission from AAAS.
(c,d) A catalytic translocase nanopore. (c) A ClyA nanopore (grey) with a ring of ssDNA molecules (orange) attached to its cis entry. (d ) Ionic current trace
(left) showing the sequential transport of selected DNA molecule under a constant applied potential of þ50 mV, as indicated by the cartoon on the right of
the trace. Adapted by permission from Macmillan Publishers Ltd: Nature Communications [51], copyright & 2013.
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of GroES (figure 2a,b) [49]. In bacteria, the GroEL/GroES

chaperonin pair forms a folding chamber of approximately

65 Å diameter, inside which many cellular proteins reach

their native fold. The co-chaperonin GroES associates as a

lid to GroEL through the interaction of seven unstructured

loops that slide into seven hydrophobic pockets in GroEL

[50]. We created a chimeric nanopore with the co-catalytic

activity of GroES by fusing the flexible loops of GroES

to the seven subunits of aHL (figure 2a). The aHL-GroES

nanopores were then used to assist and simultaneously moni-

tor protein folding by GroEL. Crucially, carefully designed

aHL-GroES chimeras were as efficient in assisting GroEL

protein folding as GroES alone. Our designed system allowed

the single-molecular study of protein folding and gave

insights not achievable with ensemble studies such as the

observation of intermediate states (figure 2b) [49]. A similar

approach might be used to pair other ring-shaped proteins

to nanopores. Proteins with toroidal structures are also

found in processivity factors, DNA replication initiators,

helicases, transcription terminators, DNA-binding protease,
proteasome proteins and the AAAþ (ATPases associated

with various cellular activities) protein family.

In another example, a ClyA nanopore was engineered to cat-

alyse the active transport of selected DNA molecules across a

membrane (figure 2c,d) [51]. It was found that while dsDNA

molecules can translocate throughthe nanopore undera positive

applied potential, ssDNA is too flexible to be readily confined

inside the nanopore. This physical property of ssDNA was

exploited to catalyze the transport across the nanopore. ssDNA

molecules were covalently attached to the mouth of ClyA,

which then created a physical barrier outside the nanopore pre-

venting unspecific DNA translocation (figure 2c). At positive

applied potentials, the ssDNA loops recognized a target

‘cargo’ DNA molecule in solution that was presented on one

side of the pore. The newly formed double-stranded DNA com-

plex on top of ClyA could then translocate to the other side of the

membrane through the nanopore. DNA strand displacement on

the opposite side of the nanopore by another single-stranded

DNA molecule released the cargo and restored the transporter

to its initial state, ready for the next cycle (figure 2d).
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Publishers Ltd: Nature Biotechnology [63], copyright & 2012.
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As observed in cells, the transport occurred under a constant

applied transmembrane potential. Although this system did

not work against the applied potential and thus was categorized

as a catalytic translocase [52], analogous to biological active

transporters, it also carried the ability to accumulate the DNA

cargo against a chemical gradient [51].
4. Approach 2: observing enzymes that ratchet
a polymer across a nanopore

Ever since its conception, the potential of sequencing DNA

with nanopores has been an important driving force in the

nanopore field. After the first experiment showing the electro-

phoretic transport of single-stranded nucleic acids across an

aHL nanopore [4] and the recognition of individual nucleo-

bases in immobilized strands [53,54], researchers focused

their attention on using enzymes to control the transport

of DNA across the nanopore. Initial efforts mainly focused

on establishing the binding or immobilization of a DNA-

processing enzyme on top of the pore [55–57]. Then, in 2008,

using ssDNA molecules immobilized inside a nanopore, Gha-

diri’s group showed the first example of an enzyme-mediated

transport of a DNA molecule across an aHL nanopore [58].

However, because the selected TopoTaq enzyme could not

polymerize DNA against the applied potential, the system

had to be regularly cycled between a negative applied potential

where the enzyme could bind to the DNA and incorporate one

nucleotide, and a positive applied potential where the incor-

poration could be monitored. During each cycle the enzyme

was released from the DNA, thus this approach did not allow

monitoring the action of the same, single enzyme.
5. Enzymes ratcheting DNA in real time
Several studies sampled various DNA polymerases under

an applied potential [59–61]; however, it was not until the

bacteriophage F29 DNA polymerase was introduced by the
Akeson group that an enzymatic reaction could be observed

in real time with an aHL pore (figure 3) [62]. The DNA tem-

plate consisted of a double-stranded DNA extended with a

long 50 overhang, which allowed capture by the nanopore,

and a 30 phosphorylated end that permitted the initiation of

the DNA polymerization reaction. A stretch of abasic nucleo-

bases was also incorporated in the 50 overhang to help

monitoring the transport of DNA across an aHL nanopore.

An additional blocking primer, hybridizing just before the

30 phosphorylated end of the hairpin, was used to prevent

the bulk phase replication of the template DNA (figure 3a)

[63]. Upon capture of the DNA construct complexed with

F29 polymerase, the blocking DNA was unzipped by the

applied voltage, making the 30 phosphorylated end accessible

for the DNA polymerase (figure 3b,c). DNA polymerization

above the nanopore revealed different states in the polymer-

ization reaction as the position of the abasic insert moved

inside the aHL pore. Further work showed that this system

can be used to reveal the details of enzymatic reactions,

such as the dynamics of the pre- and post-translocation

steps of binary and ternary complex formation [64,65] and

the primer strand transfer from the polymerase to the exo-

nuclease site within the enzyme [66]. Using an identical

approach but with MspA (figure 1b), a nanopore with a nar-

rower constriction than aHL, the Gundlach group studied

DNA polymerization at a higher resolution [67]. This

approach revealed the occasional back-stepping of F29 poly-

merase, which is most probably due to the 30-50 proofreading

activity or a failure to incorporate a nucleotide.

The Gundlach group also investigated the enzymatic

activity of an ATP-dependent DNA helicase Hel308

(figure 4a) [68]. By comparing the current steps produced

by the DNA movement with a reference curve obtained by

moving the same strand with F29 DNA polymerase

(figure 4b, left), the current signal was translated into the pos-

ition of the base in the pore. The authors observed an

additional step in the motion of Hel308 along a DNA

strand (figure 4b, right). This confirmed a previously made
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hypothesis based on the crystal structure [69], where the

additional step corresponds to domain 2 in the helicase that

is pushed upwards upon ATP binding, thus making DNA

move up in the pore. This is then followed by ATP hydrolysis,

which will move the DNA inside the nanopore by one

nucleotide. The motion of DNA in the pore therefore was

monitored with a resolution of half a nucleotide, thereby

resolving smaller motions than FRET.

In summary, DNA-processing enzymes operating above

the nanopore appear not to perturb the ionic current through

the nanopore, enabling the measurement of their enzymatic

activity as they move a DNA/RNA strand across the nano-

pore. However, only enzymes that are able to sustain a

relatively strong force (approx. 10 pN for a ssDNA inside

an aHL nanopore under þ 160 mV [70]) can be used with

this method.
6. Enzymatic unfolding and ratcheting
of proteins

An approach to actively transport proteins through the pore

has been attempted with the bacterial AAAþ unfoldase

ClpX (figure 5) [71]. ClpX forms a hexameric ring that uses

the chemical energy of ATP hydrolysis to unfold a protein

through the pore. Although such a system was developed

to sequence proteins, it can also be employed to study the

activity of the unfoldase enzyme. The ubiquitin-like protein

Smt3 was chosen as a target protein and modified with a

negatively charged tail in order to be readily captured by

the aHL pore. A ClpX targeting motif (ssrA) was also

added, enabling the specific binding to ClpX on the other

side of the membrane. In the presence of ATP, the ionic cur-

rent signal revealed at least three clear steps (figure 5a,b): step

1 (IO to L1) reflected the capture of the Smt3 complex, step 2

(L1 to L2) represented the binding of ClpX to the protein, and

step 3 (L2 to L3) showed the sequential unfolding and trans-

location of the Smt3 protein. In the absence of ClpX and ATP,

steps 2 and 3 were not observed, confirming the protein is

actively unfolded and then transported by the ClpX motor

protein. The authors also showed that the ionic current fluc-

tuations reflected the amino acid composition and that

ClpX-dependent translocation was relatively unaffected by

changes in the applied voltage. In subsequent work, the

authors showed that different protein domains and variations

within a protein domain could be discriminated in titin and

GFP proteins [72].
7. Approach 3: enzyme reactions inside
a nanopore

A more generalized approach to study enzymes with nano-

pores is to observe enzymatic reactions while the enzyme is

lodged inside the nanopore lumen. It has been extensively

shown that once proteins diffuse inside the capture radius of

a nanopore, the combined action of the electrophoretic and

the electro-osmotic forces promote their entry inside the nano-

pore [7,73–82]. In order to be studied by ionic currents,

however, the proteins should remain inside the nanopore for

at least a few seconds. Although the confinement of a protein

inside a nanopore of comparable size will probably result in a

greatly reduced diffusive and electrophoretic mobility (up to

two or three orders of magnitude) [83–85], a significant

number of studies with artificial nanopores showed that

proteins still translocate too quickly to be properly sampled

[73–81]. Furthermore, the events that are observed in such

experiments are consistent with high protein–pore interactions,

which might interfere with enzyme activity [80,81,86].
8. Protein immobilization: solid-state nanopores
In one attempt to increase the residence time of proteins

inside a nanopore, the Rant group trapped His6-tagged

proteins by chemically modifying the walls of a gold-coated

SiN nanopore with sparse nitrilotriacetic acid (NTA) moieties

(figure 6a) [7]. Depending on the multivalency of the NTA

groups, observation times were increased from 1.2+0.3 ms

(no NTA) to 49.8+ 5.8 ms (mono-NTA), 3.8+ 0.3 s (bis-

NTA) and over 1000s (tris-NTA). Using the tris-NTA

nanopore, the kinetics of two different IgG antibodies bind-

ing to single immobilized Protein A molecules could be

observed. The Dekker group constructed an artificial nuclear

pore complex (NPC) by functionalizing the SiN nanopore

walls with a monolayer of FG domains derived from either

the Nup98 or the Nup153 proteins [87]. The authors observed

the selective transport of importin b over bovine serum

albumin, together with a 10-fold increase in the average

translocation time from approximately 200 ms to appro-

ximately 3 ms. In another biomimetic approach, the Mayer

group coated the walls of their SiN nanopores with a fluid

lipid bilayer (figure 6b) [78]. Besides virtually eliminating

non-specific binding, the tethering of proteins to a biotiny-

lated lipid anchor reduced diffusive translocation times of

streptavidin, anti-biotin Fab fragments and anti-biotin
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antibodies by at least 2 orders of magnitude to approximately

50–200 ms. Notably, the lipid-coated nanopore permitted the

accurate determination of both the excluded volume occu-

pied by the protein (via the blockade amplitude) and the

protein charge (via the translocation time). Tuning of the

bilayer lipid composition and temperature also enabled a

flexible way of modulating the nanopore size and trans-

location times through bilayer thickness and lipid viscosity,

respectively. In a follow-up paper, a detailed analysis of the

current distribution of each individual protein translocation

event was performed. Using the theory of rotational
dynamics, the authors succeeded in determining the approxi-

mate shape, volume, charge, rotational diffusion coefficient

and dipole moment of 10 individual proteins [88].
9. Protein immobilization: ClyA biological
nanopore

Biological nanopores with an internal diameter wide enough

to accommodate proteins in their natively folded configur-

ation, such as the ClyA [89] or F29 [38] nanopores
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(figure 1), might also be used to sample proteins. Our

research group recently showed that proteins can be trapped

inside the ClyA nanopore (figure 7a) depending on their size

[89]. Conveniently, owing to its modular structure, higher

order ClyA multimers can be isolated, thus producing

variants with pore lumen diameters of 5.5, 5.9 and 6.5 nm

(figure 7b) [39]. Proteins such as lysozyme (14 kDa) quickly

translocated across the dodecameric nanopore. However,

proteins smaller than the cis entry of the nanopore (approx.

5.5 nm), but larger than the trans constriction (approx.

3.3 nm), such as thrombin (37 kDa), were trapped inside the

nanopore by the electro-osmotic flow for tens of minutes at

selected applied potentials (figure 7b). While the electrical

potential usually has a limited role in dragging proteins

inside the nanopore, it can be exploited to increase the resi-

dence time of proteins. For example, the interaction of a

DNA aptamer with human thrombin at high applied poten-

tial (2100 mV) increased the dwell time by three orders of

magnitude [93]. This effect was explained by an increase of

the electrophoretic force, introduced with the binding to the

DNA aptamer, that opposed the electro-osmotic force [93].

In another experiment, the dwell time of dihydrofolate

reductase (DHFR) 19 kDa was increased by introducing a

positively charged polypeptide tag at the C-terminus

[92,94]. This tag was designed to neutralize the relatively

high negative charge of the protein (pI ¼ 4.8, 211 net

charge at pH 8). It was found that the binding of the inhibitor
methotrexate, which carries two additional negative charges

and binds at the opposite end of the added polypeptidic

tag, prolonged the dwell time by three orders of magnitude,

most probably by immobilizing the protein at an electrostatic

minimum inside the nanopore [92]. Similar results were

obtained with unfolded peptides during translocation

through aHL nanopores [95,99].
10. Observing ligands binding to proteins inside
ClyA

To observe enzymatic reactions with a nanopore, the ionic

current should report information about enzyme kinetics

and dynamics. Many enzymes undergo a conformational

change before or after association with their substrate. It

has been shown that the accurate detection and analysis of

translocation events using a high bandwidth detector results

in a wealth of information about proteins, including their

concentration, charge, size and shape, protein–protein inter-

actions and even interaction energy with the pore [85],

suggesting that small differences in the protein structure or

overall charge should be reflected by changes in the ionic

current. Most probably, however, in order to detect the

minute structural changes during the enzymatic cycle in the

internalized protein, one should employ nanopores with

diameters close to that of the protein of interest. Recently,
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we have shown that ClyA nanopores can report the

binding of substrates to internalized proteins [92]. Using

DHFR, which adopts different conformations during the cata-

lytic progression, and AlkB, which folds upon binding to its

substrate, we showed that in the presence of ligands, the inter-

nalized proteins show step-wise current signals (figure 7c)

whose frequency increases with the ligand concentration.

Importantly, protein variants with a strongly decreased affi-

nity for the ligands did not elicit step-wise current blockades,

proving that the ligand-induced signal is specific to the bind-

ing of proteins to their ligands. Although it is not clear if the

signal arises from different protein conformations or from

different positions/orientations/interactions of the protein

within the nanopore upon binding their charged ligands,

these results indicate that enzymatic reactions can

be reported by a nanopore. Remarkably, the binding of

NADPH and NADPþ, which differ by only one hydride ion,

elicited a different current block signal when binding to a

DHFR:methotrexate complex inside ClyA (figure 7c),

suggesting that minute differences in protein:ligand complexes

might be observed when sampling enzymatic reactions with

nanopores.
11. The environment of the ClyA nanopore
One important consideration when measuring enzymatic

reactions with nanopores is the role of the nanopore walls

and the relatively strong electrostatic and electrophoretic

forces inside the nanopore. The crystal structure of the oligo-

meric ClyA protein revealed that the nanopore has a plethora

of negatively charged residues lining its interior walls

(figure 7a). Such a negatively charged nanocavity is reminis-

cent of the well-studied E. coli GroEL/GroES chaperone [51].

Although the precise mechanism by which GroEL aids

protein refolding remains controversial [97–100], it is likely

that the confinement prevents misfolded proteins from aggre-

gating. Another explanation could be that the rich

electrostatic environment inside the GroEL cavity increases

the water density and hence enhances folding due to an

enhanced hydrophobic effect compared with bulk [97,98].

The diffusivity and the structuring of the water molecules

confined inside GroEL in the absence of substrate protein

are likely to be similar to that in bulk solution [101]. When

there is a protein confined inside the chaperonin cavity,

however, these properties might change depending on the

interaction strength between the protein and the internal

walls of the chaperonin [100]. Interestingly, the folding path-

ways inside the chaperonin chamber have been proposed to

be similar [102] or different [103] compared with bulk

[104]. Regardless of the precise folding mechanism and the

behaviour of the confined solvent, a charged, hydrophilic

cage appears to promote the native state of proteins. There-

fore, no detrimental effects on the conformation of proteins

trapped inside ClyA are to be expected.

Although the nanoscale confinement of proteins inside

ClyA is likely not to affect the folding of the protein, the

role of the applied potential across the pore, and the resulting

electrophoretic and electro-osmotic forces, is not known.

To estimate their magnitude, the lumen of ClyA may be

described as two cylindrical electrolyte chambers in series.

The strength of the electrical field along the central nanopore

axis inside the wide cis chamber of dodecameric ClyA can
then be estimated to be approximately 3 mV nm21, as calcu-

lated from the resistance of the cis chamber for a bias voltage

of 250 mV (Rcis � 2.6 � 108 V, Rtrans � 2.2 � 108 V, DVcis �
27 mV, DVtrans � 23 mV, lcis ¼ 10 nm, ltrans ¼ 3 nm [39]).

Thus, if an immobilized protein bares a significant net

charge, e.g. 10 ec, it would be subject to a Coulomb force of

approximately 4 pN. Forces of this magnitude have been

shown before to partially unfold or deform proteins by

AFM [105]. However, the Pelta group showed that within

the 50–250 mV voltage range, the fractional residual current

(defined as the blocked pore current divided by the open

pore current) of maltose binding protein translocating

through a solid-state nanopore remains constant, as expected

for a protein that remains folded [106]. Using ClyA and

sampling several proteins (human thrombin, AlkB and

DHFR), we did not observe a change in fractional residual

current up to 2200 mV, confirming that the protein normally

should not unfold under moderate applied potentials.

It is worth noticing that the net force experienced by a

protein immobilized inside a nanopore will also depend on

the magnitude and direction of the electro-osmotic flow. The

negative charges lining the interior walls of ClyA make the

pore highly cation-selective and induce a strong electro-osmo-

tic flow [91], enabling the capture of proteins even against the

electrical field [89]. While the precise magnitude of the water

velocity inside ClyA is currently unknown, experimental

data using aHL nanopores [107] and simulations performed

with solid-state [108,109] and aHL [110,111] nanopores,

revealed velocities in the order of 100 mm s21. Assuming a

similar water velocity inside ClyA and applying Stokes’ law,

a static and uncharged sphere of 5 nm in diameter would

endure a force of approximately 4 pN. Thus, under negatively

applied potentials (trans) the electrophoretic and electro-

osmotic forces acting on negatively charged proteins would

oppose and cancel each other out, resulting in less stress on

the protein and a more diffusion-dominated environment

[73]. For positively charged molecules, these two forces will

add and increase the net force, resulting in additional stress

on the captured protein.
12. Outlook
Using the ideas and approaches outlined above, several poten-

tial applications can be envisioned. Engineering nanopores

with enzymatic functions could yield additional building

blocks for the bottom-up creation of artificial cells, while

computational design of nanopores holds great promise for

enhancing engineering efforts and to expand the functional

nanopore repertoire [112,113]. Currently the biggest challenge

in nanopore enzymology is to control the transit time of pro-

teins across the nanopore. Native enzymes might be trapped

by steric and electrostatic forces, locked by rotaxanes [94], or

immobilized covalently inside a nanopore to allow their

single-molecular study for extended periods of time. Alterna-

tively, substrate molecules could be covalently attached inside

the nanopore and the binding catalysis performed by enzymes

monitored by current recordings. The nanopore approach

could yield potentially unprecedented long observation

times of individual enzymes. This will most probably provide

new insights into the role of dynamics and structure hetero-

geneity in enzymatic reactions and will allow studying rare

intermediate molecule species not accessible with ensemble
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studies. Notably, such systems could also be used for biomo-

lecule sensing applications by exploiting enzymes as

molecular adapters with intrinsic affinities to target substrates

[92]. As nanopore currents can be easily interfaced with elec-

tronic devices, such approaches could allow manufacturing

of low-cost and portable sensors to monitor the concentration

of a large panel of biologically relevant molecules or to detect

disease-linked biomarkers.
 h
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