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In vivo RNA localization of I factor, a non-LTR
retrotransposon, requires a cis-acting signal in
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ABSTRACT

According to the currentmodel of non-LTR retrotrans-
poson (NLR) mobilization, co-expression of the RNA
transposition intermediate, and the proteins it
encodes (ORF1p and ORF2p), is a requisite for the
formation of cytoplasmic ribonucleoprotein com-
plexes which contain hecessary elementsto complete
a retrotransposition cycle later in the nucleus. To
understand these early processes of NLR mobiliza-
tion, here we analyzed in vivo the protein and RNA
expression patterns of the / factor, a model NLR in
Drosophila. We show that ORF1p and / factor RNA,
specifically produced during transposition, are
co-expressed and tightly co-localize with a specific
pattern (Loc+) exclusively in the cytoplasm of germ
cells permissive for retrotransposition. Using an
ORF2 mutated / factor, we show that ORF2p plays
no role in the Loc+ patterning. With deletion derivat-
ives of an / factor we define an RNA localization
signal required to display the Loc+ pattern. Finally,
by complementation experiments we show that
ORF1p is necessary for the efficient localization of /
factor RNA. Our data suggest that ORF1p is involved
in proper folding and stabilization of / factor RNA for
efficient targeting, through Loc+ patterning, to the
nuclear neighborhood where downstream steps of
the retrotransposition process occur.

INTRODUCTION

Non-LTR retrotransposons (NLRs) [retrotransposons lacking
long terminal repeats (LTRs)], are a class of transposable

elements that are mobilized by reverse transcription of an
RNA intermediate (1). Multiple copies of NLRs inhabit vari-
able fractions of the genome of most eukaryotes. Whereas
most copies are defective, some are functional and their retro-
transposition can result in several types of genetic effects
including mutations associated with diseases in humans and
mice (2). The Drosophila NLR I factor and the mammalian
NLR L1 (3) provide well-known examples of the impact of
NLR mobilization.

Most NLRs contain two open reading frames, ORF1 and
ORF2, which are translated from a bicistronic messenger RNA
that presumably also serves as a template for retrotransposition
(4-6). The sequence of the ORF2 product (ORF2p) is relat-
ively well conserved among NLRs. ORF2p is involved in
reverse transcription and integration, and its endonuclease
and reverse-transcriptase activities have been demonstrated
in vitro for different elements (7-12). The sequence of the
ORF1 product (ORFlp) is, in contrast, poorly conserved in
evolution. ORFI1p of human and mouse L1 are expressed in
some carcinoma cells and can be isolated as a 40 kDa full-size
protein (p40) which forms, in association with L1 RNA, high
molecular weight cytoplasmic ribonucleoprotein (RNP)
complexes (13,14). I factor ORFlp, expressed in bacteria or
insect cells, shows both DNA and RNA binding properties and
accelerates the annealing of complementary single-strand
oligonucleotides without sequence specificity (15), similar
to mouse L1 ORFlp when expressed in those heterologous
systems (16—18). These in vitro experiments suggested that
ORFlp from NLRs could act as a chaperone.

It is now known that the integrity of both ORF1 and ORF2 is
required for retrotransposition (19-21), but our knowledge is
limited on how and when the products of these ORFs interact
with the RNA transposition intermediate during the mobiliza-
tion process. The model NLR I factor allows the study of retro-
transposition in vivo, making possible the tracking of specific
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transposition products in Drosophila. I factor transposes
specifically in the oocytes of females (called SF) issued from
mating males carrying active [ factors (inducer or I strains) with
permissive females lacking active I factors (reactive or R
strains). A proportion of the eggs laid by the SF females fail
to hatch. The severity of this sterility correlates with the
frequency of transposition of [ factors [reviewed in (22)].

We have previously described the localization pattern of
ORFlp produced by active I factors in the germ cells of SF
females, showing that it is correlated to the element retrotrans-
position (23). We show here that I factor RNA and ORFIp
generated by active / factors during mobilization co-localize
with a specific cytoplasmic pattern (Loc+), exclusively in
permissive oocytes. By analyzing the expression patterns of
mutated/deleted [ factors in transgenic females, we show that
ORF2p is not involved in the Loc+ patterning and that local-
ization of ORF1p/RNA requires an RNA cis-acting signal
located in the sequence of ORF2. Finally, the expression
and complementation analyses of an element deleted in
ORFI indicate that ORF1p is required (either in cis or in
trans) for efficient Loc+ patterning of the RNA. This result
suggests that some chaperone-like properties of ORFlp
described in vitro (15,17), may apply in vivo to force proper
folding of I factor RNA and enhance its targeting to the nuc-
lear vicinity, favoring the efficiency of downstream steps of
the retrotransposition process.

MATERIALS AND METHODS
Fly stocks

The JA (white and yellow) stock is a reactive (R) strain, per-
missive for [ factor transposition. The strain w;;;¢1s a standard
inducer (I) stock. The transgenic lines HT1 and HT2 carrying
several copies of the marked I-HAO1 element (23) were also
used as I stocks. Stocks HH16 and Is37 are transgenic lines for
constructs AsORF1 and I-AAsu, respectively, and were estab-
lished after P-element mediated transformation of the reactive
strains wK and Cha (24). All strains are M in the P-M system
of hybrid dysgenesis, thus transposition events cannot result
from P-element activity.

Plasmid constructs

All constructs with internal deletions of the ORF2 region were
derived from the element I-HAOI1, a functional I element
marked with the HA tag at the beginning of ORF1 in construct
pCaSpeR/I-HAO1 (23), by performing restriction digests
according to the sites indicated in Figure 2. Nucleotide posi-
tions and the corresponding sequence corrections were
described previously (25,26). The integrity of the junction
points was checked by sequencing. To obtain construct A,
we cloned the thymidine kinase terminator, contained within
an Smal—-EcoRI fragment from plasmid pBTK2, at the end of
ORF1 in construct pCaSpeR/I-HAO1 cut with Hpal-EcoRI
(Figure 2). To obtain construct pCaspeR/I-HAO1-fsO2, an 8 nt
oligomer was ligated to EcoRV-digested pCAspeR/IHAOL.
The I-AAsu construct contains an in-frame Asull deletion
within ORF1 and was derived from pI954, a plasmid contain-
ing a complete [ factor cloned into vector pUChsneo.
Construct #sORF1 was described previously (24). To obtain
construct DF313/loc, a lacZ/I factor fusion, we generated the
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552 nt localization fragment by PCR using primers
5-GTATCTAGAACTTAGCTCAGCAC-sense and 5'-GAC-
TAGTGGCTTGATGTATGCGG-antisense, digested it with
Xbal/Spel and cloned it at the 3" end of a B-gal gene in plasmid
DF313 cut with Spel. In plasmid DF313, the promoter of the
maternal alpha4-tubulin gene 67C drives the expression of the
B-gal gene (D. Ferrandon, personal communication).

Transformations

All constructs derived from I-HA-O1 were cloned into the
pCaSpeR4 transformation vector containing the mini-white+
gene as a selection marker (27). They were introduced into
reactive JA flies (y,w) by P-element mediated transformation
(28). Transposase activity was provided by the PUChsA2-3
helper plasmid (Flybase ID: FBmc-0000938). Several inde-
pendent transformed lines were generated and three were
analyzed for each construct, with the exception of CI21, for
which only one line showing a full expression of the transgene
was obtained.

Complementation experiments

We performed reciprocal crosses between flies from stocks
HH16 and Is37. The F1 female progeny underwent two heat-
shock treatments of 1 h at 37°C, 1 day before and 1 h before
dissection of the flies. The expression of [-AAsu transcripts in
the ovaries of Is37/HH16 hybrids (with and without heat treat-
ment) was specifically detected using a probe corresponding to
I factor 5'UTR, absent in the ~AsORF1 construct.

PCR detection of transposed copies

The method for obtaining flies in which the presence of
transposed copies was investigated and the method for extract-
ing their DNA was described previously (23). Briefly, the
transgenic element integrated in w flies is linked to the w+
selection marker, while transposed copies are not. Therefore,
after allowing a single cycle of transposition in heterozygote
transgenic females, we selected w progeny and used PCR
to detect transposed copies of the marked element in their
DNA. The primers used were 5-TTACCATACGACGT-
CCCAGA (sense) which overlaps the HA tag and 5'-GAT-
CAGATCTGATCCTTTTAGA (antisense) which is specific
to the frameshift mutation introduced in ORF2. The size of the
expected product was 1354 nt.

In situ hybridization

Ovaries were dissected in ice cold phosphate-buffered saline
and processed for in situ hybridization as described previously
(29). The probe consisted of a PCR amplification product of /
factor 5’UTR purified on a Qiagen column and labeled with
digoxygenin using the Boehringer nick-translation kit. Occa-
sionally, we used a similarly prepared probe representing a
short segment of ORF1 or ORF2.

Immunofluorescence

Antibody staining was performed as described previously (23).
The antibodies used were mouse anti-HA12CAS (1:500
dilution) (Roche) and FITC-conjugated anti-mouse IgG
(1:200 dilution) (Vector) or rat anti-HA high affinity 3F10
(1:500 dilution) (Roche) and FITC-conjugated anti-rat anti-
bodies (1:500 dilution) (Vector).
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RESULTS

ORF1p and the I factor transcript co-localize
temporally and spatially during oogenesis

We have analyzed the expression pattern of the transcripts
produced by active I factors during retrotransposition and

compared it with the pattern previously identified for
ORFlp [(23), and Figure la, panels B and D]. Briefly,
ORFl1p produced in nurse cells is transported to the oocyte
cytoplasm from the early stages of oogenesis, where it
accumulates at the posterior pole until mid-oogenesis. At
this stage ORFlp re-localizes to the oocyte anterior pole.

Ha
OR
probe I-HA-O1
ANT

Germarium (b)

AAA GGAT ATC TAA

I-HAO1-fsO2

E N\ B

POST

Figure 1. The Loc+ phenotype. (a) The top diagram represents I-HA-O1, a functional / factor carrying the HA tag at the N-terminus of ORF1p (23). The arrow
indicates the transcription start site of the / factor driven by an internal promoter contained within its 5’UTR. The black bar underneath indicates the sequence used as
the probe in in situ hybridizations. Below, the left panel shows a schematic diagram of an ovariole (the developmental unit of a Drosophila ovary where oogenesis
takes place). At the anterior tip of the ovariole (ANT), in the germarium, stem germ cells divide to produce 16 cell cysts; one of these cells becomes the oocyte and the
other 15 become nurse cells. Each cyst, surrounded by a layer of somatic follicle cells, constitutes an egg chamber. Egg chambers grow and mature as they progress
from the germarium to the posterior part of the ovariole (POST), which ends in the oviduct. The different stages of maturation can be identified from the relative
volume of the oocyte (32). (A, C, E, F and H) In situ hybridizations designed to detect / factor transcripts on whole-mount ovaries. (B, D and G) Immunostaining for
the detection of HA-tagged ORF1p. (A—D) The Loc+ phenotype can be observed in the ovaries of SF females generated by crossing I males carrying the active tagged
I-HA-O1 element with R females.  factor transcripts (A) and ORF1p (B) accumulate in the cytoplasm of the oocytes from the very early stages of oogenesis, as soon
as the pro-oocyte is determined in the germarium (arrows). At mid-oogenesis (stages 8 and 9, and thereafter), when the oocyte nucleus migrates from the posterior to
the antero-dorsal pole of the cell, both the I factor RNA (C) and ORF1p (D) are also re-localized and concentrate at the anterior cortex of the oocyte. I factor transcripts
are not detected in the ovaries of R flies, which are devoid of active / factors (E), nor in the ovaries of I flies, where active I factors are silenced (F). (b) Loc+ pattern of
I-HAO1-fsO2. The insertion of 8 nt, in red in the diagram, in I-HAO1 near the 5’ end of ORF2 creates a frameshift in ORF2 and abolishes the transposing capacity
of this element. The dynamic expression pattern of ORF1p (G) and RNA (H) is unchanged, indicating that the localization process does not require the participation
of the ORF2 protein. [The concentration of ORF1p at the periphery of the oocyte anterior poles appears like green crescents in the oblique views of stages 8 and 9 egg
chambers in (G) (arrows)]. Scale bars in (A) and (B) are 10 pum and in C-H are 50 um.



This movement coincides temporally and spatially with the
change of microtubule polarity and the migration of the
nucleus from the posterior to the anterior-dorsal pole
(30,31). In late developmental stages, coincident with nuclear
membrane disassembly and resumption of meiosis I, ORF1p is
no longer detected in the oocyte. We synthesized probes rep-
resenting the I factor 5'UTR and performed in situ hybridiza-
tion on the ovaries of SF females resulting from crosses
between R females and I males containing several active cop-
ies of the I factor (either from natural I strains or from trans-
genic strains containing the functional tagged I-HA-Ol1
element). As controls, we tested the ovaries of R and I females
(Figure 1a, panels E and F). We detected a strong expression of
I factor RNA exclusively in SF females (Figure la, panels A
and C). This expression pattern was identical to that of ORF1p,
i.e. accumulation in the cytoplasm of early oocytes, re-
localization from the posterior to the anterior pole at mid-
oogenesis and extinction of the signal after stage 10b (Figure 1a,
panels A-D). The co-localization of ORF1p and [ factor tran-
scripts during oogenesis strongly suggests that both molecular
species interact and form RNP complexes during retrotrans-
position. We defined this dynamic subcellular localization
pattern of ORF1p and RNA as the ‘Loc+” phenotype.

To investigate how the different components of the / factor
(ORF1p, ORF2p and RNA) interact and localize, we generated
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a frameshift mutation in ORF2 and several deletions down-
stream of the ORFI sequence of the I-HA-O1 element
(Figure 2). Using standard procedures, we introduced the
mutated elements in the JA reactive strain and established sev-
eral independent homozygous transgenic lines for each con-
struct. In the following paragraphs we describe the analysis of
the expression patterns of ORFIp (by histo-immunofluores-
cence) and of the transcripts (by in situ hybridization) pro-
duced by these I factors in a standard permissive background;
i.e. in females resulting from crosses of homozygous trans-
genic males to JA reactive females. We tested several indepen-
dent transgenic lines per mutant (see Materials and Methods).

The ORF?2 protein is not required for
the Loc+ phenotype

We disabled the translation capacity of ORF2 from its first
AUG codon by creating a frameshift mutation near its 5’ end
(element I-HAO1-fsO2) (Figure 1b, panels G and H).
Interestingly, for each independent line analyzed, ORFlp
and the transcripts presented a Loc+ phenotype. We verified
that the frameshift in ORF2 actually abolished the transposi-
tion capacity of the element I-HAO1-fsO2. For this, we adap-
ted a PCR-based method (23) to detect specifically the HA tag
from transposed copies in the male progeny of SF females

I factor 5374 base pairs

2840 Xbal
2682 Nhel
1570 EcoRV 2539 Hindlll 5108 Xbal
1516 Hindlll 2480 Xbal 4849 Kpnl
Constructs 289Asu Il 101240 il|490 Hpal 2419 SnaBl 3392 Rsrll 4442 PshAl Loc
| ORF1 | 111 1 | ORF2 | |
I-HA-01 —RT BNH ;
FAnue N —
cl121 5 5 — .+
D +
I-AHind +
I-AHp-Sn +
Cl3 e ——————— -
Cl18 _ -
B — -
A tk -
552 nt

Figure 2. Schematic representation of the I-HA-O1 element and of its deletion derivatives. The arrow at the beginning of the 5"UTR indicates the transcriptional start
site of the element. The relative locations of the endonuclease (EN), reverse transcriptase (RT) and RNAse H (RNH) domains within ORF2 are indicated. Restriction
enzymes used to obtain the different constructs and their sites within the / factor sequence are shown. Thin lines represent the deleted sequences in each construct. The
localization phenotypes with regard to ORF1p and the RNA are indicated at the right of each construct (Loc). tk represents the thymidine kinase terminator added to
the 3’ end of construct A. The 552 nt stretch missing in all constructs displaying a Loc— phenotype is indicated.
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(see Materials and Methods). Whereas 20—70% of the progeny
contained transposed copies of the parental I-HA-O1 element,
no transposition events were detected in a sample of 300 flies
pooled from three independent transgenic lines carrying the
I-HAO1-fsO2 element (100 flies/line). These results indicate
that: (i) -HAO1-fsO2 is unable to transpose at a detectable
frequency; (ii) functional ORF2 products were not produced
from AUG codons located downstream of the first AUG
of ORF2, identified as the initiation codon of this ORF (5);
(ii1) in the absence of ORF2p, I factor RNA and ORFlp are
transported and co-localize in oocytes as efficiently as when
they are produced by transposing elements.

The Loc+ phenotype requires cis-acting sequences
within ORF2

We examined the expression pattern of a construct B (see
Figure 2), containing only the 5UTR, ORFI and the 539 nt
of the 3’end of the element, which includes a putative nucleic
acid binding domain at the end of ORF2 (26), the 3'UTR and
four TAA repeats. To assess the effect of the 3’end region in
the localization process, we replaced it by the herpes thymi-
dine kinase terminator (zk) in construct A (Figure 2). For both
the constructs and the three independent transgenic lines ana-
lyzed per construct, ORF1p was detected in the cytoplasm of
nurse cells and oocytes. However, the intensity of the signals
was weaker than that observed in females exhibiting a Loc+
phenotype. This signal was detected only at early stages of
oogenesis (never later than stages 5-8). Interestingly, at stage
8, the weak fluorescent signal appeared spread throughout the
cytoplasm of some oocytes, and was never accumulated at the
anterior cortex of the cell. The in situ hybridization signal
produced by the transcripts was also weak and diffuse through-
out the cytoplasm of the nurse cells. This type of localization-
defective phenotype will be referred to as a ‘Loc—’ phenotype
(Figure 3A, B, and D). These results indicate that ORF1p and
I factor sequences present in construct B were not sufficient to
promote the Loc+ phenotype. Therefore, we analyzed several
other deletion mutants, downstream of ORF1 to determine
which sequences are required in cis for the patterning process
(Figure 2). According to the expression patterns observed
for ORFlp and the I transcripts, we defined two categories
of mutants: (I) those displaying a Loc+ phenotype
(Figures 3H-K and 4E), and (II) those displaying a Loc—
phenotype similar to that presented by elements A and B
(Figures 3C, E, F, and G and 4C). We did not observe another
category of mutants that would exhibit a Loc+ phenotype for
the transcripts and Loc— for ORF1p (or the reverse). Sequence
comparisons of the diverse constructs and their corresponding
phenotypes revealed that a 552 nt segment, located in a central
region of ORF2, is absent in all the mutants exhibiting a
Loc—phenotype (Figure 2).

The 552 nt segment drives the localization of a
heterologous RNA

To further assess the significance of the cis-acting sequence
identified above in the localization of the I factor RNA, we
tested its capacity to localize a heterologous RNA expressed in
the female germ line. We added the 552 nt fragment at the 3’
end of a construct (DF313) containing the bacterial /acZ gene
under the control of the promoter of the maternal

Figure 3. ORFlp expression produced by different I factor deletion
derivatives. Immunostaining on ovaries of flies generated by crossing R JA
females with transgenic males carrying either construct A (A and B), construct
E (C), construct B (D), construct CI18 (E); construct CI3 (F and G), construct I-
Anuc (H), construct D (I), construct CI21 (J) or construct I-AHind (K). The
constant and regular ORF1p expression pattern of Loc+ mutants shown in
(H-K) complies exactly with the localization features of full-size elements
(see Figure 1). In contrast, Loc— mutants (A-G) present a large variability
in the ORF1p expression patterns within each transgenic line. (A and B) and (F
and G) illustrate this variability in the same genetic background. However, two
features are constant: ORF1p is not preferentially accumulated in oocytes at the
early stages of oogenesis but may occasionally label the oocytes in stage 6 and 7
cysts (arrows in A, C and E). ORFlp is generally missing in stages 8 and 9
oocytes, but when present, it appears scattered all over that cell (arrowheads in E
and G) and does not migrate to the anterior pole.



Figure 4. RNA expression pattern produced by different / factor deletion
derivatives. / factor transcripts are detected as a blue precipitate following
in situ hybridization on ovaries (A-E) (see Materials and Methods). The probe
used does not reveal any / factor RNA in control R JA flies (F). Transcripts of all
Loc— mutants appear scattered in all the 16 cells of young cysts and are
accumulated in nurse cells after stage 10 as shown in (A-D). Exceptionally,
the RNA appears accumulated in some oocytes at stages 6 and 7 (arrow in A),
like ORF1p in some Loc— phenotypes (arrows in Figure 3A and C). In contrast,
the phenotype of Loc+ mutants (E) is regular and identical to that of the full-size
element. Construct A (A); construct B (B); construct CI18 (C); construct E (D)
or construct I-Anuc (E).

alpha4-tubulin gene 67C that drives the expression in oocytes.
The chimera lacZ/I factor construct was called DF313/loc. We
transformed reactive flies either with DF313/loc, creating
transgenic lines 313/loc, or with the unmodified DF313
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construct, creating transgenic lines 313. In control lines
313, lacZ transcripts were not transported to the anterior
pole of oocytes (Figure 5B). In contrast, the chimera lacZ/
loc transcripts localized to the oocyte anterior pole in lines
313/1oc, exactly like I factor transcripts (Figure 5A). This
suggests that the 552 nt fragment of ORF2 contains all the
necessary sequences to interact with cellular motor proteins
and drive the localization of I factor products.

A deletion in I factor ORF1 prevents an efficient
expression of the Loc+ phenotype

To determine whether other cis-acting sequences contribute to
I factor RNA localization, we analyzed the expression of the
element I-AAsu (24), which lacked 723 nt between the two
Asull restriction sites of ORF1. I-AAsu produces a half size
ORFlp, in which the zinc-knuckle region is removed
(Figure 6). Males of the Is37 transgenic line homozygous
for the I-AAsu element were crossed with JA females, and
we analyzed the expression pattern of the transcripts and of the
mutated ORF1 protein in the ovaries of their F1 progeny. This
truncated protein appeared accumulated in the nurse cell cyto-
plasm. It appeared scarcely in oocytes and was not localized to
the anterior pole (data not shown). The distribution of the
transcripts was similar but, exceptionally, some very faint
figures of localization at the anterior pole of stage 9 oocytes
could be observed (Figure 6A, arrows). These observations
suggest that in the / factor context, the 552 nt region within
ORF2 is not sufficient to promote a precise distribution of
I factor RNAs, and that sequences of ORF1 missing in
I-AAsu and/or a functional ORFlp are necessary for their
correct and efficient localization.

ORF1p can act in trans to restore the Loc+ phenotype

To test whether ORF1p and/or other cis-acting sequences in
ORF1 are required for the localization of / factor RNA, we
conducted complementation experiments introducing I-AAsu
and full-length ORFl1p into the same oocyte. For this, we
performed reciprocal crosses between line Is37, containing
the [-AAsu element and a line containing the construct
hsORF1 (HH16 line) (24). In the construct ~sORF1 the expres-
sion of ORF1p is driven by the heat-shock promoter 4sp70. An
abundant and ubiquitous expression of ORF1p can be induced
in line HH16 by heat treatment at 37°C (data not shown). A
control heat shock on Is37 females had no effect on the loc-
alization of the I-AAsu RNA (Figure 6B). In contrast, when
Is37/HH16 females were subjected to heat treatment, a large
proportion of I-AAsu transcripts was localized in the oocytes
with a full Loc+ phenotype, exactly like complete I factor
transcripts (Figure 6C). Such hybrid females also expressed
the typical sterility syndrome correlated with I factor retro-
transposition. These results indicate that (i) in addition to the
localization signal in ORF2, ORFl1p is required to promote an
efficient localization of [ factor RNA; (ii) the central region of
ORF1 (723 nt, absent in the I-AAsu construct) does not contain
the signals required in cis for correct localization; (iii) the
Loc+ phenotype of an I factor RNA deficient in ORF1 can
be rescued upon the supply of sufficient amounts of ORFIp
provided in trans.
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Figure 5. The cis-acting signal located within ORF2 drives the localization of a heterologous RNA. /n situ hybridizations, using a /acZ probe, show that lacZ
transcripts are not detected in the ovaries of control JA flies (C). In the ovaries of 313 flies, lacZ transcripts are scattered in the cytoplasm of the 16 cells of cysts (B). In
313/loc ovaries, the chimera /acZ/loc transcripts display a typical Loc+ phenotype like 7 factor transcripts (A).

DISCUSSION

Results obtained from actively transposing I factors showed
that ORF1p (23) and full length I factor RNA co-localize
according to a dynamic pattern (Loc+) exclusively in permiss-
ive oocytes (Figure 1a, panels A-D). The spatial and temporal
co-localization of ORF1p and / factor RNA coincide with the
expected place and time where the [ factor is known to trans-
pose (i.e. during the development of permissive young female
germ cells), and suggests that during this period both
molecules visualized here are a part of the transposition-
related RNP complexes, expected early intermediates in the
NLR retrotransposition process. Transcriptional activity is
repressed in the oocyte and most maternal products synthes-
ized during oogenesis are produced by the nurse cells and
transported to the oocyte (33). Full-length 7 factor transcripts
and ORFlp are both detected in the cytoplasm of very early
oocytes, indicating that the RNA is transported to this cell
immediately after synthesis in nurse cells, and that at least
the first ORF of the bicistronic transcript is translated and
transported at that time. The dynamic localization of these
products coincides with nuclear migration to the anterior
pole of the oocyte, indicating that both the nucleus and a
fraction of I factor products remain in close contact during
oogenesis. Some Drosophila morphogenes (proteins and/or
RNAs), such as the bicoid or gurken mRNAs, follow similar
re-localization patterns via motor proteins associated with the
minus end of microtubules (dyneins) at mid-oogenesis
(34-37). This similarity suggests that I factor products also
localize using minus-end microtubule associated motor
proteins. Through an ORF2p loss-of-function mutant (element
I-HAO1-fsO2), we observed that ORF2p is not required for
localization. Since localization of mRNAs is often coupled to
translational control (38,39), one can hypothesize that ORF2p
is synthesized as a late product, only after ORF1p and the RNA
have reached the anterior pole of the oocyte where they meet

cellular factors required for the differential translation of
ORF2p from the bicistronic transcript. ORF1p and the RNA
become undetectable after stage 10b of oogenesis when nuc-
lear breakdown is known to occur. It is possible that the trans-
lation process of ORF2 results in ORFlp release and
degradation as the newly synthesized ORF2p is activated to
proceed with the subsequent steps of reverse transcription and
integration in the genome.

Using deletion derivatives of a tagged [ factor we have
identified a specific region of 552 nt within ORF2 containing
a signal required for proper localization of both ORF1p and /

factor RNA (Figures 2-4). This fragment fused to sequences

of the lacZ bacterial gene promotes a similar localization of the
lacZ transcripts, suggesting that cellular cargos or cargo-
adaptor proteins can directly recognize it. Transport signals
are often carried by stable stem-loop structures (34,40).
Several robust stem loops predicted in the 552 nt region of
the I factor RNA are targets to test for interactions with ORF1p
and for their involvement in localization.

The evidence that both ORF1p and the 552 nt signal in the
RNA are implicated in the localization process of [ factor
products was obtained through the observation that an element
deficient in ORF1 (I-AAsu) localizes very poorly in oocytes
but recovers a full Loc+ pattern when a full-size ORFlp is
provided in large amounts in trans (Figure 6). The extremely
low efficiency of the cis-acting localization signal in the
ORF1-mutant element (Figure 6A), compared with its high
capacity to promote anterior pole localization when fused to
lacZ RNA (Figure 5A), could be either due to the presence of
the truncated ORF1p and/or due to a difference in the second-
ary structure resulting from a different sequence environment.
The rescue of a full Loc+ phenotype when I-AAsu was com-
plemented by ORF1p suggests that a possible role of ORF1p is
to act as a molecular chaperone directing RNA folding into a
localization-competent structure, probably via site-specific
binding, either inside and/or outside of the 552 nt stretch.
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Figure 6. ORFlp can act in trans. The transcripts of the I-AAsu element,
deleted in ORF1, do not accumulate in oocytes of flies issued from crosses
of 1s37 (line containing I-AAsu) with JA reactive flies, but some weak signals
may be observed occasionally at the anterior pole of stage 10 oocytes (arrows in
A). A heat-shock treatment does not affect the Loc— phenotype of I-AAsu (B).
In the ovaries of females resulting from crosses between Is37 and HH16 (carry-
ing the ~sORF1 construct), when overproduction of ORFl1p is induced by a
heat-shock treatment, a typical Loc+ localization pattern is observed (C).

Such a property is evocative of the chaperone Ncp7 protein
which controls the conformational state of HIV RNA (41). The
sequence-specific binding of the ORF1p of NLRs is a matter of
debate. Assays performed with the human L1 p40 produced in
heterologous systems have also led to the conclusion that
binding does not require a specific sequence (18). However,
p40 extracted from teratocarcinoma cells (in which L1
presumably transposes) specifically binds to two sites in
the ORF2 RNA sequence (42), suggesting that some host
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dependent post-translational maturations may be essential
for the full expression of ORFI1p properties.

Our complementation data as well as previous experiments
(20,24) indicate the importance of the localization process
(Loc+) for efficient I factor transposition. Defective human
L1 elements are poorly complemented in trans (43,44) and a
mechanism called cis-preference has been proposed to account
for low complementation efficiency. This mechanism refers to
functional proteins that preferentially remain associated with
the RNA molecule from which they are synthesized, favoring
the specific mobilization of the progenitor element (45). Early
experimental data suggested that the cis-preference mechan-
ism might also apply to the / factor since previous attempts to
mobilize defective I factors led to very low complementation
efficiencies, even under conditions of protein overexpression
(20,24). Noticeably the elements used in those experiments did
not contain the localization signal (ORF2 552 nt region). We
have observed that the efficiency of complementation can be
significantly improved by the use of deleted elements endowed
with the localization signal and the appropriate supply of
interacting proteins (ORFlp in our experiments). Another
case of successful complementation when these conditions
were met resulted in the rescue of the total transposition
capacity of the non-functional element I-Anuc (Loc+, deleted
in the endonuclease domain) by a construct overexpressing a
full-size ORF2p (46). Hence, at least part of the complementa-
tion efficiency to mobilize defective I factors seems to depend
on the localization signal interacting with one or more
molecular partners. Under such conditions, genetic comple-
mentation analyses of / factor remain a powerful tool to con-
tinue dissecting the molecular components required for
retrotransposition.

Analysis of the Drosophila genome has recently revealed
the presence of 27 NLR families with two ORFs (47-49), but
very little is known of the in vivo expression of any of these
Drosophila NLRs. The expression in Drosophila cultured cells
of ORF1p—GFP fusions from five of these Drosophila NLRs
has shown a diversity of intracellular localizations: some of
them enter the nucleus, but Doc or / factor ORF1p-GFP do not
(50,51). The in vivo expression pattern of Drosophila NLRs
other than / factor is still undocumented except for the tran-
scripts of the Doc and HetA elements in Drosophila oocytes
(52,53), but probably because the conditions of their retro-
transposition are unknown, this pattern was not correlated to
transposition. However, further investigations may reveal that
the localization process described here for I factor RNPs
reflects a more general situation.
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