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ABSTRACT

A simple statistical method for predicting the func-
tional differentiation of duplicate genes was devel-
oped. This method is based on the premise that the
extent of functional differentiation between duplicate
genesisreflected inthe differencein evolutionary rate
because the functional change of genes is often
caused by relaxation or intensification of functional
constraints. With this idea in mind, we developed a
window analysis of protein sequences to identify the
proteinregions in which the significant rate difference
exists. We applied this method to MIKC-type MADS-
box proteins that control flower development in
plants. We examined 23 pairs of sequences of floral
MADS-box proteins from petunia and found that the
rate differences for 14 pairs are significant. The
significant rate differences were observed mostly in
the K domain, which is important for dimerization
between MADS-box proteins. These results indicate
that our statistical method may be useful for predict-
ing protein regions that are likely to be functionally
differentiated. These regions may be chosen for
further experimental studies.

INTRODUCTION

The functional differentiation of duplicate genes is thought to
be an important mechanism of evolution of organisms (1-4).
This differentiation is often associated with the relaxation or
intensification of purifying selection in certain regions of pro-
tein sequences. Therefore, comparison of the evolutionary
rates of paralogous protein sequences may give some insights
into the functional differentiation. With this idea, a number
of authors have developed statistical methods for predicting

functional differentiation by examining the evolutionary rates.
Dermitzakis and Clark (5) suggested that this functional dif-
ferentiation may be revealed by examining the heterogeneity
of substitution rate between two pairs of duplicated genes.
Considering two groups of paralogous duplicate proteins (A
and B in Figure 1a), Gu (6) and Knudsen and Miyamoto (7)
respectively proposed a Bayesian and a maximum likelihood
method of detecting amino acid sites that show a significant
rate difference between the two groups. In these methods, the
number of sequences in each group (A or B) must be relatively
large to have reliable results. When the groups A and B include
only one sequence, their methods are not applicable. This is
also true with Dermitzakis and Clark’s method.

In real experimental studies, it is customary to identify the
functional difference by comparing a sequence with known
functional domains with a new sequence by using domain
swapping or site-directed mutagenesis. However, it is time-
consuming and expensive to use this method for a large num-
ber of pairs of sequences. It is therefore useful to develop a
statistical method for identifying protein domains that are
likely to be functionally differentiated. For this reason, we
propose a new method in which only two sequences are com-
pared at a time after construction of a rooted tree. This method
will then be illustrated by an analysis of a number of MIKC-
type MADS-box genes that control the development of flowers
in plants.

METHODS AND RESULTS
Statistical methods

In our method, two protein sequences to be compared (A and B
in Figure 1b) and an outgroup sequence (C) will be used after
sequence alignment (Figure 1b). A phylogenetic tree for the
sequences is constructed to determine the root of the sequences
A and B. Here, we suggest that the p-distance (proportion of
different amino acids) (8) be used, because the sequences to be
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Figure 1. (a) Gu (6) and Knudsen and Miyamoto’s tests (7). Groups A and B include many sequences to be compared, and C is the outgroup. (b) A and B represent two
sequences to be compared, and C is the outgroup. (¢) Comparison of the protein sequences of 2 class T MADS-box genes from petunia. For the outgroup two rice
sequences were used. If FBP25 (the former) evolved faster than FBP13 (the latter) in a window, the Z-value is positive, and if the former evolved slower than the latter,
the Z-value becomes negative. The number in a parenthesis for each gene is the number of interacting protein partners given by Immink et al. (29). Horizontal lines
with ‘5%’ or ‘10%’ correspond to the cutoff Z-value of 1.96 or 1.65, respectively. The amino acid positions are given on the Z=0 line. M, I, K and C represent the M, I,
K and C domains. Window size (w) and skipping size (s) are 30 amino acids and one amino acid, respectively.

compared are usually closely related and the p-distance has a
smaller variance than any other distance measure. However,
if a pair of divergent sequences is to be tested (e.g.
p-distance > 0.3), the Poisson-correction or some other dis-
tance may be used (8). To identify the protein regions that
show a significant rate difference, we use a sliding window
analysis. Let n be the total number of amino acid (codon) sites
used and w be the window size (the number of amino acids
considered for one window). This window analysis may be
done by sliding the window by one amino acid position con-
secutively or by skipping s amino acid positions each time.
The total number of windows to be considered (T) is then
(n — w)ls + 1. Here, T should be an integer. For example, if
T happens to be 55.2, it should be reset to 55.

For each window, we now estimate the number of amino
acid substitutions @ and b for branch (sequence) A and B in
Figure 1b, respectively. The branch lengths a and b may be
estimated by the least squares method and are given by

a = (dap + dac—dgc)/2,

b = (dag + dsc—dac)/2,

where dap, dac, etc., are the observed distances between
sequences A and B, A and C, etc, respectively. We are now
interested in testing the significance level of the difference
a — b, that is,

D=6&-b.

The variance of this D can be obtained by the formula given
by Takezaki et al. (9). We can then consider

Z=D/\/V(D),

where V(D) is the variance of D. This Z is approximately norm-
ally distributed as long as w is about 30 or greater. Therefore,
the significance level can easily be determined. When w < 30,
the above Z is distributed as the ¢ distribution with (w — 1)
degrees of freedom (10). In reality, unless w = 30, the statistical
power of the window test is not very high. We therefore re-
commend that the window size is equal to or greater than 30.

It should be noted that in this sliding window analysis, the
Z-values obtained for consecutive windows are highly corre-
lated. Therefore, the significance levels of Z-values for con-
secutive window analyses may not be accurate. However, if
the Z-value for one of the windows is significant, one can take
it seriously. Furthermore, our purpose is to identify protein
regions that should be subjected to experimental tests. There-
fore, any consecutive windows showing significant Z-values
should be considered biologically important. Actually, for this
purpose, even a region showing Z-values with a significant
level of 10% may be considered for experimentation.

In the above method, we considered the case where each of
A, B and C contains only one sequence. However, the above
approach can easily be extended to the case where protein
sequences are classified into two groups, A and B, and the
average rate difference between the two groups of proteins
is studied. In this case, because the above test is a special case
of two-cluster method by Takezaki et al. (9), we can directly
apply the two-cluster method to test the rate difference
between the two groups for each window. The outgroup may
also contain many sequences. This is true even when A and B
contain one sequence each.

Another extension of the above method is to consider the
number of nonsynonymous nucleotide substitutions per non-
synonymous site (dy) (11) or the number of radical nucleotide
substitutions (substitutions causing the changes of amino acid
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charge, hydrophobicity and size) per site (12,13). At present,
however, it is unclear how useful these quantities are, because
they generate rather large variances.

Application to MADS-box genes controlling
flower development in plants

Floral MIKC-type MADS-box genes encode transcription fac-
tors that control flower development in plants. Major floral
MADS-box genes can be classified into at least eight classes
(14) in terms of their function and evolutionary relationships,
ie.A,B,C,D,E, F,G and T classes according to the simplified
notation in (15). Each of these classes of genes encodes a
protein consisting of the MADS (M) domain (DNA-binding
site with about 60 amino acids), intervening (I) domain (~30
amino acids), keratin-like (K) domain (~70 amino acids), and
C-terminal (C) domain (variable number of amino acids) (16)
(Figure 1c). The M domain is composed of DNA-binding o
helices, carries a nuclear localization signal and is involved in
dimerization of proteins together with the I domain (17,18).
The K domain mediates protein—protein interaction, whereas
the C domain possesses transcriptional activation function in
some MADS-box proteins (17,19-22) and might also be
involved in protein dimerization (23) or formation of multi-
meric complexes (24). Among these domains, the I and K
domains are most well known for determining the pattern
of homodimerization or heterodimerization of MADS-box
proteins. The K domain is involved in protein—protein inter-
action and is characterized by three strings of heptad repeats
(abcdefg), which are potentially forming coiled coils, with
hydrophobic amino acids predominantly in positions & and
d (22,25). The proteins encoded by different classes of floral
MADS-box genes interact with one another or with some other
proteins to form a particular organ. According to the floral
Quartet model, the formation of petals is controlled by a com-
bination of tetramers of class A, B and E proteins, and that of
stamens is by tetramers of class B, C and E proteins (19,26-28).
However, to explain the development of various forms of
flowers in different species, we have to know detailed aspects
of protein—protein interaction within each class of proteins. For
this reason, many experimentalists are now studying protein—
protein interaction by using techniques such as yeast two-
hybrid analysis, domain swapping and site-specific mutagenesis.

Immink et al. (29) studied the gene expression and protein—
protein interaction patterns of 23 floral MADS-box genes in
petunia using northern hybridization and yeast Cytotrap
experiments. They identified a number of MADS-box proteins
interacting with each other (see Figure 2). Their results
showed that even closely related MADS-box proteins often
have different numbers of protein interaction partners. This
suggests that there was some kind of functional differentiation
between these MADS-box proteins. We therefore decided to
apply our new statistical method for predicting protein regions
responsible for the functional differentiation using our Perl
script (see http://www.bio.psu.edu/People/Faculty/Nei/Lab/
software.htm). We first constructed a phylogenetic tree
for the 23 petunia MADS-box protein sequences together
with 22 rice and 23 Arabidopsis sequences. The rice and
Arabidopsis sequences were used to classify the petunia
sequences into the eight classes of genes mentioned above
and to find proper outgroup genes.
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Figure 2. Phylogenetic tree of 68 MIKC-type MADS-box genes from petunia,
Arabidopsis and rice. This tree was constructed by the neighbor-joining method
with p-distance. One hundred fifty one amino acids were used after removing all
alignment gaps. The number for each interior branch is the percent bootstrap
value (500 bootstraps). The bootstrap values <50% are not shown. The genes in
bold characters with gray shadows are from petunia, and ‘At’ and ‘Os’ indicate
Arabidopsis and rice genes, respectively. The numbers in parentheses refer
to the numbers of interacting protein partners in the yeast Cytotrap system
described in (29).
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Figure 2 shows the phylogenetic tree obtained by the
neighbor-joining method (30) for all 68 genes (see the Sup-
plementary Material for the sequence alignment). Parsimony
analysis (31) produced essentially the same tree (see the Sup-
plementary Material for the maximum-parsimony tree). The
topology of this tree for major gene classes is essentially the
same as that of our previous trees for floral MADS-box genes
(15,32), and the eight gene classes (A, B, C, D, ..., T) form
separate monophyletic classes, though class C and D genes
often form a mixed group and class B genes are decomposed
into three classes (Bs, B-AP3 and B-PI) in Figure 2. This
indicates that petunia also has all classes of genes (Figure 2).
The number of sequences for classes A, B-AP3, B-AP1, C, D,
E,F,Gand T were 3,2,2,2,2,5,4, 1 and 2, respectively. We
applied our statistical method for all gene pairs within each
gene class, testing 23 pairs of genes (see the Supplementary
Material for the 23 data sets). In this analysis, we considered
consecutive windows with s = 1 and w = 30. We used the
p-distance for this analysis. According to this analysis, 14 out
of the 23 pairs of genes studied contained protein regions
that showed at least one window with a Z-value exceeding
1.96 (5% level).

The results of our test for a pair of class T genes (FBP25 and
FBP13) are given in Figure lc. In this case, the rice gene
OsMADS47 and OsMADS54 were used as outgroups. The
Z-value line in this figure shows three peaks in which Z
exceeds the 5 and 10% (Z = 1.65) significance levels (one
each in the I, K and C domains). As mentioned earlier, the
I and K domains are important for homodimerization and
heterodimerization of MADS-box proteins, whereas the
C domain is involved in transcriptional activation in some
proteins. It is possible that all the three domains are involved
in the functional differentiation between FBP25 and FBP13.
It is also interesting to note that protein FBP13 is known to
have nine protein interaction partners, whereas protein FBP25
has no known interacting partners (29).

Figure 3 shows five more examples of our test in which Z
became significant at the 5% level. The results of this analysis
for a pair of class A genes (FBP29 and PFG) are presented
in Figure 3a. In this case, the K domain has two peaks in
which Z exceeds the 10% level. These peaks are located in
a 30 amino acids region of the K domain. Therefore, experi-
mentalists may focus on this region if they are interested in
finding functional differentiation. The C domain also has two
peaks of Z values which are significant at the 10% level.
Therefore, the C domain may also be tested for the possible
functional differentiation. In the other four examples given
in Figure 3, only the K domain appears to have diverged
significantly.

As mentioned above, there were eight more cases in which
our test gave positive results (see the Supplementary Material).
In most of these cases, the K domain again showed a Z-value
significant at the 5 or 10% level, though the M or I domain
occasionally showed a significant region.

DISCUSSION

In our statistical analysis, we implicitly assumed that different
amino acid sites have evolved independently. If there are
highly conserved regions or hyper-variable regions in the
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Figure 3. Five more cases in which significant rate differences were observed
at the 5% level. The outgroup sequences used for each analysis are as follows:
(a) OsMADS14/15/18, (b—d) OsMADS1/5/19 and (e) AGL20.

proteins studied, our test would not give accurate significance
levels, and the test will be too liberal or too conservative
depending on the data set. For example, if conserved protein
regions are studied, the test results may be too liberal because
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some amino acid sites may not have changed at all and
therefore the actual number of degrees of freedom may be
smaller than w — 1. In contrast, if a differentiated protein
region is longer than the window size, the test will be con-
servative because a test based on the entire protein region
would give a higher Z-value than the regular window test
due to the smaller sampling variance of D. However, since
our test is intended to identify approximate protein regions to
be tested biochemically, it does not need to be very accurate in
terms of the statistical significance.

It should be noted that the positive results of our test do not
necessarily mean that the identified regions are functionally
differentiated. Therefore, if the biochemical test to be used is
available, it is always recommended that both statistical and
biochemical tests should be conducted. It should also be noted
that our functional differentiation test is not necessarily related
to the positive Darwinian selection examined by the ratio of
the number of nonsynonymous nucleotide substitutions per
nonsynonymous site (dy) to the number of synonymous nuc-
leotide substitutions per synonymous site (ds). We are only
interested in the functional differentiation of duplicate genes
whether the dn/ds is higher than 1 or not. Actually, the func-
tional change of a gene may have been caused by a few amino
acid changes in the functionally important region or by many
substitutions in other regions. Here, ds is irrelevant under the
assumption that synonymous nucleotide substitutions are
neutral. Strictly speaking, this assumption is incorrect [e.g.
(33,34)], but for our purpose the violation of this assumption
is not important.

When we applied our method to floral MADS-box genes,
we found that the extent of the difference of evolutionary rate
is not necessarily correlated with the number of interacting
protein partners. This is different from some of the previous
observations that the extent of evolutionary rate differences is
sometimes negatively correlated with the number of protein
partners (35). This difference could be due to the fact that we
studied a specific protein group or may mean that our test does
not necessarily detect the region where functional differenti-
ation has occurred. These problems should be studied experi-
mentally in the future.

It is interesting to note that functional specificity of class A,
B and C genes in Arabidopsis is not determined by their DNA
binding domain (36). Therefore, I, K and C domains may be
critical for determining functional specificity of floral MADS-
box genes. In our study, the difference of evolutionary rate was
often observed in the K domain, while it was not observed as
often in the I and C domains. It has been proposed that internal
repeats of proteins give favorable conditions for evolutionary
change, because their functional constraint may change with
time (37). Therefore, the frequent observation of significant
rate differences in the K domain may be related to the presence
of heptad repeats, which can be subdivided into the K1, K2 and
K3 regions (25). Because the M, I and C domains also showed
significant rate differences in some pairs, it is possible that
these domains have also been subject to the functional differ-
entiation. If functional differentiation occurs in different
domains of a protein, the effect of such combinatorial differ-
entiation on the regulatory network may be more significant
than the case where only one domain is functionally differ-
entiated. Our method may be useful for studying this problem
as well.
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SUPPLEMENTARY MATERIAL
Supplementary Material is available at NAR Online.
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