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Abstract

Fluorescence microscopy and spectroscopy techniques are commonly used to investigate complex 

and interacting biological systems (e.g. proteins and nanoparticles in living cells), since these 

techniques can explore intracellular dynamics with high time resolution at the nanoscale. Here we 

extended one of the Image Correlation Spectroscopy (ICS) methods, i.e. the image Mean Square 

Displacement, in order to study 2-dimensional diffusive and flow motion in confined systems, 

whose driving speed is uniformly distributed in a variable angular range. Although these 

conditions are not deeply investigated in the current literature, they can be commonly found in the 

intracellular trafficking of nanocarriers, which diffuse in the cytoplasm and/or may move along the 

cytoskeleton in different directions. The proposed approach could reveal the underlying system’s 

symmetry using methods derived from fluorescence correlation concepts and could recover 

dynamic and geometric features which are commonly done by single particle analyses. 

Furthermore, it improves the characterization of low-speed flow motions, when compared to 

SpatioTemporal Image Correlation Spectroscopy (STICS). Although we present a specific 

example (lipoplexes in living cells), the emphasis is in the discussion of the method, its basic 

assumptions and its validation on numeric simulations.
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1. Introduction

One important task in biophysics concerns the characterization of motion of macromolecules 

in living cells. This task is generally carried out by means of fluorescence microscopy or 
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spectroscopy techniques and provides a fundamental approach to the study of dynamics and 

interactions at cellular and molecular levels. These methods explore a variety of biological 

processes involving membrane proteins [1–4], protein-protein interactions [5], nucleic acids, 

lateral structure of biological membranes [6], molecular diffusion and cytoplasmatic 

trafficking of nanoparticles (NPs) [7–9]. NPs offer unique possibilities for overcoming 

cellular barriers in order to improve the delivery of various drugs and gene nanomedicines. 

Characterizing the intracellular mode of motion of nanocarriers is rapidly emerging as a key 

issue in drug delivery. In this regard, Single Particle Tracking (SPT) represents the 

technique-of-choice [10–15], but it is extremely time consuming. On the other side, variants 

of Fluorescence Correlation Spectroscopy (FCS) provide techniques by which fluorescent 

labeled objects can be studied at high spatial and temporal resolution, without identifying 

single particles. In detail, FCS measures spontaneous intensity fluctuations caused by small 

deviations from thermal equilibrium [16, 17]. The analysis is commonly achieved by 

applying temporal correlation functions, which can be coupled to spatial information, for 

example by means of laser scanning techniques. Image Correlation Spectroscopy (ICS) 

operates on image stacks and globally refers to the ensemble of simultaneously detected 

NPs. Average values but not their distribution are obtained by ICS, but a great amount of 

data can be rapidly achieved due to its high statistics. Many ICS-based methods have been 

developed, such as Raster Image Correlation Spectroscopy (RICS) [18], Temporal and 

SpatioTemporal Image Correlation Spectroscopy (TICS and STICS respectively) [1, 7, 9], 

ν-space ICS [19], Particle Image Correlation Spectroscopy (PICS) [20], image Mean Square 

Displacement (iMSD) [2]. Each method has its own field of application such as dynamic 

processes ranging from diffusion of cytosolic proteins, slower processes such as the 

assembly and disassembly of large multiprotein complexes to determination of spatial maps 

of concentrations, aggregation, and dynamics in living cells. However, all of these methods 

have not specifically been designed to the study two-dimensional dynamical processes 

driven by flow terms, which are uniformly distributed within an angular range. These 

conditions are biologically relevant since they characterize NPs that, in turn, controls the 

efficiency of drug delivery.

To fulfill this gap, here we present an ICS-based method that arises from Spatio Temporal 

Image Correlation Spectroscopy (STICS) and image Mean Square Displacement (iMSD) 

and provides a degree of spatial symmetry. Specifically, we decoupled the average flow 

vector from the strength of the driving speed. These aspects become relevant whether a 

velocity map at the intracellular level is computed or the chemical and biological 

interactions at the nanoscale are investigated. Furthermore, the obtained results can be 

coupled to information arising from pair correlation-based techniques [21], that do not 

require spatial averaging, but detect boundaries of confinement zones and barriers to flow. 

We found that this extension of the correlation analysis over a 3-dimensional domain allows 

a correct NP’s motion characterization for low values of flow speed, under specific 

conditions of symmetry. This was an unexpected result, since in these regimes of NPs speed 

and motion symmetry, application of STICS-based techniques does result in incorrect 

categorization of the NPs mode of motion, leading to misleading interpretations. We mainly 

focused on the analytical method, which has been validated by numeric simulations 

illustrating and supporting our basic assumptions. Finally, a specific example of application 
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is given. It involves the analysis of cationic lipid/DNA nanoparticles (lipoplexes) in Chinese 

Hamster Ovary cells. To date, lipoplexes are considered to be the most promising class of 

organic nanoparticles for a wide variety of both in vitro and in vivo applications (e.g. cell 

transfection, gene silencing, gene therapy etc.). Therefore, a deeper insight on the 

intracellular dynamics of lipoplexes shall have a profound impact for the development of 

further lipid-based gene delivery materials.

2. Material and methods

2.1. Preparation of complexes and confocal microscopy experiments

The cationic lipid 3β-[N-(N,N-dimethylaminoethane)-carbamoyl]-cholesterol (DC-Chol) 

and the zwitterionic helper lipid dioleoylphosphatidylethanolamine (DOPE) were purchased 

from Avanti Polar Lipids (Alabaster, AL) and used without further purification. For the 

preparation of cationic liposomes, the binary lipid mixtures were first dissolved in 

chloroform and subsequently left to evaporate under vacuum for at least 24 h. The obtained 

lipid films were then hydrated with Nanopure water until a final concentration of 1 mg/ml. 

Sonication to clarity was needed to obtain unilamellar cationic liposomes. In order to form 

binary liposome/DNA complexes, 100 μl of phosphate buffered saline (PBS) were added to 

a 5 μl dispersion containing binary liposomes. The same amount of buffer was added to 1 μl 

of plasmid DNA (pDNA). The solutions were subsequently left to equilibrate for a few 

minutes. Then, the pDNA solution was poured in the liposome dispersion and after 20 

minutes the complexes were ready to use. CHO-K1 cells were purchased from American 

Type Culture Collection (CCL-61 ATCC) and were grown in Hams F12K medium 

supplemented with 10% of Fetal Bovine Serum (FBS) at 37°C and in 5% CO2. Confocal 

microscopy experiments were carried out using a Fluoview FV-1000 (Olympus, Tokyo, 

Japan) microscope, provided with a 543 nm HeNe laser, as excitation source. Data were 

collected at 37°C and were controlled by a proper acquisition software (FV10-ASW, 

Olympus, Tokyo, Japan). The experimental parameters have been chosen in order to explore 

the slow dynamics of liposome/DNA complexes in living cells. In detail, pixel size was set 

equal to 0.295 μm/pixel, pixel dwell time was equal to 10 μs/pixel, the distance in time 

between two subsequent frames was set equal to 5 s and takes into account the delay time 

arising from the scanner motion. Preliminary checks were carried out to evaluate the effect 

of non-moving particles. Immobile-population corrections have been carried out by adopting 

a custom made algorithm acting on the direct space of the acquired images. For the 

investigated systems, correlation analyses on filtered and not filtered images lead to identical 

results. Thus, it was not necessary to implement this kind of correction on the acquired 

movies. On the other hand a Fourier-filtering procedure introduced artifacts in the analyses. 

More precisely, the correlation Gaussian were found reduced in width and accompanied by 

two diametrically opposed depressions aligned with the flow direction. This behavior is 

expected when particles do not move more than a correlation radius over the time of 

acquisition of the entire image-series[1].

2.2. Numeric simulations and data analysis

In silico validations have been carried out by simulating image-stacks with tunable dynamic 

parameters (i.e. diffusion coefficient and strength, direction and angular distribution of flow 
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speed), total length, number and size of spot-like nanoparticles. First, a set of single particle 

tracks was generated according to the dynamic input arguments. Then, the trajectories were 

randomly distributed over a square domain, which corresponds to the image matrix. Finally, 

the obtained template was used to locate the Gaussian spots, frame by frame. All simulations 

and data analyses were performed off-line using a commercial software package (MATLAB 

7.13, The MathWorks Inc., Natick, MA, 2011).

3. Theory

The proposed model describes the effects of nanoparticle-cytoskeleton interactions as 

directed motions along manifold directions in a two-dimensional space. Due to the slow 

dynamics of interest, the approximation of a two-dimensional motion is often adopted to 

study the intracellular trafficking on nanoparticles. Of note, this approximation can be used 

only when particles do not move out of focus during the entire acquisition period. 3D 

investigation goes beyond the scope of the present work and will be addressed elsewhere. In 

a two-dimensional space, ordered fluxes of particles can be characterized by an average 

direction and an angular spread with respect to it. More precisely, we consider that the 

cytoplasmatic diffusive dynamics is affected by a driving speed of modulus v, uniformly 

distributed around a fixed direction ϕ0 within an angular range ψ (Fig. 1). In other words, 

the particle speed is spatially distributed as follows:

(1)

The square modulus of the driving speed is supposed to be constant and it can be expressed 

as

(2)

where v⃗ϕ is the vectorial average evaluated over the ensemble

(3)

and vσ represents the orthogonal component, of square modulus

(4)

More details are given in the Supplementary material. Finally, the following adimensional 

parameters can be defined and related to statistical moments of first and second order:

Digiacomo et al. Page 4

Acta Biomater. Author manuscript; available in PMC 2017 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(5)

(6)

These parameters quantify the relative weights of the speed’s components and verify the 

following relationship:

(7)

 and  arise from the ensemble of single particle behaviours and can be experimentally 

revealed as decoupled contributions to the spatiotemporal correlation function.

Image Correlation Spectroscopy (ICS)-based techniques focus on the correlation of 

fluorescence fluctuations, which are computed from the intensities recorded in the image 

time-series, pixel by pixel, frame by frame. In detail, a generalized spatiotemporal intensity 

fluctuation correlation function can be defined as

(8)

where ξ, η and τ represent two spatial and a temporal lag variables, respectively and δi(x, y, 

t) is the intensity fluctuation at pixel position (x, y) and time t, i.e. δi(x, y, t) = i(x, y, t)–〈i(x, 

y)〉t [1]. g(ξ, η, τ) is typically calculated by Fourier methods and fit to standard Gaussian 

functions. The spatial correlation at frame k can be evaluated from Eq. 8 by imposing a zero 

time-lag and can be fitted as follows:

(9)

Where G0(k), G∞(k) and ωk are scale factor, offset and variance of the fitting 2-dimensional 

Gaussian surface. Similarly, the temporal correlation function is defined by evaluating the 

generalized correlation function at zero spatial-lag and can be fitted by the following curve:

(10)
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where τd = ω/(4D) and τf = ω/v represent the characteristic diffusion decay time and flow 

time, respectively [1]. ω is the mean correlation radius, obtained by averaging the ωk-values, 

which have been measured by fitting Eq. 9 for every image in the stack. Particles undergoing 

Brownian diffusion tend to exit the correlation area in a symmetric fashion, thus broadening 

the Gaussian surface in any direction [7]: the peak is then centered at (ξ0, η0) = (0, 0) and its 

value decreases with time. Flow motion adds a drift contribution, leading to a peak’s shift in 

the opposite direction of particle motion, i.e. ϕ = ϕ0 + π. However, the fitting procedure on 

the temporal correlation function alone (Eq. 10) is directionally blind to the flow speed v⃗. 

Conversely, its extension over a spatiotemporal domain only measures the net resultant 

directed component [1]. Therefore, further arguments are needed to explore dynamics driven 

by spatially distributed flow terms.

In order to decouple the flow’s effects on the correlation function and take into account the 

symmetry properties arising from the angular distribution of the driving speed, we adopted 

and extended the image-Mean Square Displacement (iMSD) method. The theory of iMSD 

has been developed and validated for Brownian and confined diffusions to describe the 

protein lateral motion in cell membranes[2]. The theory starts from the following expression 

of g(ξ, η, τ):

(11)

where g0 defines the contrast of fluctuation and is related to the average number of particles 

in the observation volume, W(ξ, η) is known as the instrument Point Spread Function (PSF) 

and p(ξ, η, τ) is the probability function describing the dispersive dynamics. Its expression 

is strictly related to the single particle’s transition probability P(r⃗′| r⃗, τ), i.e. the probability 

that a particle originally at r⃗, will be at r⃗′ after a time period τ. For Brownian diffusion + 

directed motion it reads [14, 22]

(12)

The spatiotemporal correlation gives overall information about the entire set of the 

investigated particles. Thus, an ensemble average of the single particle behaviors should be 

carried out to take into account the spatial distribution of velocities. Under the considered 

conditions it can be expressed as

(13)

where G∞ is a constant offset value, G1(τ ) is a scale factor and the brackets represent an 

average over the set of particles, thus an angular average of the single particle contributions. 
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Its expression can be analytically obtained for ψ = 2π. At short timescale, e.g. for τ ≪ τf 

(further details can be found in the Supplementary material) it can be approximated by a 

Gaussian function, whose variance quadratically increases in time. Its generalization for 

arbitrary ψ-value leads to the following expression:

(14)

where the numerator describes the net directed component and the variance reads

(15)

Beyond the short timescale, an angular spread becomes manifest, the correlation function 

can not be approximated by a Gaussian function and the angular distribution of the velocity 

may introduce some non-linearities in the peak shift. This trend has been recently detected 

through transport-intermittent models to study motion of nanoparticles within intricate 

networks of active filaments [23]. However, at short timescale, the motion characterization 

can be carried out by fitting separately the peak’s position and the Gaussian variance, in 

order to measure D, v, v⃗ϕ = 〈v⃗〉 and . The latter parameters depend on the 

angular dispersion ψ (Fig. 2), since ψ defines the system’s geometrical properties. In other 

word, for ψ = 2π each single particle’s drift along a direction is balanced by the opposite 

one, thus displacements of particles from their starting positions are symmetrically 

distributed with respect to the origin. Hence aϕ = 0 and vσ = v. When 0 < ψ < 2π, a flow 

direction characterizes the dynamics and therefore a degree of anisotropy is introduced. The 

net flow strength and direction can be quantified by v⃗ϕ and the dispersion along the 

orthogonal direction can be measured by . Finally, when ψ = 0, the flow is directed along 

a single direction, the Gaussian variance has not a quadratic term and the peak’s shift 

uniquely quantifies the velocity of particles.

In conclusion, the flow speed can be viewed as composed by two complementary terms, i.e. 

 and , which can be related to the angular spread ψ by evaluating average and variance 

of the distribution 1. More precisely,

(16)

thus

Digiacomo et al. Page 7

Acta Biomater. Author manuscript; available in PMC 2017 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(17)

and  can be obtained as . At a fixed square modulus of the driving speed, the 

parabolic contribution to the Gaussian variance is proportional to  (Fig. 2). Incidentally, 

the effect of the Brownian diffusion over the measured parameters is a deviation from the 

functional relationship 17. The deviation is such that aϕ follows the trend of a specific single 

track asphericity. This is evaluated over the trajectory which is obtained by translating all the 

tracks of the ensemble, one after the other. The asphericity is an ensemble’s parameter 

arising from single particle analyses, it is defined from the gyration tensor of the particle 

trajectories [24, 25] and quantifies the mean square displacement of the particle positions 

along two orthogonal directions.

4. Results and discussion

4.1. Dynamic parameters and speed’s spatial distribution

In order to validate the proposed method, tests on numerical simulation have been carried 

out. In this section we present some representative examples mimicking the dynamics of 

nanoparticle inside the cytoplasm. They consist on image-stacks of length N = 300 frames, 

size 256×256 pixels, containing M = 50 spots undergoing Brownian diffusion (D = 0.75 

10−3 μm2 s−1) + flow motion (v = 1.5 10−2 μm s−1) and different angular dispersion (Fig 3). 

For low ψ-values (e.g. ψ = π/4, top panels) the shift of the fitting surface is manifest and it 

can be measured through the centroid’s position (ξ0(τ ), η0(τ )) (Fig. 3C). Conversely, the 

parabolic contribution of the Gaussian variance is very small (Fig. 3D). Finally, the 

autocorrelation function can be evaluated along a circumference of arbitrary radius ρ∞ 
(dashed line in Fig. 3A). This circular section (i.e. g(ρ∞, θ, τ)) is related to the angular 

distribution of the flow speed, presents a peak centered at θ = ϕ and it is sharper for 

decreasing values of ψ. On the other side, high ψ-values (e.g. ψ = 3π/2) yield lower shifts 

of the correlation function, corresponding to flatter angular distribution and remarkable 

quadratic contribution to the time evolution of σ2 (Fig. 3, bottom panels). The intermediate 

conditions can be explored by varying ψ (Fig. 4). As expected, high drift contribution 

corresponds to low quadratic terms in the variance curve, which approaches to linear trends 

for ψ → 0. On the other end, increasing ψ yields lower shifts and higher parabolic terms. 

Furthermore, g(ρ∞, θ, τ)) is centered at ϕ and the intercept of σ2(τ) is equal to ω2, for any 

ψ-value. Finally, we measured the parameter , the diffusion coefficient D and the flow 

speed v, as functions of ψ. A slight underestimation of  with respect to the ideal curve (D 
= 0) has been found. This trend is confirmed by the obtained values of the dynamic 

parameters, whose percentage deviations with respect to the input arguments are lower than 

15% for D and 5% for v. This underestimation is ascribable to the basic assumptions of the 

proposed method, i.e. the Gaussian approximation which has been adopted to describe a 

more general and complex problem (Supplementary material).
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4.2. Detection of low-speed flow motion

The lowest value of flow speed, which can be detected at a given diffusion coefficient, 

depends on the experimental set up (through ω, pixel size and total period of acquisition) 

and on the system itself (through D, v and ψ). As an instance, particles directed with small 

angular dispersion and low flow speed (with respect to the diffusion coefficient) yield a 

detectable drift at high τ, which can be out of the measurement range. Instead, if the 

symmetric contribution is dominant, the measurement of v is based on the parabolic term of 

σ2, which can be imperceptible within the observation time scale at a given ω. Under low-

speed conditions, i.e. for τf ≫ τd, the analysis of the correlation function over the (ξ, η)-

plane improves the STICS motion characterization. Indeed, finite values of ω can yield a 

negligible flow contribution to g(0, 0, τ), whose trend results indistinguishable from the 

diffusive one. On the other side, the iMSD approach detects flow effects on the Gaussian 

variance or the peak’s shift. Here we present a representative example Fig. (5), obtained by 

simulating dynamics mainly governed by Brownian diffusion and affected by a small speed 

term, for different angular dispersions. The focus is on the comparison of STICS and iMSD 

analyses under the same experimental and dynamic conditions. In the considered case, it is 

found that there exists a maximum critical angle ψc, such that STICS does not distinguish 

flow terms for ψ <ψc. However, the characterization of motion is successfully carried out 

trough iMSD, which discriminates the kind of dynamics for any ψ, even if the measured 

parameters are underestimated. The value of ψc can not be considered as a universal 

parameter, since it depends on the experimental setup (through ω, time lapse, maximum 

correlation period, pixel size) and the dynamics itself. Of note, no thresholds are needed to 

carry out the analysis. More precisely, all the diffusive trends are included in the general 

forms of the functional relationships and can be obtained from them if v → 0. The fitting 

computation is carried out through the general forms 10, 15 and yields redundant flow terms 

if the dynamic is driven only by diffusion. In other words, the obtained v-values are close to 

0 and the fitting error δ(v) are very high, thus resulting in δ(v)/v →∞. Instead, dynamics 

governed by Brownian diffusion + flow motion present finite values of v, δ(v)/v and higher 

fitting determination coefficient R2, with respect to the simple diffusive models.

The detection limits are therefore dictated only by the adopted experimental conditions and 

the investigated system. Indeed, the spatial average involved in the correlation ultimately 

determines the spatial resolution of the method and the minimum time delay of the 

experimental apparatus determines the behavior at very short time. Furthermore, the ability 

in discriminating Brownian diffusions from flows involves the correlation radius, which is 

related to the geometry of laser beam and the finite dimensions of spots. Therefore, although 

the discussion has been focused on slow dynamics mimicking the cytoplasmatic trafficking 

of nanoparticles, other biophysical systems can be studied through the proposed approach, 

with a preliminary optimization of the experimental and analytical parameters (i.e. minimum 

time delay, total length of image-stacks, maximum time-lag for correlation, pixel size, 

extension of the fitting domain).

4.3. Background’s effects

In the experiments the spatiotemporal correlation function is generally affected by changes 

of the overall background within the region of calculation, in which case it is difficult to 
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discriminate the contribution of particles. Here, we discuss the effects of slowly changing 

background on the measurement of the dynamic parameters. This argument is based on the 

analyses of simulations and the comparison of results obtained from STICS and iMSD 

approaches. In order to mimic the actual conditions of acquisition, a Gaussian noise of 

tunable strength and a sinusoid function of random phase and temporal period Tb are added 

to the simulated signals, pixel by pixel. Thus, the resulting image-stack contains moving 

spots over a varying background (Fig. 6 panels A and B). The proportion between the 

intensities of spots and background defines the signal-to-noise ratio and STICS iMSD the 

intensity distribution quantifies the number of pixels with intensity within the range (i, i+Δi). 
Common procedures of background removal act on the intensity distribution (Fig. 6C) and 

filter the signals which overcome a tunable threshold value. More precisely, zero intensity 

values were assigned to pixels whose intensity do not overcame a certain tunable threshold. 

The threshold was properly set in order to efficiently remove the background without 

remarkably affect the tails of the spot-like particles. The temporal correlation function is 

affected by the background (Fig. 6D), since it varies over times and modulates the 

correlation at zero spatial-lag. The oscillations of g(0, 0, τ) depend on Tb and alter the 

measurements of the dynamic parameters. However, the effect is reduced when the 

background is removed from the original image-stack (Fig. 6E). On the other side, the 

background changes with no spatial periodicity and its fluctuation weakly affects the 

correlation over the entire (ξ, η)-plane. Subsequently, the peak’s shift (not shown) and the 

time evolution of the Gaussian variance (Fig. 6F) provide better estimations of the dynamic 

parameters. Of note, the background removal is necessary to the STICS analysis (further 

details are given in Supplementary material), but slightly improves iMSD measurements. 

Thus, the iMSD method is more stable and less sensitive to slowly changing background and 

its fluctuations. As an instance, we found this general trend for different value of Tb, at a 

fixed signal-to-noise ratio of SNR=8.5. Tab. 1 shows the results obtained through STICS and 

iMSD analyses on filtered images. The dynamics is driven by D = 10−3 μm2s−1, v = 1.5 10−2 

μm s−1, at an angular dispersion ψ = π.

4.4. Velocity map of lipid-based nanocarriers in living cells

As an example of application of the proposed method, we present the analysis of an image-

stack exploring the intracellular dynamics of lipid/DNA complexes in Chinese Hamster 

Ovary (CHO) cells (Fig. 7A). In the proposed example, the pixel size is equal to 0.295 μm 

and the frame acquisition time is Δt = 5s (due to the slow dynamics of the complexes). The 

computation of the correlation function and the characterization of motion were carried out 

over the entire 256 × 256 pixels image and on three regions of interest (ROIs) of 128 × 128 

pixels (Fig. 7B), without implementing corrections for non-moving particles (further details 

are given in ”Materials and methods”). The speed’s contributions (vϕ and vσ) are 

independently calculated by fitting the peak’s shift (ξ0(τ ), η0(τ )) and the Gaussian variance 

σ2 (Fig. 7 panels C, D). Thus, a velocity map is obtained, in terms of speed modulus (〈| v⃗|〉) 
and average drift (v⃗ϕ = 〈v⃗〉). The analysis over the 256 × 256 pixels image does not reveal a 

peak’s shift ( ), but detects a parabolic trend of σ2. Therefore, the dynamics is 

characterized by flowing particles with symmetrically distributed velocities and both the 

diffusion coefficient and the flow speed are measured by fitting σ2(τ ). Conversely, uniform 
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motions of the correlation peaks are detected for ROI a and ROI b. However, no quadratic 

terms affect the Gaussian variances, thus resulting in . The corresponding 

dynamics are governed by Brownian diffusion + flow motion with negligible angular 

dispersion and differ for the values of D and v (Tab. 2). ROI c represents an intermediate 

condition: a small drift and a remarkable quadratic term are detected. Subsequently, both the 

anisotropic and the symmetric contributions are included to characterize the motion and 

measure the dynamic parameters. Tab. 2 summarizes the results. Incidentally, the 

information arising from the decoupled flow terms provides a deeper understanding, which 

can not be in general obtained by the STICS method. Furthermore, the iMSD approach is 

closer to the single particle analyses, since it explores both the strength of the dynamic 

parameters and the geometrical features of the investigated systems.

5. Conclusions

Through Image Correlation Spectroscopy, dynamic information about the investigated 

systems can be obtained by directly analyzing image time series and without exploring 

single particle behaviors. Diffusion coefficients and flow speeds are measured by fitting 

procedure, acting on the spatiotemporal correlation function and defined over a domain 

which is included in the 3-dimensional lag-variable space. The iMSD approach allowed us 

to determine the system’s dynamic parameters and recover geometrical features about 

particles undergoing Brownian diffusion and flow motion, uniformly distributed within an 

angular range. This condition is a good approximation of the intracellular dynamics of gene 

delivery vectors, which generally diffuse in the cytoplasm and can be directed along 

microtubules, i.e. along manifold and different directions. By decoupling the speed spatial 

distribution’s effects on the detected intensity fluctuations, symmetry properties and average 

particle drift can be evaluated. These are strictly interconnected and represent the global 

information arising from the motion of single particles. More precisely, if we are interested 

on the average particle behavior (e.g. to compute a velocity map), only the peak’s drift 

should be take into account. Instead, biochemical properties which are responsible for the 

flow motion (e.g. the nanoparticle chemical affinity with the cytoskeleton), do not depend on 

specific directions and can be studied through the modulus of the flow speed. Furthermore, 

this method improves the motion characterization, especially when the diffusive contribution 

is dominant with respect to the flow. Indeed, when compared to the STICS approach, the 

study of the correlation function over the entire spatial lag-variable domain better 

characterize low-speed flow motion (under reasonable experimental conditions). Finally, 

stability in the measurement procedure and low sensitivity to slowly changing background 

have been demonstrated, resulting in good discrimination of the contribution of particles 

under realistic experimental conditions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A, B, C) Sets of 50 tracks and (D, E, F) corresponding average displacements from the 

origin, for dynamics driven by Brownian diffusion + uniformly distributed flow motion (D = 

0.75 10−3 μm2 s−1; v = 1.5 10−2 μm s−1; ϕ0 = π/4 and ψA = π/6, ψB = π, ψC = 3π/2).
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Figure 2. 

(A)  as function of ψ for strongly directed motion and diffusive + flow motion (D = 0.75 

10−3 μm2 s−1; v = 0.5 10−2 μm s−1). The solid line represents the expected curve obtained 

from Eq. 15, the dashed lines takes into account the Brownian diffusion. (B) Corresponding 

Gaussian variance for three different ψ-values.
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Figure 3. 
iMSD analysis of two representative conditions with same dynamic parameters (D = 0.75 

10−3 μm2 s−1; v = 1.5 10−2 μm s−1; ϕ = −π/6) and different angular dispersions ψ1 = π/4 

(top panels), ψ2 = 3π/2 (bottom panels). (A, G) Top view and (B, H) 3D view of the 

correlation function, (C, I) peak’s position as function of time (”×” for ξ0(τ), ”+” for η0(τ)), 

(D, J) time evolution of σ2 from τ = 0 to τ = τm = 30 s and (E, F, K, L) circular sections 

g(ρ∞, θ, τ), g(ρ∞, θ, τm) for ρ∞ = ω.
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Figure 4. 
(A) Circular section of the correlation function at ρ∞ = ω, τ = τm, for dynamics driven by 

same flow speed v and different angular dispersions ψ. Remarkable drift’s effects are 

manifest for low ψ-values. (B) Corresponding time evolution of σ2, The parabolic 

contribution increases with ψ, complementarily to the peak’s shift. The black error bar 

shows the square correlation radius, obtained through Eq. 9. (C) output values of  and (D) 

relative differences from the input values of the dynamic parameters, as functions of ψ. 

Input arguments: D = 0.75 10−3 μm2 s−1; v = 1.5 10−2 μm s−1; ϕ = −π/6.
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Figure 5. 
Output values of (A) diffusion coefficient and (B) flow speed as functions of ψ, obtained 

from STICS and iMSD. The vertical lines individuate ψc, the input parameters are shown as 

horizontal red and blue lines, respectively for D = 1.5 10−3 μm2 s−1 and v = 0.5 10−2 μm s−1.
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Figure 6. 
(A) First frame of a simulated image-stack affected by slowly changing background. (B) 

Background intensity as a function of time: a Gaussian noise is added to a modulating 

sinusoid function of period Tb. (C) Intensity distribution over the image-stack, adopted to set 

the background filter. (D) Effects of background on the temporal correlation function and 

(E) corresponding curves after the filtering procedure. (F) Background’s effect on the 

Gaussian variance (Tb = 30 s). The presented dynamics is characterized by the following 

input parameters: D = 10−3 μm2 s−1; v = 1.5 10−2 μm s−1; ψ = π; ϕ = π/6.
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Figure 7. 
(A) fluorescence-labeled cationic liposomes/DNA complexes in CHO cells. (B) Velocity 

maps over the entire image (yellow) and on single ROIs (cyan). The arrows indicate 

direction and modulus of the drift’s speed v⃗ϕ and the circumferences have radius 

proportional to the speed modulus v. Origin of flow vectors are placed on the corresponding 

image center of mass. iMSD results are reported as peak’s shift (C) and time evolution of 

Gaussian variance (D). Both anisotropic and symmetric terms contribute to the 

characterization of motion.
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Table 1

Results of STICS and iMSD analyses after the background removal. Results are shown as percentage 

differences from the input data.

Tb(s)

STICS iMSD

ΔD (%) Δv (%) ΔD (%) Δv (%)

1 17.7 −8.18 −6.80 −7.75

5 47.2 11.1 −6.89 −7.75

10 39.8 −2.75 −6.91 −7.75

15 37.0 −11.9 −6.60 −7.81

20 20.4 −7.93 −9.21 −7.75

30 71.3 −17.0 −6.12 −7.81

60 55.1 −2.43 −6.10 −6.07
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Table 2

Measurement of the dynamic parameters which define the velocity map of the presented example.

D (10−3μm2s−1) v (10−3μm s−1) ϕ0 (rad)  (a.u.)

256×256 pixels 1.06 ± 0.16 4.64 ± 0.15 - 1.00

ROI a 1.05 ± 0.23 1.27 ± 0.04 0.10 0.00

ROI b 0.60 ± 0.26 6.30 ± 0.11 −0.55 0.00

ROI c 1.16 ± 0.11 6.86 ± 0.37 2.36 0.89
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