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Abstract

Cyclin-dependent kinases (CDKs) are vital in regulating cell cycle progression, and, thus, in 

highly proliferating tumor cells CDK inhibitors are gaining interest as potential anticancer agents. 

Clonogenic assay experiments are frequently used to determine drug efficacy against the survival 

and proliferation of cancer cells. While the anticancer mechanisms of drugs are usually described 

at the intracellular single-cell level, the experimental measurements are sampled from the entire 

cancer cell population. This approach may lead to discrepancies between the experimental 

observations and theoretical explanations of anticipated drug mechanisms. To determine how 

individual cell responses to drugs that inhibit CDKs affect the growth of cancer cell populations, 

we developed a spatially explicit hybrid agent-based model. In this model, each cell is equipped 

with internal cell cycle regulation mechanisms, but it is also able to interact physically with its 

neighbors. We model cell cycle progression, focusing on the G1 and G2/M cell cycle checkpoints, 

as well as on related essential components, such as CDK1, CDK2, cell size, and DNA damage. We 

present detailed studies of how the emergent properties (e.g., cluster formation) of an entire cell 

population depend on altered physical and physiological parameters. We analyze the effects of 

CDK1 and CKD2 inhibitors on population growth, time-dependent changes in cell cycle 

distributions, and the dynamic evolution of spatial cell patterns. We show that cell cycle inhibitors 

that cause cell arrest at different cell cycle phases are not necessarily synergistically super-

additive. Finally, we demonstrate that the physical aspects of cell population growth, such as the 

formation of tight cell clusters versus dispersed colonies, alter the efficacy of cell cycle inhibitors, 

both in 2D and 3D simulations. This finding may have implications for interpreting the treatment 

efficacy results of in vitro experiments, in which treatment is applied before the cells can grow to 
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produce clusters, especially because in vivo tumors, in contrast, form large masses before they are 

detected and treated.
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1. Introduction

One of the hallmarks of cancer is uncontrolled proliferation, a consequence of loss of control 

over the normal cell cycle [1]. The mammalian cell cycle is a sequence of complex processes 

that ensures the faithful replication of DNA and the equal division of identical chromosomal 

copies between two daughter cells. The sequence of these processes is tightly regulated, 

thereby guaranteeing that the initiation of later events (such as physical cell division) is 

preceded by the completion of earlier events (such as cell organelle duplication or DNA 

synthesis). The cell cycle is usually divided into four general phases: G1 (gap phase), in 

which a cell increases in size and duplicates its organelles; S (synthesis phase), during which 

DNA is replicated; and G2 (gap phase), which involves cell preparation for chromosome 

separation and physical division into two offspring cells in the M (mitosis) phase. The 

successful completion of the cell cycle necessitates that these separate phases take place at 

the right sequence and at the right time. If a cell attempts mitotic division before its 

chromosomes have been fully replicated, the daughter cells will inherit incomplete DNA. 

Conversely, if the cell undergoes several rounds of DNA replication between mitoses, it will 

contain multiple copies of chromosomes. Moreover, a cell requires a sufficient interval 

between two consecutive cell divisions for it to double its mass and organelles; unless such a 

condition is satisfied, daughter cells become progressively smaller. In all of these cases, the 

emerging cell subpopulation loses its normal characteristics, and may acquire genomic or 

chromosomal instability [2].

Among the mechanisms that cells have developed to ensure the appropriate completion of 

the cell cycle are cell cycle checkpoints. These can actively halt progression through the 

cycle until the critical events of a particular cell cycle phase are finalized. These checkpoints 

can also respond to cell DNA damage by arresting the cell cycle, thereby providing time for 

DNA repair. Several cell cycle checkpoints respond to specific forms of stress, and impose 

arrest at specific points in the cell cycle [3]. For example, a checkpoint in the G1 phase 

ensures that a cell reaches an adequate size before it enters the S phase; small cells in a cell 

culture remain longer in the G1 phase, a behavior that enables the cells to continue growing 

[4]. The G2 checkpoint suspends the cell cycle if extensive DNA repair is required before a 

cell can initiate mitosis [5]. The specific checkpoint in the M phase, called the spindle 

assembly checkpoint, can delay the cell cycle to avoid the erroneous segregation of 

chromosomes [6,7].

Cyclin-dependent kinases (CDKs), a family of protein kinases, are critical regulators of cell 

cycle progression [2,8]. The activity of CDKs is modulated by several cyclins and functional 

inhibitors (e.g., Ink4, Cip, and Kip) [9]. Among the 13 CDKs expressed in human cells, 
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CDK2, CKD4, and CKD6 are involved in the interphase, and CDK1 is involved in mitosis 

[2]. The cyclins associated with particular CDKs activate CDK catalytic abilities, and 

together are responsible for passing through the cell cycle checkpoints. Tumor-associated 

mutations frequently deregulate certain CDK-cyclin complexes, resulting in either continued 

proliferation or unscheduled reentry into the cell cycle [10]. This opens up possibilities for 

CDK inhibitors as relevant drug candidates for cancer therapy [10,11,12,13]. The selective 

inhibition of CDKs may limit the progression of a tumor cell through the cell cycle and 

facilitate the induction of an apoptotic pathway. Specific CDK-cyclin complexes that are 

modulated by CDK inhibitors may also be responsible for maintaining a quiescent state in 

different cell populations [2].

This paper focuses on two CDKs—CDK1 and CDK2—each involved in the control of cell 

cycle checkpoints. During the G1 phase, CDK2 forms a complex with the E-type cyclins (E1 

and E2) that enables transition from the G1 to the S phase [9]. The CDK2-cyclin E complex 

can also prevent cells from passing the G1 checkpoint if it is diminished [14,15]. Upon 

entering into S phase, the E-type cyclins are gradually replaced by A-type cyclins (A1 and 

A2) that form complexes with CDK2 and enable progression through the S phase until the 

A-type cyclins start forming complexes with CDK1, which allows the cell to move to the G2 

phase [9]. However, passage through the G2-phase checkpoint is also controlled by the 

phosphorylation and dephosphorylation of CDK1 via WEE1 and CDC25 [16,17]. Moreover, 

CDK1 stimulates the mechanism for repairing DNA double-stranded breaks [18], which 

enables the cells to reduce their DNA damage before entering into M phase. In the G2 phase 

the A-type cyclins are replaced by the B-type cyclins (B1 and B2), and the CDK1-cyclin B 

complexes are responsible for the transition from G2 to M phase (compare Fig. 8.12 in [9]).

We model the CDK-regulated cell cycle in individual cells in a simplified way. We do not 

consider separate cyclins, but do model the CDK-cyclin complexes together, as well as the 

total amounts of both CDKs, because our main goal is to investigate the influence of CDK1 

and/or CDK2 inhibition on cell population behavior. There are more detailed models of 

CDK-cyclin kinetics [19,20,21]; however, they do not consider spatial interactions between 

cells in large populations, as we do in this paper. Therefore, to build a model that 

incorporates both intracellular and intercellular aspects of the cell-cycle control, we use a 

single-cell-based off-lattice hybrid model in which each cell is equipped with an individually 

regulated cell cycle, but the cells can interact physically with one another. To our knowledge, 

only the model developed by Powathil et al. [22,23] addresses both these aspects. However, 

our model uses a different mathematical framework to model individual cell dynamics and 

focuses on different components of the cell-cycle regulation mechanisms. In this paper, we 

discuss mainly the 2D version of our model as an analogue of an experimental clonogenic 

assay, and the simulated results may be compared to those derived from typical 2D in vitro 

experiments, as we show in Section 4.

The clonogenic survival assay is an in vitro experimental technique that can be used for 

verifying whether a potential anticancer agent has therapeutic effects. It is used to evaluate 

whether tumor cells can sustain indefinite proliferation and thereby form multicellular 

clones [24,25]. In this experimental setting, cells are cultured on 2D plates in a medium that 

contains the nutrients necessary for cell growth and survival. A constant concentration of the 
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anticancer agent is added to the culture (the medium is changed periodically to keep 

conditions uniform). After a specific period, the cells are fixed, often stained, or counted. 

The results are usually reported after normalization using the cell number of the nontreated 

(control) cell culture. The findings may also be interpreted as cell growth inhibition relative 

to the growth of control cells. A similar protocol is used in our computational model, but for 

simplicity, we model only a small but representative part of an entire plate, which is 

typically visible under a microscope.

2. Model

We use an off-lattice hybrid model of growing cell colonies. In its 2D version, the model is a 

computational analogue of in vitro clonogenic assays [26,27], whereas the 3D version of the 

model is an analogue of a typical multicellular spheroid culture [28,29]. We model cells as 

individual entities: each equipped with an individually regulated cell cycle, individually 

controlled cell size, cell migration, cell–cell interactions, and individually defined cell 

response to environmental cues including the drugs inhibiting CDKs. These conditions 

enable us to investigate the emergent properties of an entire cell population. We incorporate 

sufficient morphological and physiological details about a single cell in the model to 

compare the model results with experimental data, but the cell representation is simple 

enough; thus, we can simulate the behavior of thousands (or more) of cells under a 

reasonable computational time. Each cell is mathematically represented by a disk and 

specified by a pair of variables (x, a), where x is the center of the disk and represents the 

physical location of a cell, and a is the cell radius (the reference cell radius is a0 = 5 μm). 

Both of them can dynamically adapt during the simulation. Cell location changes during cell 

movement, and cell radius changes during cell growth or shrinkage. Simultaneous 

consideration of both these variables is necessary to impose the volume exclusivity condition 

between cells. This is critical because cells compete for limited space during colony 

expansion. Each in silico cell is equipped with an individual cell cycle control mechanism 

that is defined by a set of ordinary differential equations. These features enable us to trace 

the cell progression through cell cycle phases, and to determine the roles of specific 

molecules (CDK1 and CDK2) in cell cycle control. We first describe the cell cycle control 

model, and then the mechanics of individual cell growth and migration, which are crucial to 

the development of tumor cell colonies under CDK inhibition. The pseudo-code of the fully 

integrated algorithm of cell cycle regulation, growth, migration, and cell–cell interactions is 

presented in Table 1.

2.1 Cell cycle regulation

Cell cycle regulation and control mechanisms are biologically complex and comprise many 

interconnected components. In this paper, we focus on cell cycle checkpoints and the roles 

of CDK1 and CDK2 in cell cycle regulation. Both kinases form complexes with the 

appropriate cyclins that are crucial in facilitating passage through cell cycle checkpoints. 

During the G1 phase, the newly born cell needs to first increase its volume and the amounts 

of all proteins necessary to survive and progress through the cell cycle. Two factors, cell size 

and the amount of CDK2-cyclin E complexes, determine whether a cell is ready to pass the 

G1 checkpoint and move on to the S phase. CDK2 can be inhibited from forming this 
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complex, which may prolong the G1 phase indefinitely; we regard this phenomenon as G1 

arrest. For the cells that pass the G1 checkpoint, CDK1 stimulates DNA repair (by the 

homologous recombination discussed below) and, when inhibited, significantly slows down 

the DNA repair process in the S and G2 phases. CDK1 also undergoes phosphorylation by 

the nuclear kinase WEE1 (at Tyr15 of CDK1) that is affected by the levels of DNA damage. 

The increased phosphorylated CDK1 prevents a cell from passing the G2/M checkpoint. The 

cell then stays in the G2 phase, which allows for DNA repair and, in turn, diminishes the 

amount of phosphorylated CDK1. Both the inhibited and phosphorylated CDK1s are subsets 

of CDK1, and they are not mutually exclusive. Some of the DNA repair processes are cell 

cycle specific; such processes include the homologous recombination (HR, amending 

double-stranded DNA breaks by using similar or identical molecules of DNA as templates) 

that is more pronounced in the S and G2 phases and the nonhomologous end-joining 

(connecting open ends in double-stranded DNA breaks without any template) that is active 

mostly in the G1 phase [30]. The other mechanisms of DNA repair that are active throughout 

the entire cell cycle are base excision repair, which fixes small, nonhelix–distorting base 

lesions by removing damage bases, and nucleotide excision repair, which restores bulky 

helix-distorting lesions by scanning through damage regions [30,31]. We also recognize the 

importance of spatial interactions between cells, especially cell volume exclusivity; thus, we 

trace the size of each cell (cell radius) during all the phases of the cell cycle.

The full list of model variables is listed in Table 2, the governing equations in Table 3, and 

the model parameters and their values in Table 4. Some of these equations are phase 

independent because the underlying kinetics occur throughout the entire cell cycle, and the 

others take different forms in different cell cycle phases because they describe phase-specific 

mechanisms. However, all of the equations are written in Table 2 in a unified format. Since 

the newly born cell upon division of the mother cell inherits half of its mass and protein 

contents, the total amounts of CDK1, CDK2, and WEE1 need to be increased during the G1 

phase for the cell to function properly. We follow a simple kinetics of protein production and 

degradation where the total amount of each protein is normalized to 1 (Eqs. (1–3)), and the 

rCDK1, rCDK2, and rWEE1 denote the net increase rate (arising from combining both 

production and degradation rates) for CDK1, CDK2 and WEE1, respectively. Similarly, by 

combining the forward and reverse reaction rates and normalizing the total amounts of CDK 

inhibitors, their kinetics is described by Eqs. (4–5) with the net increase rates rCDK1i and 

rCDK2i, respectively. The kinetics of the CDK2-cyclin E complex formation in the G1 phase 

is controlled by the amount of uninhibited CDK2 (i.e. NCDK2 – NCDK2i) with net increase 

rate rCDK2E (Eq. (6)), since cyclin E is abundant during the G1 phase (compare [9] Fig. 8.10 

and [19] Fig. 2). CDK2-cyclin E complex become degraded after the cell passes the G1 

phase since CDK2 starts forming other complexes important for the cell-cycle progression. 

Thus, the CDK2-cyclin E complex is gradually diminished to zero after the G1 phase, which 

is represented in Eq. (6) as an appropriate decay term activated after the G1 phase. The 

mathematical form of this decay term is not crucial for our model as long as it depletes 

CDK2-E before the cell division.

During the S phase, the cell needs to double its DNA content, which we denote by the DNA 

replication index P. Thus P will increase from 1 (the initial DNA contents) to 2 (the original 

DNA and its copy) with a constant increase rate rp (Eq. (7)). This approach reflects the 
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dynamics of DNA replication, which occurs simultaneously at multiple locations of 

replication origins [3], and, as the replication process is being completed, the number of 

active replication origins gradually reduces [32]. Since the cell DNA is constantly exposed 

to chemical products of various metabolic reactions that can cause DNA damage ([9] reports 

as many as 10,000 genome modifications in a single cell each day, that are removed by a 

highly effective DNA repair system), we introduce a variable Q as a DNA damage index that 

represents the cumulative effect of DNA damage and repair. Its dynamics (Eq. (8)) depend 

on the cell cycle phase and, in the S phase, on the stage of DNA replication. To consider this, 

we first decompose P into Pc, which represents the already duplicated DNA and Po, which is 

the part of the DNA to be duplicated (Pc is equal to zero during the G1 phase). The rates of 

DNA damage in Po and Pc are denoted by rbd and rcd, respectively. We assume that rcd is 

higher because, first, if the region to be duplicated is already damaged then the resultant 

copies also preserve or inherit this damage; second, DNA replication is a stressful process 

that causes additional damage to DNA [33]. We include three categories of DNA repair 

mechanisms in the model. The phase-independent mechanisms, such as base excision repair 

and nucleotide excision repair, take place throughout the cell cycle and are represented by 

background repair rate rbr. The two phase-specific mechanisms are nonhomologous end-

joining, which is more active in the G1 phase (repair rate rn), and HR, which is more 

pronounced in the S and G2 phases (repair rate rh). We capture this phase specificity in the 

model by applying suppression multiplier ksp and cell cycle specificity function CST (where 

T denotes the cell cycle phase, Eq. (10)) to rh or rn, depending on the current cell cycle 

phase. To implement the stimulus from CDK1 to HR, we multiply the HR rate by the 

amount of uninhibited CDK1. Non-phosphorylated CDK1 (i.e., NCDK1 – NCDK1y) turns into 

phosphorylated CDK1 (NCDK1y) and the rate of change in phosphorylated CDK1 (NCDK1y) 

is proportional to the DNA damage index and the amount of WEE1 [12,30], with 

proportionality constant rCDK1y. The phosphorylated CDK1 is degraded during the G2 

phase, when DNA damage rapidly decreases. We indicate this occurrence in Eq. (9) by using 

cell cycle specificity function CSG2 and degradation rate dCDK1y.

In addition to the changes in the amount of intracellular proteins, cell size increases during 

the cell cycle; such increase plays a crucial role in enabling passage through the cell cycle 

checkpoint and in regulating the cell cycle. The increase of cell size follows Eq. (11) when 

no physical interactions occur between cells. However, given that we are interested in 

studying the effects of physical constraints on cell cycle progression, additional laws and 

equations are necessary to capture cell–cell interactions and volume exclusivity. These are 

described in detail in the next section.

Progression from one phase of the cell cycle to the next is regulated by a series of 

checkpoints that are implemented using the threshold values of certain variables for each 

specific phase (Figure 1). They have been chosen such that the duration of each cell cycle 

phase is within the durations of the G1, S, and G2/M phases reported for many mammalian 

cells [3,9,27,34]. The G1 phase is completed when cell size a and the amount of CDK2-

cyclin E (CDK2-E) complexes are higher than the prescribed threshold values. Both 

thresholds and the rate constants in the related equations are chosen, so that the duration of 

the G1 phase is 12 hours under the absence of both CDK2 inhibition and space competition 

among cells. Under CDK2 inhibition, however, the amount of CDK2-E increases more 
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slowly, thereby prolonging the duration of the G1 phase. If cell size remains below the 

threshold because of spatial limitations, a cell may be prevented from passing the G1 

checkpoint. Either of these cases may lead to an indefinite duration of the G1 phase (called 

G1 arrest). The S phase takes about 10 hours and ends when cell DNA is doubled. We model 

this phenomenon by choosing a threshold value of two for DNA replication index P and an 

appropriate DNA replication rate. The G2/M checkpoint is controlled by two threshold 

values (Figure 1) that should be reached in sequence. A cell will remain in the G2 phase 

until the amount of phosphorylated CDK1 reaches a level smaller than the prescribed 

threshold. This period is used for repairing damaged DNA; such repair, in turn, reduces the 

amount of phosphorylated CDK1. Once the first threshold is reached, the cell DNA damage 

index is immediately probed, and if this index is below the threshold, the mother cell will 

divide. If the DNA damage index is too high, a cell will undergo arrest in the G2/M phase. 

When no inhibitors are present and the cell can successfully divide, the span of the G2/M 

phase, typically 2 hours, is determined by the amount of phosphorylated CDK1 at the 

entrance to this phase. When CDK1 is inhibited from stimulating HR, however, the DNA 

damage index may remain at a level too high to enable successful passage through the 

second G2/M threshold. Moreover, if WEE1 is inhibited or its production is suppressed, the 

cell may enter the G2 phase with a diminished phosphorylated CDK1 that will result in 

shorter time for DNA repair. During cell division, all proteins are split equally between two 

daughter cells, except for CDK2-E, which has already been diminished such that its amount 

in each daughter cell is zero. Cell age is also reset to zero upon cell division. Certain tumor 

cells and embryonic cells may have much shorter doubling times, and we show in Section 4 

how our model can be tuned to match the doubling time for a particular cell line.

When enough space is available for cells to grow and when neither CDKs is inhibited, all 

intracellular proteins show cyclic behavior in every cell cycle, and all cells divide at about 24 

hours of age. The evolution of the selected model variables over four consecutive cell cycles 

is shown in Figure 2. CDK2-E increases steadily and reaches the threshold level in G1 phase 

(red) and starts decay as soon as the cell enters the S phase (green). The majority of cell 

growth (a) is completed in the G1 phase because reaching a certain cell size is one of the 

conditions for passing the G1 checkpoint; however, a slight increase in cell size may occur 

during the other phases. P stays constant during the G1 phase and doubles in the S phase 

(green) in order to pass the S checkpoint. The main condition for cell division is the 

reduction of a cell's Q index to a level below the threshold value before the cell enters the M 

phase. The Q level is low after cell division and increases slightly in the G1 phase, but 

quickly stabilizes because, in this phase, P is constant but NCdk1 doubles. Q increases again 

in the S phase, in which DNA is duplicated and damaged with higher rates (rbd and rcd). 

During the G2 phase, Q rapidly decreases (blue) and reaches its threshold, but continues to 

decline because the duration of the G2 phase depends on whether the phosphorylated CDK1 

falls below its threshold value. NCDK1y steadily rises during the S phase with increasing 

level of Q; in the G2 phase, NCDK1y rapidly decreases with Q and due to its own 

degradation. Both Q and NCDK1y fall below their thresholds, and the G2/M phase ends with 

cell division. The CDK1, CDK2, and WEE1 almost reach their saturation levels during the 

G1 phase (red) and then change only minimally during the rest of the cell cycle. The four 

discontinuity points in the graphs in Figure 2 represent the times of cell division.
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2.2 Cell growth and migration

All cells, regardless of whether they are cultured in vitro or grown in vivo, inevitably interact 

with neighboring cells and with the environment. We recognize the importance of such 

spatial interactions and introduce repulsive forces between nearby cells as a mechanism for 

maintaining cell volume exclusivity. This mechanism prevents cell overlap during growth 

and migration. Among the cell physical properties included in our model are cell position, 

cell radius, repulsive forces between neighboring cells (identified by the nearest neighbor 

search), orientation of cell division, and direction and speed of cell migration. Figure 3A 

shows a small cluster of cells, together with the identified neighborhood relationship and 

selected physical properties.

The cell size growth equation (Eq. (11)) describes a linear increase in cell radius at a 

constant rate ra with an imposed maximum cell size. We intend to model the in vitro cell 

culture, wherein cells are confined to a predetermined domain (such as a Petri dish) and 

compete for space to grow while interacting with one another. Given that cell–cell overlap is 

inevitable when Eq. (11) is applied to each cell independently, introducing additional 

mechanisms is necessary to resolve potential issues in cell volume exclusivity. First, to 

accommodate two nonoverlapping daughter cells within the space left by the mother cell just 

after its division, we increase cell size during a mother cell's lifespan from a0/21/2 (when the 

cell is born) to 21/2a0 (just before cytokinesis), where the cell reference radius is denoted by 

a0. Moreover, a straightforward numerical implementation of Eq. (11) for each individual 

cell (ai = a(t + Δt)), without consideration of the presence of its neighbors, may cause tiny 

overlaps between the cells (i.e., ai + aj > dij), as depicted in Figure 3A. In such a case, we 

deploy an algorithm that restores volume exclusivity for each cell (depicted in Figure 3B and 

summarized in Figure 4) as follows: (i) the nearest neighbor search is executed to determine 

cells with mutually infringed boundaries by comparing the distance dij between two cell 

centers and the sum of their corresponding radii. (ii) When a breach occurs, the repulsive 

forces are applied to eliminate or reduce the infringed volume. These forces are modeled 

using the linear elasticity formula (Eq. (12)). When a cell has multiple overlaps, more than 

one repulsive force may arise in different directions (including opposite directions), and cell 

relocation (Eq. (14)) follows the total repulsive force (i.e., Fi = Fi
total). (iii) In many cases, 

this is sufficient to resolve volume exclusivity issues (ai
final = ai in Figure 4(iii)). In some 

cases, however, a particular cell continues to exhibit overlaps, which may happen when the 

cell has more than one overlapping neighbor. In such a situation, we first examine whether 

we can move the cell in a direction that reduces overlaps. The absence of this direction is 

referred to as a surrounded case. (iv) If the cell is surrounded, we inspect all overlapping 

pairs and calculate their weighed reduced radii aij, and take the minimum over all 

overlapping pairs as the final radius (ai
final in Figure 4(iv)). This approach eliminates all 

overlaps. (ii′) If the cell is not surrounded, we reduce cell–cell overlaps by calculating the 

total repulsive force acting on that cell and move it along the direction of the force. Step (ii′) 
should be repeated until either the cell is surrounded or all the overlaps are resolved. The 

concept of the surrounded cell and step (ii′) are introduced to avoid compromising the 

growth rate of outermost cells when cells form clusters. In this algorithm, the calculated 

ai
final is not smaller than the cell radius in the previous time step.
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When cells overlap, equal but opposite repulsive forces are exchanged between two 

overlapping cells. Force magnitude is proportional to breached distance, with proportionality 

constant k (Eq. (12)). If a cell (with index i) overlaps with multiple neighbors, the total 

repulsive force exerted on it is calculated as in Eq. (13), where j runs over the index set Ni of 

all the neighbors of the ith cell. For the cell center, xi, its location is updated following Eq. 

(14) using the total repulsive force from Eq. (13), Fi = Fi
total, and η, which denotes the linear 

drag coefficient. In numerical calculations with a discrete time step size Δt, the moving 

distance is equal to Fi
totalΔt/η. We choose k, η, and Δt so that they satisfy 2kΔt = η, which is 

the condition imposed on two growing daughter cells placed right next to each other. This 

condition is necessary for the cells to increase their size precisely in accordance with Eq. 

(11) without any overlap; such an increase is achieved because the cells push each other and 

grow in a precisely orchestrated manner. In this case, volume exclusivity is realized at step 

(ii) of the algorithm shown in Figure 4, and no radius reduction (iv) is necessary. This choice 

of parameters generally ensures stable numerical implementation and warrants maximal 

volume exclusivity among all overlapping cells after the repulsive forces in step (ii) are 

applied.

Figure 3B shows an example of how to preserve volume exclusivity while the neighboring 

cells are growing. Diagram (I) shows the initial cell configuration; diagrams (II)–(IV) show 

the intermediate steps, and diagram (V) is the final configuration. The overlapping areas are 

greatly exaggerated to demonstrate our algorithm. Four neighboring cells (I) increase their 

sizes following Eq. (11), which causes cell overlapping and activation of repulsive forces 

(II). Cell relocation, that follows the repulsive forces, reduces but does not eliminate the 

overlaps (III). The middle cell is surrounded; therefore, following step (iv) of the above 

algorithm, the middle cell radius is reduced. Since the other three cells are not surrounded, 

they are pushed away from the middle cell following step (ii′) of the algorithm without 

reducing their sizes.

In our model, the cells can also actively move in a random fashion. The voluntary movement 

of the ith cell is implemented by applying a motility force, Fi
m, through Eq. (14) (i.e., Fi = 

Fi
m). The motility force Fi

m is a randomly chosen vector whose magnitude is selected from a 

uniform distribution between zero and a predefined maximum (b in Eq. (15)) We set the 

magnitude of a typical repulsive force m1 (m1=2kΔa, where Δa is a typical radius increment 

for Δt during the time at which a shows linear growth) as the reference value. By setting 

100m1 as the predefined maximum (b = 100m1), we qualitatively reproduce the behavior of 

highly motile cells (as described in literature, e.g., in [27]). We refer to this as a “motility of 

100” or m100. At every time step, the motility force is assigned to each cell and the cells 

move in accordance with the resultant velocity determined by Eq. (14). However, when this 

velocity is applied with the previously chosen time step Δt, it may generate a large relocation 

distance and significant overlaps with nearby cells. When the repulsive forces are reapplied 

in order to prevent cell overlap they may become a source of numerical instability. 

Therefore, we separate voluntary movements from relocation during cell growth and use 

fractionated time steps to prevent such instabilities. That is, once cell size and location are 

settled by the algorithm in Figure 4, the forces for voluntary movements are generated and 

time step Δt is divided into a predefined number of smaller time steps with empirically 

chosen fractions (the fractionated time step). The cell locations are then iteratively updated 
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through the alternate application of the motility and repulsive forces (with the fractionated 

time step and Δt, respectively) to account for both cell movement and cell overlap 

prevention.

To illustrate the different collective behaviors, we consider three cell motility values (m1, 

m10, m100) and simulate growing cell colonies starting with identical initial conditions 

shown in the inset of Figure 5A. Each simulation is carried out in a representative 500 × 500 

μm2 domain that corresponds to a typical image recording size of cell culture under a 

microscope [25]. The population-doubling curves normalized by the initial cell number and 

the snapshots taken at the end of each simulation (at 168 hours) are presented in Figure 5A–

D. As expected, cells characterized by lower motility form tight clusters, while high motility 

cells spread freely and cover more than half of the available space (see Video 1). Most of the 

inner cells in the clusters also grow more slowly because they detect space limitations, and 

some stay in the G1 phase for more than 24 hours (denoted in magenta in Figure 5B–D, 38% 

for m1, 26% for m10, and negligible for m100). Also, the total final populations for all three 

cases are considerably different: m100 cell population is almost twice as big as the m1 

population.

To inspect in detail the cell cycle progression on an individual-cell level, we traced the same 

cell in each of the three simulations, and reported its size in Figure 5E–G. In all three cases 

cell size growth is identical during the first three cell cycles (i.e., until about 72 hours), but 

the cycles beyond this period exhibit substantial differences. At m1 (Figure 5E), the cell 

growth during the fourth cell cycle shows a significant slowdown because the cell is 

surrounded by the neighboring cells. However, no significant deviation from one cell cycle 

to another is observed at m100 (Figure 5G), and the evolution of cell size occurs strictly in 

accordance with Eq. (11). Similar trend can be noticed at the population level (Figure 5H–J). 

The observed oscillations in cell cycle phase distribution occur because (i) the cells' 

doubling times are assumed identical when no external limitations exist; (ii) two daughter 

cells are born simultaneously and are thus synchronized unless external influence is present; 

(iii) each cell in the M phase (blue) gives birth to two cells in the G1 phase (red). Thus, at 

m100, oscillations are present throughout the entire simulation since no space limitation 

occurs until confluence is reached. At lower cell motility, the oscillations disappear after 

several cell cycles because cell synchronization is broken as the growth rate of cell size 

slows down for the cells located inside the clusters: at around 80 hours (m1) and 110 hours 

(m10). This very closely corresponds to the times at which the graphs in Figure 5E and 5F 

deviate from the initial cell size growth dynamics.

3. Results

To investigate the effects of cell cycle inhibitors on cell population growth, we consider both 

intrinsic and extrinsic factors. These include the dynamics of intracellular factors that 

regulate the duration of each phase of the cell cycle in every individual cell, physical 

interactions between neighboring cells, and cell competition for space. In the previous 

section, we also showed that motility, as a property of each individual cell, influences the 

spatial organization of cell colonies at the population level. Thus, we want to examine 

whether the efficacy of cell cycle inhibitors is altered by emerging group traits. First, we 
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present a control case in which no cell cycle inhibitors are used, the cells are quite motile, 

and they interact with one another. Initiating the simulation with a small number of cells 

enables us to observe the long-term evolution of growing cell populations until spatial 

confluence is reached. Second, we examine the effects of CDK1 and CDK2 inhibitors 

(separately and in combination) in comparison with those of the control. We again choose 

high cell motility to distinguish the effects of growth inhibition due to cell–cell interactions 

from those of the cell cycle inhibitors. Finally, we test the combined effects of the cell cycle 

inhibitors and cell–cell physical interactions on cell population growth by integrating various 

cell motilities and different cell cycle inhibitors.

3.1 Cell colony growth without cell cycle inhibitors

The simulation for the control case is initiated with 50 cells, which constitute about 2.5% of 

the maximum population capacity of the chosen domain size (500 × 500 μm2). The cell 

locations within the domain are randomly assigned. The age of each cell is drawn from a 

uniform distribution between 0 and 24 hours, which determines the values of all cell cycle-

related variables (a, NCDK1, NCDK2, NWEE1, NCDK2E, NCDK1y, Q, and P) in accordance with 

the graphs in Figure 2. The chosen initial cell age also specifies the current phase of the cell 

cycle. Given the predefined durations of each cell cycle phase (12:10:2 hours for G1, S, and 

G2/M, respectively) and the random selection of cell ages, the cell population ratios of the 

G1, S, and G2/M phases are expected to be roughly 50%:42%:8% at the beginning of the 

simulation (such initial population ratios are frequently observed in laboratory experiments 

[34,35,36], but we show in Section 4 how our model can be tuned to other cell cycle phase 

distributions). The simulation is carried out over 144 hours until the growing cell colony 

reaches 94% of confluence. The population-doubling curve normalized by the initial number 

of cells in the log scale (diamonds) is shown in Figure 6. The straight solid line indicates the 

exponential population growth with a rate of (ln 2) / 24 per hour. The simulated population 

growth strictly occurs along this line for about 110 hours. Subsequently, it begins to plateau 

because cell competition for space becomes a limiting factor. The four inset figures show the 

simulation snapshots taken at 60, 84, 108, and 132 hours, as well as the corresponding cell 

age distributions. We assume that nutrients are abundant, and because the cells are highly 

motile, there is enough space for all the cells to grow in strict accordance with the graphs in 

Figure 2. With time, however, the cells start competing for space, and population growth 

slows down because some cells do not satisfy the required G1 checkpoint size (a) condition 

within the intended 12 hours of G1 duration. As the available space is diminished, therefore, 

an increasing number of cells become trapped in the G1 phase (the G1-arrested red cells 

dominate in the 132-hour snapshot); some of these cells have spent more than 24 hours in 

this phase (indicated in magenta in Figure 6, the 132-hour snapshot).

The four age distributions in Figure 6 confirm this trend. In the first two snapshots, the 

phase-wise age distributions are well separated and no cell is older than 25 hours, indicating 

that all the cells progress through the cell cycle without delay. At 108 hours, a small 

population of cells still in the G1 phase (red) but older than 12 hours begin to emerge (less 

than 1% of the total 625 cells in the G1 phase), implying that these cells cannot transition 

from the G1 to the S phase in a timely manner. At 132 hours, a large population of cells 

remain in the G1 phase for more than 12 hours (52% of the total 1576 cells in the G1 phase) 
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with a widely spread age distribution (0 to 32 hours). This distribution is nearly threefold 

that seen in the typical G1 phase duration confirming the red cell domination observed in the 

132-hour snapshot in Figure 6.

To look more closely into the effects of spatial competition, we consider the relationship 

between cell size (a) and cell age (Figure 7A–C) at three different time points. The top solid 

curve in each graph in the left column of Figure 7A–C is the plot of the analytic solution of 

Eq. (11). This plot dictates the expected increase in cell size over time when no spatial 

limitations exist (the subsequent lower lines are progressively decreasing percentile curves 

in 5% decrements). Each circle represents an individual cell in the culture, indicating its 

actual age (x-axis) and radius (y-axis). The graphs in the right column of the figure show the 

histograms of growth shortage, which is defined as the ratio of the difference between the 

expected and actual sizes normalized by the expected size. The data at 84 hours (Figure 7A) 

show that all the cells exhibit size growth in close accordance with the top growth chart (the 

analytic solution of Eq. (11)), and that growth shortage is very low (more than 98%) of cells 

stay within 99.5% of the expected size). As the population continues to increase over time, 

the competition for space becomes significant. At 108 hours (Figure 7B), several data points 

diverge from the analytic solution graph, and the corresponding histogram shows some cells 

with a growth shortage higher than 5%. However, no cell grows behind the expected size by 

more than 8%. The graph at 132 hours (Figure 7C) shows a considerably different situation. 

The cell size versus age data significantly deviate from the analytic solution, and the 

maximum growth shortage reaches 35%, with more than the half of the cells showing the 

growth shortage of 10% or higher.

Figure 7D illustrates the evolution of the cell cycle phase distribution recorded every hour 

over 144 hours. Throughout the entire simulation, the G2/M phase ratio remains small (1–

15%). The characteristic G1-phase oscillations, visible for about 100 hours, reconfirm that 

most of the cells freely grow (and further divide). The change in the G1 phase distribution 

pattern that occurs at around 120 hours and the subsequent G1 phase domination are also 

consistent with the plateau in the population-doubling curve in Figure 6. These phenomena 

are due to the space limitations that arise as the computational culture becomes highly 

confluent. At the end of this simulation, the G1-phase ratio reaches 92%, reaffirming G1 

phase cell arrest.

3.2 Effects of CDK1 and CDK2 inhibitors on cell colony growth

Here, we present the results of incorporating the CDK1 and CDK2 inhibitors to the model. 

We assume that the inhibitors act on all the cells during the entire simulation, i.e., their 

effects are temporally and spatially uniform. This assumption is consistent with the 

clonogenic assay setup, where the medium in which the cells are grown is periodically 

changed to keep the nutrients and the therapeutic agent uniformly dissolved and available to 

all the cells in the culture. We also assume that the cells in these simulations are highly 

motile (m100) to distinguish between the effects of cell cycle arrest due to CDK inhibition 

and those of growth arrest due to spatial limitations. CDK2 inhibition is expected to cause 

cell cycle arrest at the G1 phase because the inhibited CDK2 slows down the CDK2-E 

buildup that is crucial to enabling passage through the G1 checkpoint. CDK1 inhibition is 
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expected to cause cell arrest at the G2/M checkpoint because the low amount of uninhibited 

CDK1 diminishes HR stimulation, which in turn may result in cell entry into the M phase 

with a DNA damage index that is too high to allow for cell reproduction.

The effectiveness of the inhibitors as agents that suppress population growth depends on the 

choice of inhibition parameters (rCDK1i and rCDK2i). We examine the inhibition response 

curves of each inhibitor by comparing the relative increment in population size at 48 hours 

(Figure 8). The x-axis values represent the inhibition amplification factor; that is, the 

inhibition parameters of CDK1 and CDK2 normalized by the chosen rCDK1i and rCDK2i 

values (in the caption of Figure 8), respectively. The y-axis represents the increment in 

inhibited population with respect to the increment in control population reached at 48 hours. 

The initial cell configuration and cell age distribution are identical in all cases (with and 

without inhibitors), and the inhibitors are applied at the beginning of the simulation. Both 

curves show a decreasing logistic function that levels off at the top and bottom of the graphs. 

Small values of CDK1 and CDK2 inhibition parameters impose no noticeable effects on cell 

population growth. With high inhibition parameters, cell population growth significantly 

diminishes in both cases, but the final effects differ. With CDK1 inhibition, nearly complete 

termination of population growth is observed. Conversely, very strong CDK2 inhibition 

results in nonnegligible population growth (about 20%). This result is attributed to the fact 

that CDK2 inhibition cannot prevent cells from completing the first cell cycle and 

proliferating when cells at the beginning of simulations have already passed the G1 phase, as 

is the case for about half of the cells in our simulation. Therefore, at least 200 more cells 

would have born for 48 hours. CDK1 inhibition can stop some of the cells at the G2/M 

checkpoint and prevent them from completing the first proliferation. This prevention 

accounts for the differences at the population increment levels for the large amplification 

factors in Figure 8. We choose rCDK1i and rCDK2i around the 50% level of population 

increase as our basic parameters (the chosen values in the caption of Figure 8), and use them 

to analyze the effects of the CDK inhibitors.

Figure 9 depicts the detailed analysis of four different simulations: scenarios without any 

treatment (control), with CDK2 inhibition, with CDK1 inhibition, and with the CDK1 and 

CDK2 combined inhibition. All simulations start with 400 cells (about 20% of confluence) 

and identical initial cell configurations (inset of Figure 9A; the initial conditions are set by 

the method used in the simulation in Figure 6). All the inhibitors are effective at the start of 

the simulation (from time 0). Inhibition parameters rCDK1i and rCDK2i are chosen as 

presented in Figure 8. The corresponding population growth curves in log scale over 60 

hours for four cases (control, CDK2, CDK1, or combined inhibition) are shown in Figure 

9A. The solid diagonal line indicates the exponential population growth; during the entire 

simulation, the control cells (black diamonds) exhibit an increase that follows the 

exponential population growth line. With our chosen parameters, the cell culture subjected to 

CDK2 inhibition (red diamonds) shows 50.3%) of the control population at the end of the 

simulation; the cell culture subjected to CDK1 inhibition (blue diamonds) reaches 42.2% of 

the control population. When the inhibitors are applied in combination (green diamonds), 

the final population size amounts to only 35% of the control size.
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Although the populations at the end of each simulation differ considerably (Figure 9A), all 

four cases show almost identical growth for up to 22 hours; that is, for a period 

corresponding roughly to one cell cycle. This result is attributed to each inhibition taking 

place at a certain point in the cell cycle (at the cell cycle checkpoint); the cells need to reach 

this point for inhibition to have an effect. Further, the inhibitors become more effective after 

the first cell division is completed and the daughter cells start a new cell cycle without 

preaccumulated molecules. The CDK1-inhibited cell population reaches a sudden plateau, 

whereas the CDK2-inhibited cell culture continues to increase gradually, although at a much 

slower overall speed. This difference is a consequence of the distinct dynamics of each of 

the cell cycle checkpoints. The conditions in the G1 checkpoint are continuously tested for 

each cell in the G1 phase; thus, a cell has multiple chances to pass this checkpoint. By 

contrast, DNA damage is inspected only once in the M phase, preventing a second 

opportunity for cells to pass the G2/M checkpoint. When the inhibitors are combined, the 

population growth curve also reaches a plateau. However, this combined effect is 

subadditively synergistic, according to the fractional product concept [37], because the 

remaining population at a final time of 60 hours, (i.e., 35%) is larger than 21.2% (50.3% of 

42.2%) of the control population. Since these two inhibitor treatments in our simulation 

cause cell cycle arrest at different phases, we do not expect super-additive synergy. The 

CDK2 inhibition that holds cells in the G1 phase can deprive cells of the opportunity to be 

arrested at the G2/M phase because of CDK1 inhibition. Nonetheless, given the fact that 

each inhibition allows for the completion of one cell cycle, our observations indicate that the 

maximal inhibition effect would be the termination of population growth before it is 

doubled.

The population cell cycle distributions of each of the four cases are shown in Figures 9B–E. 

The patterns are very similar during the first 12 hours, confirming that a lag time also exists 

in the cell cycle distributions before the effects of the inhibitors become observable. After 

this initial period, however, the population response is very different. In the control group, 

the cell cycle distributions exhibit two periodic fluctuations, indicating that most of the cells 

complete their cell cycles at least twice. This finding also confirms the exponential growth in 

cell population size shown in Figure 9A. Nevertheless, close inspection of the graph of cell 

cycle phase distribution (Figure 9B) at the end of the simulation indicates the emergent 

effects of spatial limitations (an increased population of G1 red cells), suggesting that the 

population-doubling graph in Figure 9A would deviate from the diagonal line at a longer 

simulation. By contrast, the three remaining simulations show no oscillations in cell cycle 

distribution. The CDK2 and CDK1 inhibitor treatments result in G1 and G2/M arrests, 

respectively (Figures 9C and 9D). Combining the inhibitors causes a mixed effect: cell 

population is roughly halved between the G1 and G2/M phases at 60 hours (Figure 9E). 

Over the final 24 hours, however, the observed trend is of a decreasing G1 population and an 

increasing G2/M population because the chosen CDK2 inhibition parameter enables the 

cells to pass the G1 checkpoint slowly and move on to the S and G2/M phases. Upon 

reaching the G2/M phase, the cells are permanently arrested, thereby keeping the population 

size constant. We expect the population ratio G1:G2/M to stabilize at around 50:50 if the 

simulation is run for an extended period. For the graphs in Figures 9F–G and Figures 9H–I, 

we choose two particular cells (one of each set of graphs) that fail to complete two full cell 

Kim et al. Page 14

J Theor Biol. Author manuscript; available in PMC 2017 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cycles. We then record the evolution of several specific intracellular variables. Figures 9F 

and 9G show three variables relevant to CDK2 inhibition (NCDK2, NCDK2i, and NCDK2E), 

and Figures 9H and I show three variables relevant to CDK1 inhibition (NCDk1, NCDK1i, and 

Q). The amount of inhibited CDK2 (NCDK2i, plus signs in Figure 9F) reaches more than 

50%) of the total CDK2 amount soon after the beginning of the second cell cycle. This 

increase results in a slower progression of NCDK2E synthesis (Figure 9G). Thus, the cell 

reaches the threshold level (horizontal line) in 38 hours (it should take 12 hours normally) 

and transitions into the S phase. This result explains the lack of oscillation in the population 

cell cycle distributions shown in Figure 9C. Conversely, even if both the total CDK1 and the 

inhibited CDK1 (Figure 9H) show dynamics similar to that of CDK2 (Figure 9F) during the 

second cycle, the progression through the cell cycle reaches a phase that differs from that 

observed in CDK2 inhibition. The high amount of inhibited CDK1 does not prevent cell 

progression from the G1 to the S phase and from the S to the M phase. Nevertheless, 

because the level of DNA damage steadily increases to a level higher than that achieved in 

the first cycle over time (Figure 9I), the cells fail to reduce the damage below the threshold 

during the DNA repair phase in the second cycle. This failure causes cell arrest in the G2/M 

phase (Figure 9I). Figures 9J–M show the final snapshots from each simulation, with the 

corresponding phase-wise age distributions. The control case (Figure 9J) and the CDK2 

inhibition case (Figure 9K) both show G1 phase (red) cell domination, but for different 

reasons. For the control case, the G1 phase arrest of cells is caused by spatial limitations, 

whereas for CDK2 inhibition case, such arrest is caused by slow CDK2-E synthesis. These 

phenomena are initiated at different times, as shown in the G1-phase age histograms. With 

CDK2 inhibition, most of the cells in the G1 phase are considerably older than those in the 

control case, indicating that the cells become G1 arrested early in the simulation and remain 

arrested for a long period. By contrast, the majority of the G1-phase cells in the control case 

are young but more densely packed, preventing them from progressing through their cell 

cycles. The complete G2/M phase (blue) cell domination shown in Figure 9L starts at 54 

hours (shown in Figure 9D). This result is attributed to the implementation of G2/M arrest as 

a permanent cell arrest (not a prolonged process in a phase) and the fact that our choice of 

CDK1 inhibition parameter is high enough to allow only two cell divisions at most. Figure 

9M shows the final simulation snapshot (at 60 hours) of the cell colony exposed to the 

combined inhibitors. Almost half of the cells are in the G1 phase (red), and the other half are 

in the G2/M phase (blue), with some cells occasionally found in the S phase (green). Given 

that our choice of parameter for CDK2 inhibition continues gradually to enable cells to 

escape from the G1 phase, we can expect slowly decreasing G1-phase cells. Nonetheless, 

because the G2/M phase-arrest is permanent, the entire population does not increase, as 

confirmed by the plateau in the population-doubling curve (Figure 9A).

3.3 Inhibitor efficacy depending on cell motility

Thus far, we have investigated CDK inhibition in conjunction with high cell motility (m100) 

only. As shown in the cell growth and migration section, low cell motility leads to local 

overcrowding that influences cell cycle progression; our intention is to distinguish 

interruptions of the cell cycle due to CDK inhibitors from the overcrowding effects. In the 

previous section we demonstrate that cell arrest at different cell cycle phases is not 

necessarily synergistically super-additive, suggesting that the low cell motility in our model 
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can alter the effects of CDK1 or CDK2 inhibitors. To explore this idea further, we compare 

the results of simulations in which two different motilities (low m1 and high m100) are used 

in conjunction with single and combined CDK inhibitors.

We aim to examine how the CDK inhibitors affect cells that have already formed clusters (as 

shown in Figure 5); thus, we start our simulations with 50 cells and allow these to grow 

without exposure to any inhibitors until the population reaches 400 cells. The cells with 

motilities of m100 and m1 take 74 and 77 hours, respectively, to reach the population of 400 

(Figure 10B, middle panels). This waiting time enables the m1 cells to form small but tight 

clusters, and the m100 cells to spread across the computational domain. Such a scenario is 

typical for in vitro experiments that are always preceded by a period at which cells are 

allowed to attach and grow in fresh media. After this incubation time, the action of a chosen 

inhibitor is initiated (red arrows along the population-doubling curves in Figures 10A, also 

in Figures 11A and 11D), and the simulation is run for additional 60 hours. This extension 

enables comparison with the results in the previous section, in which each simulation is 

initiated with 400 cells and run for 60 hours.

First, we investigate the effect of CDK1 inhibition (Figure 10). In both cases (m1 and m100), 

population size steadily increases for about 20 hours after the addition of the inhibitors. 

However, the population growth of m1 is slower, indicating that not all cells actively 

progress through their cell cycles and divide. Both populations reach (different) plateaus at 

about the same time (Figure 10A), but a clear distinction is observed in spatial distributions 

and phase structures, as shown in the final simulation snapshots (Figure 10B, bottom two 

panels) and in the cell cycle distribution (insets in Figure 10A). While the m100 cells are all 

arrested in the G2/M phase (similar to that depicted in Figure 9L), the m1 cells also exist in 

both the G1 and S phases. These cells are located inside the clusters, indicating that they are 

still in the G1 and S phases because of spatial limitations; they do not progress through their 

cell cycles and avoid the cell cycle arrest effect of CDK1 inhibition. Only the outer cells are 

arrested at the G2/M phase by CDK1 inhibition. The last 60 hours in the cell cycle 

distribution graphs in the insets of Figure 10A show patterns similar to those in Figures 9D 

and 9E, where the CDK1 and combined inhibitor treatments are applied to the m100 cells. 

The graphs in Figures 9D and the upper left inset of Figure 10A are similar because of the 

way both computational experiments are designed. The similarities in Figures 9E and the 

lower right inset of Figure 10A indicate that the low cell motility plays a role that is 

analogous to that of CDK2 inhibition through the confinement of cells in the G1 phase 

arrest. When the simulations are run without incubation time, that is, when the inhibitors are 

applied before the cells form clusters, no noticeable difference in inhibition efficacy was 

observed between the results obtained after 60 hours of both simulations (Figure 10C). In 

these cases, almost all cells, regardless of their motility, become arrested in the G2/M phase 

because the cells can undergo only a limited number of cell divisions and fail to form 

clusters large enough to contain an inner region where cells are constrained by space 

limitations.

Next, we investigate the effects of the CDK2 and combined inhibitor treatments on the cells 

of both motilities (Figure 11). All the simulations are conducted in a manner similar to the 

CDK1 inhibition case. For m100, the results observed during the final 60 hours in Figure 11 
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are comparable to those shown in Figure 9, both in terms of the shape of the population 

growth curves (compare Figures 9A, 11A, and 11D), and the evolution of cell cycle phase 

distributions (compare Figures 9C and 11B, and Figures 9E and 11E). In contrast to the 

results simulated in the sole CDK1 inhibition, the results of the CDK2 and combined 

inhibitor treatments are very similar regardless of cell motility; the population growth in 

Figures 11A and 11D); the cell cycle distributions in Figures 11B an 11C, and in Figures 

11E and 11F. For CDK2 inhibition, this result may be attributed to the fact that both CDK2 

inhibition and low cell motility cause cell G1 phase arrest. At the end of both simulations 

(Figures 11B and 11C), most of the cells are in the G1 phase. For m100, this result is 

attributed to CDK2 inhibition, but for m1, the effect stems from the combined effect of 

CDK2 inhibition (for the inner and outer cells) and spatial limitations due to low motility 

(for the cells in the clusters). Thus, the final population of m1 is slightly smaller than that of 

m100. For the combined inhibitors, the final populations in both cases contain cells that are 

present in all the cell cycle phases. The 137-hour snapshot of m1 (Figure 11D, bottom) 

shows that the cells in the G1 phase (red) are located on the edges of cell clusters, in contrast 

to the same motility and time snapshot in Figure 10A. These cells are arrested in the G1 

phase because of CDK2 inhibition. The inner cells in the G1 phase (red) are affected by both 

CDK2 inhibition and low motility. The G2/M-arrested (blue) cell population is a result of 

CDK1 inhibition, and no blue cells are found in the inner regions of the clusters. Again, the 

m100 cells (Figure 11D, top snapshot) are scattered throughout the domain and arrested in 

either the G1 or the G2/M phase.

4. Discussion

In this paper, we presented a newly developed model that couples the dynamics of 

intracellular factors regulating the cell cycle with the mechanical interactions that occur 

during cell growth, division, and movement, taking particular care to assure cell volume 

exclusivity. We built the model to capture the essence of the CDK1 and CDK2 inhibition 

processes. In the construction, we used cell cycle checkpoints to model cell cycle 

progression and phase-specific cell arrest. We also incorporated physical constraints, such as 

repulsion forces, contact inhibition, and cell overcrowding to reproduce a typical setup of 

clonogenic assay experiments. Thus, this spatially explicit hybrid model of discrete cells 

equipped with individually controlled cell cycles enables the analysis of emerging behaviors 

at the cell population level, while allowing for modification of the properties of each cell 

independently.

Our model differs significantly from typical models of cell cycle control that are 

compartmental, that is an entire cell population is divided into several subgroups 

(compartments), each defining a different phase of the cell cycle. The progression through 

the cell cycle is modeled by transferring a small portion of cells from one phase to another 

following the predefined transition rates that may capture effects of particular drugs or cell 

line characteristics [38,39]. These models successfully reproduce experimental observations 

of the population cell cycle distributions, but as individual cell cycles progress, they miss 

certain detailed dynamic characteristics of cell cultures that comprise heterogeneous cells. 

Within a compartment, cell population is averaged, and the information on individual cell 

cycle progress within a phase is coarse-grained. The individual cell behavior, such as the 
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extent to which the cell has progressed through the phase, or the time necessary to complete 

passage through a checkpoint and progression to the next phase, cannot be reproduced by 

simply multiplying transition rates with population size. One can overcome this downside by 

introducing more compartments and time-delay terms in governing equations [40], or by 

introducing a simultaneous time and age dependency [41]. As the number of compartments 

increases, however, the compartmental model converges to individual cell-based models, 

such as that described in this paper. Therefore, the individual cell model can be considered 

the ultimate form of the compartmental model.

In contrast to models that disregard spatial aspects in relation to cell population growth, in 

the discrete agent-based models the basic model components representing the cells act as 

independent but interacting agents. These models usually incorporate spatial aspects, such as 

cell locations, colony shapes, or resource distributions. Depending on the geometric degree 

of freedom, modeling styles can be divided into two classes: on-lattice and off-lattice 

models. On-lattice agent-based models are variations of the cellular automata models based 

on a square or hexagonal lattice [22,23,42,43,44,45,46,47,48,49,50] or Cellular Potts 

models, in which each cell is composed of several lattice sides [51,52,53,54]. These models 

adopt strict (lattice-based) rules regarding cell location and possible movement directions, 

thus their geometric setup is straightforward to program and relatively computationally 

inexpensive. However, Cellular Potts-type models can be highly complex depending on how 

many lattice points an individual cell can occupy. Conversely, off-lattice models have no 

restrictions on cell location and direction of cell movement. Among the off-lattice agent-

based models of cell colony growth, the cell-centered models are probably the most utilized 

model frameworks [55,56,57,58,59,60,61,62,63,64], sometimes applied in combination with 

a continuum description to represent densities or populations of inactive cells, such as 

nonproliferating, quiescent, or necrotic cell regions [65,66]. More complex models trace cell 

membrane points or cell–cell boundary interface inputs, as in the vertex-based models 

[67,68], Voronoi-Delaunay cellular models [69,70], and fluid-based elastic cell models 

[43,48,71]. The subcellular element models [72,73] explore internal cell complexity by 

including not only the cell surface but also the intracellular components. In these modeling 

frameworks, cell–cell interactions and cell–cell neighborhood relationships are defined in a 

more realistic manner, however they require much more complex multistep-algorithms for 

tracing all cells, determining the cell's immediate neighbors, and assigning the axis of cell 

division to place new daughter cells. Despite the fact that agent-based models are naturally 

suited to equip each cell with individually regulated control mechanisms, only limited 

information regarding cell cycle progression has been incorporated in these frameworks 

[63,70,74]. In two recent papers adopting the cellular automata framework to model cell 

colonies [22,23] the emerging intracellular heterogeneity results from changes in cell cycle 

phases in response to cell cycle specific chemotherapeutic agents or to radiotherapy, 

respectively. This internal heterogeneity, in turn, influences cell response to these anticancer 

treatments, and may lead to cell cycle mediated drug resistance or to modified radiation 

sensitivity. Cell cycle synchronization during radiotherapy has been also investigated using 

the off-lattice agent based model [75].

The mathematical framework of our model is based on the mechanistic model introduced by 

Meineke et al. [60]. However, we extended this model by incorporating mechanisms of cell 
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cycle inhibition responses, and by imposing significant constraints on cell–cell interactions 

during cell growth and migration. In our model the increment in size during cell growth is 

controlled by the available space to ensure cell volume exclusivity, and the cells with 

multiple neighbors may grow slower than sparsely placed cells. When cells are overcrowded 

their growth is suppressed until the space is available. The growing or moving cells can push 

on their neighbors and are, in turn, exposed to the counteracting forces exerted by the nearby 

cells. The final cell relocation is the result of force balancing. These features enable the 

derivation of quantitative results on both population and individual cell levels.

We investigated in this paper how individual cell responses to combinations of CDK 

inhibitors affect the growth of an entire cancer cell population. In particular, we were 

interested in inhibitors of CDK1 and CDK2, which are known to regulate passage through 

the G2/M and G1 checkpoints of the cell cycle, respectively. We examined more closely 

three cell cycle arrest mechanisms: (1) DNA damage that is linked to CDK1 inhibition and 

causes G2/M arrest; (2) CDK2-cyclin E complex formation that is associated with CDK2 

inhibition and induces G1 arrest; and (3) cell growth dynamics and physical cell–cell 

interactions that may lead to G1 arrest as a result of cell competition for space and contact 

inhibition. We also looked into the combined effects of these mechanisms.

The first two mechanisms are related to a cell's intrinsic response to CDK1 and CDK2 

inhibitors, and the last one considers extrinsic factors that growing cells encounter in either 

cell cultures or tissues. We simulated and compared four different computational 

experiments: a control case (without inhibitors), two cases in which one of the inhibitors was 

applied (either CDK1 or CDK2), and a case in which the inhibitors were simultaneously 

applied. In all the cases, the cells were assumed highly motile to distinguish the intra- and 

intercellular aspects of cell cycle arrest. We comprehensively analyzed all the computational 

experiments in terms of population-doubling curves and population cell cycle and age 

distributions, as well as provided snapshots and videos of the dynamic simulations. These 

quantitative measurements were chosen because they can also be collected from laboratory 

experiments (i.e., counting of viable cells, flow cytometry analysis, and time-lapse 

microscopy movies). Our simulations show that during the initial 12 hours, the effects of the 

three inhibitor treatments cannot be distinguished from one another and from the control 

case, as indicated by the cell cycle distribution graphs; and during the first 24 hours, these 

effects cannot be distinguished by inspecting the population-doubling curves or the 

configurations of growing cells from the colony assay. These findings may provide insight 

into when and how often data should be collected through laboratory experiments to obtain 

comparable results or results that are distinguishable. We also showed that cell cycle 

inhibitors that cause cell arrest at different cell cycle phases are not necessarily 

synergistically super-additive.

We studied whether the spatial patterns formed by growing cells affect the efficacy of cell 

cycle inhibitors. We first examined three cases, in which cells of increasing motile abilities 

were not exposed to inhibitors. We showed different emergent traits in colony structures, 

such as the formation of tight cell clusters versus uniform cell dispersal. These simulations 

reveal significant effects on cell cycle regulation. Different final population sizes with less 

motile cells produce the lowest number of offspring because of the G1 phase cell arrest 
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within cell clusters. The cell cycle distribution dynamics show significant differences 

between the cases, with continuous oscillations in cell cycle distribution for highly motile 

cells; the cell cycles of the inner (surrounded) cells in the clusters are interrupted (G1 arrest) 

at low cell motility. Finally, the formation of tight clusters (due to low cell motility) alters 

the efficacy of cell cycle inhibitors by acting as the G1 arrest mechanism. As a result, a 

remarkable difference exists between the outcomes produced by cells of high and low 

motilities when they are exposed to CDK1 inhibitor. At high motility, all the cells are 

arrested in the G2/M phase. However, the low motility cells are arrested in the G1 and G2/M 

phases, and G1 arrest is attributed exclusively to cell contact inhibition in the inner cells 

surrounded by the G2/M-arrested cells.

The main reason for which the CDK1 efficacy is affected by tight cell cluster formation is 

slow overall dispersal of the cell colony because the peripheral cells limit movement and 

growth of the inner cells. We presented so far the results of our 2D simulations. However, it 

is essential to extend our model to the 3D space, because adding one spatial dimension 

increases the freedom in cell movement, In particular, the mean square displacement of a 

random motility in 3D is 50% larger than that in 2D. Similarly, sphere packing density in 3D 

is larger than in 2D; that may be an important factor in determining cell overcrowding. In 

order to examine whether CDK1 inhibitor efficacy affected by cell cluster formation is not a 

phenomenon limited to the 2D space, we extended our model to the full three dimensions. In 

the extended model cells are represented by spheres (that is, cell center location and its 

radius). All algorithms for cell growth, migration and determining the cell immediate 

neighbors are formulated identical as in the 2D model but extended to 3D. Several snapshots 

from a 3D simulation are shown in Figure 12 and confirm the formation of the G1-arrested 

core cluster and the G2/M-arrested cluster edge, similarly as in the 2D case shown in Figure 

10. Here, the simulation is run in the domain of size 500 × 500 × 500 μm3 and is started with 

10 initial cells (Figure 12A, 0 h). The CDK1 inhibition is turned on after 225 hours where 

the whole cell population count is 3940 (Figure 12A, 225 h). It is evident that after 

additional 60 hours all outer cells in each cluster are in the G2/M phase arrest (Figure 12A, 

285 h). In order to show the inner cells, we use the cluster cross-sectional views. Four such 

cross sections (at z coordinates 50, 70, 90, and 110 μm from the bottom of the domain) are 

presented in Figure 12B. Two cross sections cutting roughly through the center of the cluster 

(z = 50 and 70 μm) show that all cells along the cluster edge are in the G2/M phase, but the 

majority of cells inside the cluster are arrested in the G1 phase with small number of cells in 

the S phase. As the cross sections move up and toward the cluster boundary (z = 90 and 110 

μm) more cells are in the G2/M phase indicating that they were able to pass through the G1 

and S phases and displayed the effect of CDK1 inhibition. Although the results in Figure 12 

clearly show that this double-phase arrest in cell clusters exposed to the CDK1 inhibitor is 

not solely 2D phenomenon, they also suggest that 3D simulations require generation of 

larger clusters (and thus both larger numbers of cells and longer times of cluster growth) in 

order to observe cell separation into G1-arrested core and G2/M-arrested cluster edge. Since 

adding one spatial dimension enables cells to move around more easily and avoid being 

surrounded by other cells, even the cells in the middle of the cluster often find space to grow 

or move, and thus it takes more cells to create an environment where individual cells are 

trapped.
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We demonstrated that spatial cellular organization at the time of drug administration is an 

important factor that influences the effects of cell cycle inhibitors, even when all cells are 

uniformly exposed to the drug, as in our model. Our findings may have implications for in 

vivo tumor growth, because drugs are typically applied after tumor masses have formed and 

have been detected. We illustrate this point with the following hypothetical scenario. If cell 

motility is low, the proliferating cell population will form clusters, with inner cells arrested 

in the G1 phase given space limitations. When these cells are exposed to the CDK1 

inhibitor, the outer cells are G2/M-arrested (similar to that shown in Figures 10 and 12), and 

thus may incur high DNA damage. However, the inner cells sustain less DNA damage 

because they are already arrested in the G1 phase where the CDK1-stimulation requiring HR 

is not pronounced. Now, if chemotherapeutic treatment is scheduled weekly, the effects of 

CDK1 inhibition may be temporary and will diminish between consecutive treatments. On 

top of that, if the G2/M-arrested cells die because of high DNA damage clearing the nearby 

space, the previously trapped G1-arrested cells can resume their growth and progress 

through their cell cycles, thereby repopulating the tumor. A similar argument also applies to 

combined inhibitors. Figure 9 shows that when CDK1 and CDK2 inhibitors act in 

conjunction, the resultant cell population growth proceeds at a slower pace than that 

observed in single inhibition case; the final population is the smallest among the three 

treatments. The CDK1-inhibited population (in which all the cells are arrested due to high 

DNA damage) poses less of a threat than does the population grown under combined 

inhibition, even though the remaining population shown in Figure 9 is larger.

In order to increase practical and clinical importance of our model, it needs to be calibrated 

with experimental data acquired and measured by widely used laboratory techniques to fit 

not only various characteristics of particular cell lines of interest but also pharmacodynamic 

features of certain drugs. The typical cell size (parameter ao), cell motility (parameter m1-

m100) and cell cycle length can be extracted from time-lapse microscopy movies [26,27,76]. 

In these experiments, sequences of images are taken to show regions of the dish in which the 

cells are growing. By tracing individual cells from one image to another one can record how 

cell position, shape, and size are changing over time, and how often the cells produce the 

offspring. Viable cell count is often monitored to determine the population doubling curves 

[27,35], that can be used to validate or adjust our results shown in Figure 5A or Figure 6. 

Additionally, the dynamic changes in cell cycle phase distributions, which can be measured 

from flow cytometry cell sorting experiments [77] or from microscopy images after FUCCI 

staining [26], can be compared with our dynamic simulations. Results of these experiments 

can be reported as bar-graphs with the ratios of cells being in the G1, S or G2/M phase, 

respectively, which can be directly compared with our simulated results shown in Figure 5H-

J or 7D. Experimental results, however, rarely record high frequency data in contrast to our 

simulations [23,34,35]; therefore, by using the computational model we are able to supply 

the intermittent data points in the dynamics. Figure 13A shows an example of how the 

distributions of cell cycle phases under the drug treatment can be used to calibrate our 

model. Here, we consider a drug that inhibits both CDK1 and CDK2 but with unknown 

inhibition strengths. Nine panels in Figure 13A show simulated results of the cell cycle 

phase distributions up to 60 hours in 12-hour intervals using nine different combinations of 

inhibition parameters. All other parameters that control each cell cycle phase length, cell 
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size growth rate, DNA replication rate, and the threshold levels for checkpoints are identical 

for every considered simulation. Each of the nine panels display different pattern of 

population cell cycle progression that depends on how strong the inhibitions are, and which 

of the two inhibitions is stronger. Hence, we can compare these simulated outcomes to the 

experimental results showing cell cycle phase distributions over time to pinpoint the right 

combination of model parameters or to narrow down the possible region in the model 

parameter space by eliminating unlikely combinations. The drug response curves, which are 

typically used in the drug testing experiments [78,79,80], can be used to further calibrate our 

model. Figure 13B displays dosage response curves of five different hypothetical drugs 

which are represented by five pairs of inhibition parameters (from Figure 13A). Again, by 

comparing these simulated outcomes to the drug response curves determined experimentally, 

we can identify model parameters for which the simulated results fit the experimental ones.

The increased proliferative activity of cancer cells regulated by CDKs provides opportunities 

for developing new therapies that target CDKs with the reduced systemic toxicity that is 

typical of conventional chemotherapeutic agents. Several CDK inhibitors have already been 

developed and applied either in clinical trials or advanced preclinical testing. The most 

promising are flavopiridol, seliciclib, and dinaciclib [11,13,81,82]. However, no new 

therapies have been approved for clinical use. Most of the CDK inhibitors being developed 

have multiple targets. Whether selective inhibitors, called third-generation CDK inhibitors, 

will be therapeutically superior to multitarget CDK-inhibitor combinations remains 

unknown [81,82]. In this study, we regarded CDK1 and CDK2 inhibition as two separate 

mechanisms coming from two different inhibitors, enabling us to determine their individual 

activities and their combined effects on cell population behavior. This approach can be 

easily extended to the study of multitarget CDK inhibitors that are in trial, or used to 

propose new inhibitors that are more effective. We presented our results as a minimalistic 

framework that can be potentially extended to multiple CDK inhibitors or CDK inhibitors 

combined with other types of drugs.

We intentionally simplified certain elements of our model to reduce the number of model 

variables and parameters, but appropriate model extensions are being developed. In the 

current work, we did not explicitly include any of the numerous cyclin-CDK complexes that 

are known to change dynamically in normal proliferating cells. Instead, we focused only on 

CDKs as representative factors in cell cycle progression and in the passage of cell cycle 

checkpoints [19,21]. We also concentrated entirely on cell cycle arrest at both the G1 and 

G2/M checkpoints and did not introduce cell death to the model. This decision was born of 

the fact that different cell lines and different patients' tumors may be characterized by 

distinct sensitivities to DNA damage that trigger cell death. These cell line-specific 

characteristics should be part of model calibration.

We focused most of our efforts on modeling the 2D in vitro clonogenic assay. Such in vitro 

experiments are extensively conducted in cancer biology research because they provide 

relatively well-controlled environments in which to test hypotheses without compelling 

researchers to contend with the overwhelming number of unknown or redundant factors 

usually encountered in in vivo studies. With regard to controlled systems, in vitro cell line 

experiments and mathematical modeling share these advantages, making them a good 
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combined approach. Quantitative experimental measurements for model parameterization 

and validation are the crucial building blocks of integrative mathematical models. 

Meanwhile, the experimentally testable predictions and hypotheses from mathematical 

models should be tested in laboratories. Having this positive feedback loop between 

experiments and simulations necessitates a mathematical model that is extendable and 

flexible, and at the same time, capable of producing results that are equivalent or comparable 

to experimental findings. In this paper, we have shown that our model is versatile and can 

produce results that are directly comparable to experimental measurements, including life-

like image series, such as bright field microscopy or time-lapse imaging; fluorescent cell 

labeling that indicates cell cycle phases FUCCI; population-doubling curves acquired by 

counting viable cells over time; and cell cycle distributions obtained from flow cytometry 

analysis. Other experimental measurements and data, such as Western blots, microarrays, 

and image data also facilitate the parameterization of models and the validation of 

computational results.

We showed that our computational model is readily extendable to 3D experiments, such as 

multicellular spheroid cultures, or tumors that grow in vivo in tissue-like structure. We 

assumed that the CDK inhibitor-carrying drug is supplied uniformly to all cells, but the 

model can incorporate various chemical spatial and temporal gradients.

Since we model individual cells, we can derive quantitative results on both single-cell and 

population levels. We can also visualize spatial traits, such as cell colony formation or 

location-dependent cell cycle specificities, because our model has an explicit spatial 

component and because we trace the locations of all cells. We believe that the results 

obtained by deploying our hybrid approach with accurate implementation of physical 

interactions between cells reflect the versatility, extendibility, and potential of our model as a 

computational tool that provides feedback valuable to experimental and clinical studies.

Our research is greatly motivated by the sarcoma research at Moffitt Cancer Center. 

Preclinical sarcoma research at Moffitt Cancer Center has demonstrated promising results 

using small molecule inhibitors of the cell cycle, namely the CDK inhibitor dinaciclib and 

the WEE1 inhibitor MK1775. The latter has been shown to abrogate the G2/M checkpoint 

forcing cells with DNA damage to enter into unscheduled mitosis to undergo cell death, 

often referred to as mitotic catastrophe [83]. It has shown that this molecule also causes 

DNA damage and leads to apoptosis, an unexpected finding suggesting activity beyond 

affecting the G2/M checkpoint [12,80]. MK1775 has broad activity across sarcoma subtypes 

and lead to differentiation and necrosis in a xenograft model of osteosarcoma [12]. These 

agents are being further explored preclinically and clinically in osteosarcoma and other 

pediatric malignancies (NCT01748825, NCT01434316) [84]. Sarcomas are heterogeneous, 

mesenchymal tumors affecting both pediatric and adult populations [85,86]. Approximately 

10% of childhood cancer and 8% of young adult cancers are sarcomas, compared to 1% of 

cancer incidence in people over 40 years of age. Ewing sarcoma, osteosarcoma and 

rhabdomyosarcoma affect about three quarter of all children with sarcomas whereas 

liposarcoma, leiomyosarcoma, undifferentiated sarcoma, neurofibrosarcoma, and synovial 

sarcoma represent some of the most common sarcoma types in the adult population [87,88]. 

The treatment of nonmetastatic sarcomas is frequently with curative intent with the use of 
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multimodality therapy including surgery, radiation therapy with or without anthracycline-

based, and chemotherapy. However and disappointingly, cure rates have only been very 

modestly improved for metastatic disease and recurrent sarcomas. Multiple attempts at 

increasing the doses of these conventional chemotherapeutic agents have increased toxicity 

without improved efficacy [89]. Thus, there is a pressing need to develop novel therapies to 

improve outcomes in sarcoma patients. Novel model systems, including mathematical and 

computational models, which can recapitulate critical elements of tumor biology would help 

speed up translation of basic research findings and traditional bench experiments and 

perhaps guide translation towards combinations of therapy, order of addition of therapies, or 

optimal length of exposure for optimal anticancer effect.
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Highlights

• We developed a 2D/3D hybrid model of cell colony growth under cell cycle 

inhibition.

• Our model integrates physical and physiological components of the cell cycle.

• Our model captures population-level emergent properties.

• Our model elucidates the characteristics of cell cycle-inhibiting drug.

• Our model shows how cell colony morphology affects cell cycle inhibition 

efficacy.
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Figure 1. 
Schematic flowchart of the cell cycle regulation and checkpoints for a control case with no 

inhibitors.
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Figure 2. 
Evolution of the cell cycle regulation variables in the case of no spatial interactions between 

the cells and without cell cycle inhibitors. Dashed lines indicate the threshold levels and 

color codes show the cell cycle phases: G1 (red), S (green), and G2/M (blue). Governing 

equations are listed in Figure 1, and parameter values are: rCDK1 = 0.48 h-1; rCDK2 = 0.48 

h-1; rWEE1 = 0.48 h-1 rCDK2E = 0.48 h-1; rbd = 0.01 h-1; rcd = 0.015 h-1; rbr = 0.3 h-1; rn = 0.1 

h-1; rh = 0.4 h-1; ks = 0.1; rCDK1y = 3.84 h-1; dCDK1y = 1.08 h-1; ra = 0.19 μm/h; rp = 0.44 

h-1; ath = 0.95×21/2×a0; Nth
CDK2E = 0.99; Nth

CDK1y = 0.1; and Qth = 0.02. All inhibition 

parameters from Table 4 are set to zero here, and the cell cycle specificity function CST 

values are explicitly assigned in Figure 1.
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Figure 3. 
Model physical features. A. Each individual cell is characterized by its position xi, and a 

radius ai. dij denotes the physical distance between cells xi and xj. When cells overlap the 

repulsive forces fij (arrows) are exerted to restore volume exclusivity. B. Diagrams (I)–(V) 

illustrate the algorithm restoring volume exclusivity between four overlapping cells: the 

consecutive diagrams show how cell sizes evolve in one time step to ensure cell growth and 

volume exclusivity. The depicted overlapped sizes are greatly exaggerated for visual 

purposes. The initial cell configuration is shown in (I). When all cell sizes increase, 

following Eq. (11), the cells overlap and repulsive forces between them are activated (II). 

Arrows with matching colors indicate pairs of repulsive forces that will result in cell 

relocation along the corresponding force direction; note, that the middle cells experience 

three repulsive forces, and thus will be moved along the averaged direction—in the 

presented case this relocation is minimal. As a result, the overlapping sizes have been 

reduced but not eliminated (III). The middle cell is surrounded; therefore, following step (iv) 

of the algorithm, its size needs to be reduced (IV). The dashed circle in (IV) indicates cell 

size before reduction. The three other cells are not surrounded, thus according to step (ii′) of 

the algorithm, they will be pushed along the acting repulsive forces, away from the middle 

cell, without reducing their sizes (V). The dashed circles in (V) indicate previous locations 

of cells. The procedure described in diagrams (I)–(V) represents one time step in our 

simulation.
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Figure 4. 
A comprehensive algorithm for cell radius growth ensuring volume exclusivity.
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Figure 5. 
Collective behavior and spatial organization of cells with different motilities. A. Population-

doubling curves with the inset snapshot of the common initial condition at the time zero. B–
D. Final snapshots from three simulations with different motilities. The video recording of 

these three simulations is shown in Video 1 in the Supplementary material. The initial 

population in the culture is ten cells and identical initial conditions are used in all three 

simulations. Colors are used to show the cell cycle phases: G1 (red), G1 older than 24 hours 

(magenta), S (green), and G2/M (blue). The coloration corresponding to the cell cycle 

phases follows the experimental FUCCI (fluorescent ubiquitination-based cell cycle 

indicator) method [26]. E–G. Traces of cell size from one particular cell (index nine out of 

ten). The solid lines in the first two cycles show the analytic solution of Eq. (11). H–J. 

Population cell cycle distributions. All cell cycle specific parameters are listed in Figure 2. 

Physical parameters used: k = 5 [k] and η = 1 h· [k]; [k] is an arbitrary unit for k.
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Figure 6. 
Cell colony growth in the control case without inhibitors. A normalized population-doubling 

curve with four snapshots of the cell culture (domain size, 500×500 μm2; cell motility, m100) 

and corresponding cell age histograms. The video recording of simulation snapshots with the 

corresponding age histogram is shown in Video 2 in the Supplementary material. Cells are 

color-coded to show: G1 phase (red), G1 phase duration of more than 24 hours (magenta), S 

phase (green), G2/M phase (blue). Parameter values are the same as in Figure 5.
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Figure 7. 
A-C. Cell growth charts and growth shortage (i.e., |aexpect - aactual| / aexpect, where the aexpect 

value is determined by Eq. (11).) histogram at three different times. Individual cell data 

points are shown by circles and the analytic solution for cell radius (Eq. (11)) are the top 

solid curves. Lower solid curves are progressively decreasing percentile curves in 5% 

decrements. D. The population cell-cycle distributions over the 144 hours of simulation.
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Figure 8. 
Inhibition response curves for CDK1 and CDK2 inhibitors. Each simulation starts with 400 

cells with the same initial configuration and age distribution. The solid diamond and square 

corresponding to the amplification factor of one indicate the simulation results with the 

parameters rCDK1i = 0.045 h-1 and rCDK2i = 0.075 h-1, respectively.
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Figure 9. 
The effects of CDKs inhibitors applied separately and in combination. A. The normalized 

population-doubling curves for all four cases with the inset snapshot of the common initial 

condition at the time zero (cell motility, m100, rCDK1i = 0.045 h-1, rCDK2i = 0.075 h-1; 

domain size, 500 × 500 μm2). Cells are color-coded to show: G1 phase (red), S phase 

(green), G2/M phase (blue). B–E. The population cell cycle distributions collected over 60 

hours of simulations for all four cases. F–G. Evolution of the most relevant cell cycle 

regulation variables for the CDK2 inhibition. Colors correspond to the cell cycle phases. H–
I. Evolution of the most relevant cell cycle regulation variables for the CDK1 inhibition. J–
L. Snapshots taken at the end of each simulation and the corresponding phase-wise cell-age 

histograms. See Video 3 in the Supplementary material for the animated snapshots from 
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each simulation. All the parameters identical as in Figure 6, additionally rCDK1i = 0.045 h-1 

and rCDK2i = 0.075 h-1.
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Figure 10. 
The effects of cell motility (m100 vs. m1) and cluster formation on CDK1 inhibition. A. 

Population-doubling curves of cells with motility m1 (black circles) and m100 (orange 

diamonds) with distributions of cell cycle phases (insets). Initially, cells are grown without 

inhibitors until they reach a population of 400 cells, then CDK1 inhibition is applied (74 

hours for m100 and 77 hours for m1, shown by red arrows). B. Selected snapshots from both 

simulations from A. See Video 4 in the Supplementary material for the animated snapshots 

from each simulation. C. Two simulations starting with 400 cells of motility, either m1 or 

m100, grown for an additional 60 hours under the CDK1 inhibition.
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Figure 11. 
CDK2 inhibition and combined inhibitions with the motility m100 or m1. A. Population-

doubling curves with snapshots at the end of each simulation. Two red arrows indicate when 

the CDK2 inhibition was initiated for each case (i.e., at 74 hours for the motility m100, and 

at 77 hours for the motility m1). B–C. The corresponding population cell cycle distributions. 

D. Population-doubling curves with snapshots at the end of each simulation. Two red arrows 

indicate when the combined inhibition started for each case (i.e., at 74 hours for the motility 

m100, and at 77 hours for the motility m1). E–F. The corresponding population cell cycle 

distributions.
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Figure 12. 
CDK1 inhibition with the motility m1 in 3D. A. Selected simulation snapshots in the domain 

of 500×500×500 μm3. The simulation starts with ten cells without CDK1 inhibition. After 

waiting for 225 hours, when clusters are big enough, the CDK1 inhibition is initiated. Sixty 

hours later a majority of visible cells are blue, indicating that they are in G2/M phase. See 

Video 5 in the Supplementary material for the animated snapshots from the simulation. B. 

Selected cross-sections from the rightmost panel in A. are shown to display the cluster 

inside.
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Figure 13. 
Simulated responses to various drug characteristics and dosage. A. Population cell cycle 

distributions taken at 12-hour intervals between 0 and 60 hours. Each panel corresponds to 

cell population response to different sets of CDK1 and CDK2 inhibition parameters 

(representing hypothetical drugs). The center panel is the case referred to as the combined 

CDK1-CDK2 inhibition in Figure 9. B. Dosage response curve following five different 

hypothetical drugs. The markers on the graphs represent size of cell population after 60 

hours of simulated time under the combined inhibition treatment. The size of cell population 

is normalized by the size of untreated cell population. The inhibition parameters are given 

by α · rCDK1i and α · rCDK2i, where α runs from 0 to 2 with a step size 0.1, and rcdk1i and 

rCDK2i are specified by the legend. Five different sets of parameters (rCDK1i, rCDk2i) 

correspond to the top row (magenta, black, blue; from left to right) and the right column 

(blue, red, green; from top to bottom) in Figure 13A. Having α equal to zero corresponds to 

the untreated case, therefore, all five graphs start with normalized value of 1 for α = 0.

Kim et al. Page 43

J Theor Biol. Author manuscript; available in PMC 2017 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kim et al. Page 44

Table 1

Pseudo-code of the full algorithm of cell cycle regulation, growth, migration, and cell–cell interactions.

Program cell cycle update for Δt

for i=1 to Number_of_cells

 Update all Nprotein

 Update Q, P

 Update ai's

end of for

for i=1 to Number_of_cells

 Calculate repulsive forces based on updated ai

 Update location

end of for

Neighbor search

for i=1 to Number_of_cells

 Apply growth rate compromise algorithm based on ai to settle ai
final

 ai =ai
final

end of forfor i=1 to Number_of_cells

 Update cell phase based on new variables

end of for

Calculate motility forces for each cell

for i=1 to Niteration

 Update locations of all cells following the motility forces for Δt / Niteration

 Calculate repulsive forces based on ai

 Update location

 Neighbor search

end of for

for i=1 to Number_of_cells

 if cell qualifies for the cell division

 Replace with two daughter cells

 end of if

end of for

J Theor Biol. Author manuscript; available in PMC 2017 June 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kim et al. Page 45

Table 2

Model variables.

Symbol Name

a Cell radius

P (=Po+Pc) DNA replication index

Q DNA damage index

NCDK1 Amount of CDK1

NCDK1y Amount of CDK1 with phosphorylation at Tyr 15

NCDK1i Amount of inhibited CDK1 (no contribution of DNA repair)

NCDK2 Amount of CDK2

NCDK2i Amount of inhibited CDK2 (no contribution to CDK2E synthesis)

NWEE1 Amount of WEE1

NCDK2E Amount of CDK2 and cyclin E complex
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Table 3

Model equations including cell cycle control equations (1–11) and cell growth and migration equations (11–

15).

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)
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(13)

(14)

(15)
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Table 4

Model parameters.

Symbol Name Value

a0 Typical cell size 5 μm

ra Cell radius growth rate (default) 0.19 μm/s

rp DNA replication rate 0.44 h-1

rbd DNA damage rate (background) 0.01 h-1

rcd DNA damage rate (copied part in S phase) 0.015 h-1

rbr DNA repair rate (background) 0.3 h-1

rn DNA repair rate (non-homologous end joining) 0.1 h-1

rh DNA repair rate (homologous recombination) 0.4 h-1

ks DNA repair suppress constant 0.1

rCDK1 CDK1 production rate 0.48 h-1

rCDK1i CDK1 inhibition rate 0.045 h-1

rCDK2 CDK2 production rate 0.48 h-1

rCDK2i CDK2 inhibition rate 0.075 h-1

rWEE1 WEE1 production rate 0.48 h-1

rCDK1y CDK1y synthesis rate 2.4 h-1

rCDK2E MF synthesis rate 0.48 h-1

dCDK1y CDK1y degradation rate in G2 phase 1 h-1

ath Threshold for a in G1 phase 0.95×21/2×a0

Nth
CDK2E Threshold for MF in G1 phase 0.99

Nth
CDK1y Threshold for CDK1y in G2 phase 0.1

Qth Threshold for Q in M phase 0.02

k Repulsive spring constant 5 [k]

η Linear drag coefficient 1 h·[k]
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