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ABSTRACT Infections of the central nervous system (CNS) are often acute, with sig-
nificant morbidity and mortality. Routine diagnosis of such infections is limited in
developing countries and requires modern equipment in advanced laboratories that
may be unavailable to a number of patients in sub-Saharan Africa. We developed a
TaqMan array card (TAC) that detects multiple pathogens simultaneously from cere-
brospinal fluid. The 21-pathogen CNS multiple-pathogen TAC (CNS-TAC) assay includes
two parasites (Balamuthia mandrillaris and Acanthamoeba), six bacterial pathogens
(Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Myco-
plasma pneumoniae, Mycobacterium tuberculosis, and Bartonella), and 13 viruses
(parechovirus, dengue virus, Nipah virus, varicella-zoster virus, mumps virus, measles
virus, lyssavirus, herpes simplex viruses 1 and 2, Epstein-Barr virus, enterovirus, cytomeg-
alovirus, and chikungunya virus). The card also includes human RNase P as a nucleic
acid extraction control and an internal manufacturer control, GAPDH (glyceraldehyde-3-
phosphate dehydrogenase). This CNS-TAC assay can test up to eight samples for all
21 agents within 2.5 h following nucleic acid extraction. The assay was validated for
linearity, limit of detection, sensitivity, and specificity by using either live viruses
(dengue, mumps, and measles viruses) or nucleic acid material (Nipah and chikungu-
nya viruses). Of 120 samples tested by individual real-time PCR, 35 were positive for
eight different targets, whereas the CNS-TAC assay detected 37 positive samples
across nine different targets. The CNS-TAC assays showed 85.6% sensitivity and 96.7%
specificity. Therefore, the CNS-TAC assay may be useful for outbreak investigation
and surveillance of suspected neurological disease.
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Infections of the central nervous system (CNS) such as meningitis, encephalitis, or
meningoencephalitis may present as an acute illness with significant mortality and

extended sequelae (1). Because these infections are often difficult to diagnose in the
laboratory, clinical diagnoses often rely upon modern noninvasive techniques, includ-
ing computerized tomography scans and in some cases magnetic resonance imaging.
Access to these advanced clinical diagnostic techniques is limited to large metropolitan
hospitals rarely found in developing countries. Even with neuroimaging, the determi-
nation of etiologic agents causing meningitis and encephalitis remains complicated,
requiring confirmation using other laboratory tests (2, 3). Laboratory tests can identify
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a number of etiological agents responsible for bacterial and viral meningitis. Timely
identification of these agents continues to be challenging in developing countries,
where physicians frequently resort to empirical treatment with little or no benefit.

Advances in molecular diagnostic technology have fostered the development of
multiple pathogen detection systems based on PCR. The advent of real-time PCR and
multiplexing technologies has facilitated the detection of multiple targets from a single
clinical sample (4–7). Although multiplex PCR is susceptible to reduced efficiency and
sensitivity due to competition for PCR reagents by the different targets, specificity may
also be affected if closely related targets are not selected and validated carefully. These
problems can be overcome by using the TaqMan array card (TAC), which utilizes
microfluidic technology and single-plex PCRs configured in a 384-well array format. The
TAC has previously been used to detect pathogens responsible for respiratory (8, 9),
enteric (10), and neonatal (11) infections as well as other acute febrile illnesses (12).
Even though a number of multiplex pathogen detection assays, e.g., BioFire, SeeGene,
and Fast Track diagnostics, are commercially available, there are numerous advantages
to the TAC, including ease of use, low risk of contamination attributable to the sealed
format, the ability to modify or replace individual targets without additional optimiza-
tion, and a small sample volume requirement compared to using multiple single agent
real-time PCR assays (13, 14).

In this study, we evaluated a CNS multiple-pathogen TAC (CNS-TAC) assay for 21
etiologies and validated the CNS-TAC assay results alongside individual real-time PCR
(IRTP) assays for nine pathogens (four viruses, four bacteria, and one parasite). The
purpose of this evaluation was to determine the sensitivity and specificity of the
CNS-TAC assay compared to IRTP assays in detecting multiple pathogens from clinical
samples. We likewise propose the use of this tool in outbreak settings, providing
reduced turnaround times resulting in timely and agent appropriate interventions. In
addition, the method will be used to improve our understanding of the epidemiology
of the CNS.

RESULTS
Analytical performance (plasmid controls). All assays exhibited a linear relation-

ship between threshold cycle (CT) values and the concentrations of nucleic acids.
CNS-TAC assays demonstrated linearity with R2 values ranging between 0.987 and
0.998, except for the measles assay which had a R2 value of 0.920. The PCR efficiency
for detection of all targets in the plasmid ranged from 98.7 to 99.7%, whereas measles
virus had an efficiency of 92.0% (Table 1).

The lower limit of detection (LOD) for all targets was 1.6 � 10�7 ng/well, an
equivalent of 54 copies per well (Fig. 1). At a concentration of 1.6 � 10�2 ng/well, the
assay sensitivity ranged from 80 to 100% for the plasmid targets and was 55% for the
measles virus nucleic material. The specificity for all of the positive controls was 100%.
The assays showed an accuracy range of 96.7 to 100% at a concentration of 1.6 � 10�2

ng/well. The variation in reproducibility of the CT values for the 21 targets ranged
from 0.9 to 2.2% for the high-concentration control, and it was 8.6% for the measles
assay. The variation in the reproducibility of the low-concentration control material
ranged from 1.0 to 7.5% for the plasmid targets, and it was 6.7% for the measles
assay (Table 1).

Clinical performance. We tested by CNS-TAC assay 120 specimens, 35 of which
were initially positive upon IRTP analysis to validate the assays. The specimens were
positive for nine targets: 4% (5/120) cytomegalovirus (CMV), 4% (5/120) Neisseria
meningitidis, 8% (10/120) Epstein-Barr virus (EBV), 3% (3/120) varicella-zoster virus (VZV),
5% (6/120) Streptococcus pneumoniae, 2% (2/120) mumps virus, 6% (7/120) Mycobac-
terium tuberculosis, 2% (2/120) Acanthamoeba, and 2% (2/120) Haemophilus influenzae.
The specificity for all nine targets across 120 samples ranged from 87.5 to 100%.
Streptococcus pneumoniae had the lowest specificity (87.5%), whereas CMV, VZV,
mumps virus, and Haemophilus influenzae all had specificities of 100%. Compared to
IRTP, the overall sensitivity of the CNS-TAC assay ranged from 33.3% for VZV to 100%
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for Neisseria meningitidis (Table 2). Low sensitivities (�50%) were observed in cases
where there were small sample sizes of positive targets as seen with the mumps virus
and VZV assays (Table 2). Although Acanthamoeba was not detected by IRTP in any of
the samples, the CNS-TAC assay detected this target in two samples. Further attempts
to detect this by IRTP failed to yield positive results.

DISCUSSION

We describe our evaluation of an in-house-developed CNS-TAC assay that can be
used to test cerebrospinal fluid (CSF) for infections associated with meningitis and
encephalitis. Infections of the CNS comprise a number of serious and often fatal
infections, and yet such infections often pose challenges in diagnosis (15). Many of the
pathogens associated with CNS infections are detected by culture, microscopy, or

TABLE 1 Analytical performance of the CNS-TAC assaya

Target

Linearity
Accuracy
(sensitivity %)

Reproducibility
(CV%)

Linearity
(R2)

Efficiency
(%)

High
concn

Low
concn

High
concn

Low
concn

Bartonella 0.994 99.4 100 80.0 1.6 2.3
Chikungunya 1 virus 0.991 99.1 100 100 1.3 5.7
Chikungunya 2 virus 0.994 99.4 100 100 1.8 5.5
CMV 0.994 99.4 100 100 1.5 4.1
EBV 0.987 98.7 100 100 1.5 6.8
HSV 1 0.987 98.7 96.7 100 2.3 4
HSV 2 0.993 99.3 100 100 0.9 4
Measles virus 0.92 92.0 100 55.0 8.6 6.7
Mumps virus 0.997 99.7 100 100 1.1 2
Mycobacterium tuberculosis 0.993 99.3 96.7 100 1.0 5.1
VZV 0.993 99.3 100 95.0 2.4 2.7
Mycoplasma pneumoniae 0.993 99.3 100 100 1.0 2.9
Nipah virus 0.980 98.0 100 100 1.4 1
Neisseria meningitidis 0.994 99.4 100 100 1.8 4
Pan-dengue virus 0.993 99.3 100 100 2.1 1.7
Haemophilus influenza 0.993 99.3 100 100 1.2 5.2
Parechovirus 0.995 99.5 96.6 85.0 1.9 5.6
Streptococcus pneumoniae 0.992 99.2 100 95.0 1.2 7.4
RNase P 0.993 99.3 100 95.0 1.8 1.6
Acanthamoeba 0.990 99.0 100 100 1.8 4.1
Balamuthia mandrillaris 0.990 99.0 100 100 1.7 5.4
aHigh concentration � 1.6 � 10�2 ng/well or 5.3 � 106 copies per well; low concentration � 1.6 � 10�7

ng/well or 54 copies per well. CV, coefficient of variance.

FIG 1 Test of linearity for all targets in the TAC. Dilutions from 1.6 � 10�2 to 1.6 � 10�7 are shown as bars on the x axis.
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antigen detection techniques. PCR is generally more reliable at detecting pathogens in
the CSF, with substantially higher sensitivity than other diagnostic methods such as
culture and enzyme-linked immunosorbent assay if the samples are collected at the
appropriate time during the infection (16–18). PCR-based approaches for detecting
multiple pathogens in a single array not only increase the number of pathogens that
can be detected but also reduce the overall amount of time needed to rule out multiple
pathogens. Therefore, we utilized previously published real-time PCR assays incorpo-
rated into a CNS-TAC assay. With improvements in sensitivity and ease of use, such
multipathogen TAC assays have been used in the detection of both human respiratory
and enteric pathogens (8–10). All CNS-TAC assays had LODs similar to what has been
described elsewhere for respiratory and enteric pathogens (8, 10). Although this
CNS-TAC method was designed for East Africa, many of the pathogens evaluated here
cause CNS infections worldwide, and therefore the card is suitable for broader use. In
this study, we designed and evaluated a CNS-TAC method that was able to detect 13
viruses, 6 bacteria, and 2 parasites. Clinical evaluation was against 120 patient samples;

TABLE 2 Sensitivity of CNS-TAC assays compared to IRTP assays using a CT of 40 as a
cutoffa

Target and parameter IRTP assay TAC assay % Sensitivity (95% CI)

CMV
No. positive 7 5 100 (59.0–100)
Mean CT � SD 35.5 � 2.8 33.0 � 2.3
Median CT (range) 36 (30.7–38.9) 33.2 (29.9–36)

Neisseria meningitidis
No. positive 5 5 100 (47.8–100)
Mean CT � SD 24.2 � 1.9 23.16 � 1.6
Median CT (range) 24.4 (21.5–26.7) 23 (21.1–24.9)

EBV
No. positive 8 10 80.0 (44.4–97.5)
Mean CT � SD 34.9 � 2.0 32.2 � 1.1
Median CT (range) 35.5 (31.5–37.0) 32.1 (29.8–34.0)

VZV
No. positive 1 3 33.3 (0.8–90.6)
Mean CT � SD 30.6 28.3 � 3.5
Median CT (range) 29.0 (24.4–31.3)

Streptococcus pneumoniae
No. positive 5 6 83.3 (35.9–99.6)
Mean CT � SD 23.0 � 3.2 22.4 � 4.0
Median CT (range) 22.8 (18.8–27.5) 22.3 (17.6–27.6)

Mumps virus
No. positive 1 2 50.0 (1.3–98.7)
Mean CT � SD 31.8 27.3 � 6.2
Median CT (range) 27.3 (22.9–31.8)

Mycobacterium tuberculosis
No. positive 6 7 85.7 (42.1–99.6)
Mean CT � SD 33.4 � 2.5 32.2 � 4.0
Median CT (range) 33.1 (29.9–37.7) 34.0 (24.8–36.8)

Haemophilus influenzae
No. positive 2 2 100 (47.8–100)
Mean CT � SD 22.1 � 6.6 23.2 � 5.6
Median CT (range) 22.1 (17.4–26.8) 23.2 (19.2–27.2)

Acanthamoeba
No. positive 0 2
Mean CT � SD 34.9 � 3.2
Median CT (range) 34.1 (33.9–38.4)

aIRTP, individual real-time PCR; TAC, TaqMan array card; CI, confidence interval.
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35 of these specimens were found to be positive for eight pathogens using IRTP. The
patient samples used in clinical validation were collected from subjects presenting at
either Mbagathi District Hospital or Siaya District Hospital for patient care.

Analysis of the clinical validation demonstrated an average sensitivity of 79% across
the TAC. This excluded the two Acanthamoeba positive specimens that failed to amplify
by IRTP, suggesting that these were false-positive reactions. However, this average
sensitivity was skewed by the VZV assay, which had a suboptimal sensitivity of 33.3%;
eliminating these results from the calculation yields an average sensitivity of 85.6%. The
low sensitivity for VZV and mumps virus may be attributed to the low numbers of
positive samples tested. A parasite with global distribution, Balamuthia mandrillaris,
was not detected by the assay in this card. This could have been due to the small
sample size tested or to the absence of this pathogen in patients from the two
geographical regions sampled in Kenya. Additional positive samples for these targets
are needed to accurately determine the sensitivity of these assays. Alternatively, we
advise the exclusion of these targets with low sensitivities from cards designed for
future studies. Acanthamoeba spp. and Balamuthia mandrillaris are free-living amoebas
that can potentially cause infections in humans and have been implicated in CNS
infections worldwide (19). However, the prevalence of these pathogens is not well
documented in sub-Saharan Africa. On the other hand, Plasmodium falciparum infec-
tion can present in a severe form of cerebral malaria, with a mortality rate of 10 to 25%,
and is most common in sub-Saharan Africa (20, 21). Similarly, several studies have
implicated cryptococcal meningitis as the major cause of meningitis among HIV-
infected individuals in sub-Saharan Africa (22–24). Therefore, we recommend replace-
ment of the Acanthamoeba and Balamuthia mandrillaris targets with Plasmodium
falciparum and cryptococcal meningitis, which are more prevalent in sub-Saharan
Africa, in future versions of these cards. The average specificity for CNS-TAC assay for
the eight targets was 96.7%. A subset of samples failed to amplify RNase P in CNS-TAC
(13%) and IRTP (6%) analyses. Usually, this would suggest inappropriate specimen
collection, sample degradation, or the complete absence of human DNA in some CSF
samples. However, the concentration of RNase P should reflect the concentration of
white blood cells in the specimen, since CSF is usually free of human DNA. This suggests
that a different marker should be used in the future as a control for specimen integrity
for CSF.

The CNS-TAC assay detected seven targets that were not detected by the IRTP
assays. These additional detections failed to yield positive results using IRTP despite
numerous attempts, and as such, are possibly false positives that would negatively
impact the specificity of the TAC assays since the IRTP method was considered the gold
standard for these comparisons. These discrepancies could possibly be explained by
additional freeze-thaw cycles negatively impacting nucleic acid integrity for the IRTP
assay. However, the observed mean CT of 30.8 � 4.2 indicates significant amplification
and would argue against this possibility.

In our protocol, two of eight lanes were occupied on the first TAC: one of the eight
lanes of the card was designated a no-template negative control, and another was
designated the combined positive control. Subsequent cards tested would hold a
negative control and seven specimens on a card. Up to three cards were tested per day
in one ViiA-7 machine, which allowed for 20 specimens to be tested for 21 pathogens
each per day. This greatly reduces the turnaround time for specimen testing compared
to IRTP assays. Despite the discrepancies observed between TAC and IRTP, we think
there is added value in the use of CNS-TAC as a screening assay in outbreak settings.
Indeed, samples with positive IRTP or TAC results require further investigations, includ-
ing gene sequencing, among other confirmatory tests. Our future plans are therefore to
confirm all the TAC positives by sequencing, as well as to further validate the CNS-TAC
assay using a larger sample size from patients presenting with CNS infections from
other geographical sites within Kenya. This will help us better understand the utility of
CNS-TAC in outbreak investigations.
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MATERIALS AND METHODS
CNS-TAC design. The CNS card includes assays for the detection of six bacterial pathogens,

Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Mycoplasma pneumoniae, My-
cobacterium tuberculosis, and Bartonella (genus specific); 13 viruses, parechovirus, pan-dengue virus
(detects all four serotypes), Nipah virus, VZV, mumps virus, measles virus, pan-Lyssa virus, HSV-1 and -2,
EBV, enterovirus, CMV, and chikungunya virus (detection is based upon two different gene targets for all
three genotypes); and two parasites, Balamuthia mandrillaris and Acanthamoeba (Fig. 2). All primers and
probes were adapted from previously published assays, except for the M. tuberculosis assay, which
is described for the first time here. Primers and probes for the targets were titrated individually by
real-time PCR using genomic DNA, plasmid DNA, or RNA on a Bio-Rad CFX 96 platform and
AgPath-ID One-Step RT-PCR master mix (Life Technologies, United Kingdom). Once titrated, the
primers and probe for each assay were preloaded and dried by a ViiA7 Applied Biosystems (Foster
City, CA) instrument in duplicate wells on the TAC, which included three intrinsic controls: (i) an
extraction control, RNase P; (ii) measles virus RNA acting as both a target control and a RNA control;
and (iii) an internal manufacturer control, glyceraldehyde-3-phosphate (GAPDH) (Table 3). All of the
assays in this card apart from lyssavirus and pan-dengue virus assays were developed at the Centers
for Disease Control and Prevention (CDC) and are used routinely for clinical diagnosis in the United
States. The other two assays were developed at the University of Pretoria, South Africa, and the
Bernhard Nocht Institute, Germany, respectively.

Design of combined positive control. Customized combined positive controls were designed and
synthesized in two different plasmids. The design and orientation of the positive-control plasmid maps
are similar to that described by Kodani and Winchell (25). The forward primer sequence was placed
downstream of the plasmid pUC57 T7 sequence, followed by the probe sequence and finally the reverse
primer sequence. The plasmid comprised these concatenated sequences for all targets. The two plasmids
were designated A and B. Plasmid A contained sequences for Bartonella, CMV, EBV, HSV-1 and -2, mumps
virus, Mycobacterium tuberculosis, VZV, Mycoplasma pneumoniae, Nipah virus, Neisseria meningitidis,
pan-dengue virus, Haemophilus influenzae, parechovirus, Streptococcus pneumoniae, and RNase P. Plas-
mid B contained sequences for chikungunya virus targets 1 and 2, Acanthamoeba, and Balamuthia
mandrillaris. Measles virus RNA was spiked into plasmid B preparation as an exogenous control for the
virus, as well as an RNA control. Positive-control extracts were titrated following a 10-fold dilution to
determine the LOD.

Analytical validation. The LOD, linearity, repeatability, and reproducibility were determined using
10-fold dilutions of the positive-control material using infection-free CSF as the diluent. The positive-
control materials were derived from nucleic acid materials from the respective targets. Nucleic acid
material from RNA viruses was transcribed into cDNA and prepared for gene cloning. Repeatability
was tested using eight repeats on a single card, whereas reproducibility was tested with 10 serial
dilutions of each plasmid and assayed over 5 days. The lower LOD was defined as the lowest
concentration at which the target could be detected in all of the diluted samples. Analytical
validation of these assays was performed at the National Center for Emerging and Zoonotic
Infectious Diseases at the CDC.

Testing of CSF. CSF samples were obtained from patients in either Mbagathi District Hospital in
Nairobi or Siaya District Hospital in rural Western Kenya. Children older than 6 weeks and adults of all
ages were eligible for lumbar puncture if they presented with two or more signs and symptoms of CNS
infection, such as fever (�38°C) and/or history of reported fever in the last 3 days, neck stiffness and/or

FIG 2 CNS-TAC layout with 22 encephalitis targets, as well two human DNA/RNA controls, GAPDH and
RNase P. PCRs for all the targets, including intrinsic controls, were customized for testing in duplicates.
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TABLE 3 Oligonucleotide sequences for CNS-TAC assaysa

Target Gene ID Sequence (5=–3=) Reference

CMV UL55 For AGG TCT TCA AGG AAC TCA GCA AGA 26
Rev CGG CAA TCG GTT TGT TGT AAA
Pr FAM-ACC CCG TCA GCC ATT CTC TCG GC-BHQ 1

EBV BNRF1 For GGA ACC TGG TCA TCC TTT GC 27
Rev ACG TGC ATG GAC CGG TTA AT
Pr FAM-CGC AGG CAC TCG TAC TGC TCG CT-BHQ 1

Mycobacterium tuberculosis IS6110 For CCT ACT ACG ACC ACA TCA —b

Rev CCG TAA ACA CCG TAG TTG
Pr FAM-ATG TGC TCC TTG AGT TCG CCA T-BHQ 1

Neisseria meningitidis sodC For CCA CCC GTG TGG ATC ATA ATA GA 28
Rev GCA CAC TTA GGT GAT TTA CCT GCA T
Pr FAM-CA TGA TGG CAC AGC AAC AAA TCC TGT TT-BHQ 1

Streptococcus pneumoniae lytA For ACG CAA TCT AGC AGA TGA AGC A 29
Rev TCG TGC GTT TTA ATT CCA GCT
Pr FAM-TG CCG AAA ACG CTT GAT ACA GGG AG-BHQ 1

VZV ORF29 For CAC GTA TTT TCA GTC CTC TTC AAG TG 30
Rev TTAGACGTGGAGTTGACATCGTTT
Pr FAM-TACCGCCCGTGGAGCGCG-BHQ 1

Chikungunya virus 1 NSP1 For AAAGGGCAAACTCAGCTTCAC 31
Rev GCCTGGGCTCATCGTTATTC
Pr FAM-CTGTGATACAGTGGTTTCGTGTG-BHQ 1

Chikungunya virus 2 NSP4 For TCACTCCCTGTTGGACTTGATAGA 31
Rev TTGACGAACAGAGTTAGGAACATACC
Pr FAM-AGGTACGCGCTTCAAGTTCGGCG-BHQ1

Enterovirus 5= UTR For GGC CCC TGA ATG CGG CTA ATC C 32
Rev GCG ATT GTC ACC ATWA GCA GYC A
Pr FAM-CC GAC TAC TTT GGG WGT CCG TGT-BHQ1

Mycoplasma pneumoniae CARDS toxin For TTT GGT AGC TGG TTA CGG GAA T 33
Rev GGT CGG CAC GAA TTT CAT ATA AG
Pr FAM-TG TAC CAG AGC ACC CCA GAA GGG CT-BHQ1

HSV 1 US4 For TAT TGG TGC GAT GGC GAC AC 34
Rev CTT TCC GCA TGT GGG CTC TC
Pr FAM-CCC CGC CCC ATA CCC TAC CCG C-BHQ1

HSV 2 US6 For AGC ATC CCG ATC ACT GTG TAC TA 34
Rev GCG ATG GTC AGG TTG TAC GT
Pr FAM-CAG TGC TGG AAC GTG CCT GCC GC-BHQ 1

Measles virus N For TGG CAT CTG AAC TCG GTA TCA C 35
Rev TGT CCT CAG TAG TAT GCA TTG CAA
Pr FAM-CCGAG GAT GCA AGG CTT GTT TCA GA-BHQ1

Mumps virus NP For GTA TGA CAG CGT ACG ACC AAC CT 36
Rev GCG ACC TTG CTG CTG GTA TT
Pr FAM-CC GGG TCT GCT GAT CGG CGA T-BHQ 1

Parechovirus 5= UTR For GTAACASWWGCCTCTGGGSCCAAAAG 37
Rev GGCCCCWGRTCAGATCCAYAGT
Pr FAM-CCTRYGGGTACCTYCWGGGCATCCTT-BHQ 1

Bartonella ssrA For GCTATGGTAATAAATGGACAATGAAATAA 38
Rev GCTTCTGTTGCCAGGTG
Pr FAM-ACCCCGCTTAAACCTGCGACG-BHQ1

Haemophilus influenzae bexA For TGCGGTAGTGTTAGAAAATGGTATTATG 39
Rev GGACAAACATCACAAGCGGTTA
Pr FAM-ACAAAGCGTATCAATACTACAACGAGACGCAAAAA-BHQ1

Acanthamoeba 18S rRNA For CCCAGATCGTTTACCGTGAA 40
Rev TAAATATTAATGCCCCCAACTATCC
Pr FAM-CTGCCACCGAATACATTAGCATGG-BHQ1

Lyssavirus N For GTRCTCCARTTAGCRCACAT 41
Rev CACMGSNAAYTAYAARACNAA
Pr FAM-CATCACACCTTGATGACAACTCACAA-BHQ1

Balamunthia mandrillaris 18S rRNA For TAA CCT GCT AAA TAG TCA TGC CAA T 40
Rev CAA ACT TCC CTC GGC TAA TCA
Pr FAM-AG TAC TTC TAC CAA TCC AAC CGC CA- BHQ1

Pan-dengue virus 3= NCR For GGA TAG ACC AGA GAT CCT GCT GT 42
Rev 1 CAT TCC ATT TTC TGG CGT TC
Rev 2 CAA TCC ATC TTG CGG CGC TC
Pr FAM CA GCA TCA TTC CAG GCA CAG-BHQ1

(Continued on next page)
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bulging fontanel, headache, reduced level of consciousness, or new-onset seizures. A total of 120
samples, including 35 that were positive for any of the CDC in-house IRTP assays, were also tested using
the CNS-TAC method. CDC in-house assays were designed to include targets for CMV, EBV, mumps virus,
Mycobacterium tuberculosis, VZV, Neisseria meningitidis, Haemophilus influenzae, Acanthamoeba, and
Streptococcus pneumoniae. In addition, 85 randomly selected samples, determined to be negative in IRTP
assays, were tested by the CNS-TAC assay to determine specificity.

Nucleic acids were extracted from CSF specimens using the KingFisher ML extraction platform
(Thermo Scientific, Waltham, MA) and MagMax nucleic isolation kit (Life Technologies, Carlsbad, CA).
Portions (100 �l) of CSF specimens were mixed with 260 �l of lysis binding solution and added to the
columns. The column was washed once with 600 �l of wash solution 1 and then twice with 450 �l of
wash solution 2 according to the manufacturer’s recommendations. After the wash steps, the nucleic
acids were eluted with 60 �l of elution buffer. An additional 166 �l of previously PCR-positive samples
was reextracted for IRTP testing using the same platform and kit. We used 433 �l of lysis binding solution
to adjust for the increased sample volume. The samples were then eluted in 100 �l of elution buffer. An
increased extraction volume was required for the eight IRTP assays, and this increased volume did not
alter the sensitivity of the assays. The CNS-TAC assays were compared to the cognate IRTP assays on
96-well plates under the same thermocycling conditions using the same PCR master mix and 5 �l of
nucleic acids as the template. Samples with a CT of �40 were interpreted as negative, and those with a
CT of 35 to 40 were classified as indeterminate and retested. If these CT values remained within the range
of 35 to 40, they were ultimately classified as weak positives.

The CNS-TAC assays were run on a ViiA-7 real-time PCR system using an AgPath-ID One-Step
real-time PCR kit (Applied Biosystems, Foster City, CA). The PCR master mix for each card included 1�
RT-PCR buffer, RT-PCR enzyme in a final 100-�l reaction volume. A 46-�l portion of nucleic acid extract
was added to the master mix. Each run consisted of a negative control and a positive control for the first
card of the day to be tested. A minimum of three cards were tested per day, with thermal cycling
conditions as follows: 45°C for 10 min, 94°C for 10 min, and then 45 cycles of 94°C for 30 s and 60°C for
1 min. These clinical analyses were performed at the Centre for Global Health Research of the Kenya
Medical Research Institute (KEMRI) in western Kenya.

Data analysis. Receiver operating characteristic analysis was used to derive CT cutoffs. The CT values
for CNS-TAC and IRTP assays were compared using a t test, whereas dichotomous measures of the
presence or absence of extrinsic controls were compared using a Fisher exact test. Linearity was tested
by fitting linear regression models of CT values against the concentrations of nucleic acids and inter-
preting the R2. The sensitivity of the CNS-TAC assay was also calculated against the gold standard: IRTP
for nine targets. All analyses were performed using STATA v13 (StataCorp).

Ethical approval. This study was covered under an investigational protocol reviewed by human
subject review experts from the institutional review boards at the CDC (protocol 6092) and KEMRI (SSC
protocol 1948). Informed written consent for survey participation, and CSF collection was obtained from
all adult participants 18 years of age and older and from mature minors 13 to 17 years old. Verbal assent
from minors (children 13 to 17 years old) and written consent from parents or guardians of those minors
were obtained, and written consent from parents was obtained for children �13 years old. If a patient
of any age was unable to provide consent or assent because of altered mental status, consent was
obtained from the patient’s responsible family member or guardian.
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Rev GAG CGG CTG TCT CCA CAA GT
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