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Abstract

Purpose of the Review—It is well-established that the age-related increase in blood pressure is 

augmented after menopause. Yet, the prevalence of hypertension is enhanced in low birth weight 

women relative to normal birth weight counterparts by 60 years of age suggesting that adverse 

influences during fetal life heighten cardiovascular risk in later life.

Recent Findings—A changing hormonal milieu may contribute to increased cardiovascular risk 

that occurs after the menopausal transition. Low birth weight is associated with early age at 

menopause. A recent study indicates that a shift towards testosterone excess following early 

reproductive senescence may contribute to the etiology of age-dependent increases in blood 

pressure in a rodent model of low birth weight.

Summary—This review will highlight current findings related to postmenopausal hypertension 

and discuss potential mechanisms that may contribute to the enhanced cardiovascular risk that 

develops with age in low birth weight women.

Keywords

Women’s Health; Low Birth Weight; Blood Pressure; Menopause; Sex Steroids; Cardiovascular 
Disease

Introduction

Cardiovascular (CV) disease is the leading cause of death in women in the United States (1). 

Hypertension is a major risk factor for the development of CV disease and the etiology of 

hypertension includes lifestyle choices, such as diet and exercise, as well as genetic 

mechanisms. Yet, numerous studies suggest that adverse influences during fetal life also 

promote the development of CV risk including hypertension (2). Males and females exhibit 

a different timecourse in the onset of hypertension and CV risk that originates during fetal 
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life (3, 4, 5, 6, 7). Experimental studies indicate that unlike their male littermates, females 

exposed to an insult during fetal life do not develop an increase in blood pressure or CV risk 

in young adulthood relative to female controls (3, 4, 5, 6, 8, 9. Sex differences in blood 

pressure are also observed within the general population with men having higher blood 

pressure relative to women prior to menopause (10). Numerous mechanisms contribute to 

sex differences in primary hypertension with a role for sex steroids implicated in the 

progression of CV risk (11. Sex steroids may also contribute to sex differences in the onset 

of increased blood pressure that has its origins in fetal life (12).

Blood pressure increases with age and the prevalence of hypertension is higher among the 

elderly (13). After age 50, the prevalence of hypertension is greater in women versus men 

(14). Furthermore, the prevalence of hypertension is enhanced in low birth weight women 

relative to normal birth weight counterparts by 60 years of age (15) implicating a fetal origin 

in the etiology of heightened CV risk in women born small. Accelerated reproductive aging 

is a risk factor for CV disease (16). Low birth weight is associated with early age at 

menopause (17) and recent experimental studies demonstrate the development of early 

reproductive senescence in female offspring exposed to an adverse environment during fetal 

life. Whether accelerated reproductive aging in low birth weight women directly contributes 

to enhanced CV risk is not known. Yet, recent studies indicate a role for sex steroids in the 

development of age-dependent increases in blood pressure in an experimental model of low 

birth weight (12).

Clinical studies reveal that intensive hypertension treatment is advantageous in lowering 

systolic blood pressure and improving overall health (18). Although the prevalence of 

controlled hypertension is greater in women relative to men at 60 years or older, the 

percentage of uncontrolled hypertension in women at this age is almost 50% (19) suggesting 

that current knowledge regarding appropriate sex- and age-specific therapeutics is lacking. 

Birth weight and/or other perinatal factors are not yet a standard consideration in the 

treatment of hypertension. Thus, the purpose of this review is to examine the role of sex 

steroids in the etiology of increased blood pressure and CV risk following the onset of 

menopause and to explore potential mechanisms by which CV risk is enhanced in later life 

in women born low birth weight.

The Developmental Origins of Chronic Health and Disease

In the early 1980’s Dr. David Barker hypothesized a role for the fetal environment in the 

determination of CV risk in later life (20). Recognition of this phenomenon, now referred to 

as the developmental origins of chronic health and disease, was based on observations by 

Barker and colleagues that demonstrated an association between adverse influences during 

fetal life and adult mortality due to ischemic heart disease (20). Birth weight and blood 

pressure are also inversely related (21) further supporting the theory that susceptibility to CV 

disease can initiate in utero. The inverse relationship between birth weight and blood 

pressure is observed in both men and women (21). However, a study by Vos et al. showed 

that CV risk is two-fold greater in low birth weight men relative to low birth weight females 

in young adulthood (7) indicating a sex difference in susceptibility to CV risk that originates 

in fetal life. Andersson and colleagues reported that the prevalence of hypertension is 
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heightened in low birth weight women in later life relative to normal birth weight 

counterparts suggesting that low birth weight exacerbates age-related increases in CV risk. 

Yet, the effect of sex on CV risk in low birth weight individuals has not been studied in 

depth. Furthermore, studies investigating age as an additional insult are also very limited.

Experimental Models of Developmental Origins

Numerous experimental models are utilized to study the mechanisms by which insults 

during perinatal life are associated with an increased risk for hypertension and CV disease 

(3, 4, 6, 8, 9). Many of these mimic the pathophysiological causes of low birth weight and 

maternal conditions that impact fetal growth and increase later CV risk in the offspring (3, 4, 

5, 6, 8, 9). Preeclampsia is a major cause of fetal morbidity and mortality in the Western 

world (22). This pregnancy-specific disease is characterized by improper remodeling of the 

spiral arteries resulting in poor nutrient and oxygen delivery to the fetus (22), low birth 

weight (22) and increased blood pressure in the offspring (23). Alexander reported that 

placental insufficiency in the rat induced via reduced uterine perfusion results in intrauterine 

growth restriction (IUGR) associated with a significant increase in blood pressure in male 

IUGR offspring at 3 months of age (3). Yet, female IUGR offspring remain normotensive 

relative to female control offspring (3) suggesting that females in young adulthood are less 

susceptible to a developmental insult that programs increased CV risk in their male 

littermates (3). Other models of developmental origins also demonstrate a sex difference in 

blood pressure. Fetal undernutrition is the initiating insult in the hypothesis formulated by 

Dr. Barker (24). Utilizing protein restriction as a mediator of undernutrition, Woods and 

colleagues reported that a modest reduction in maternal protein intake programs 

hypertension in male (4) but not female low protein rat offspring (5) in young adulthood 

(approximately 5 months of age). Betamethasone is used clinically to accelerate lung 

development in preterm infants. Ortiz and colleagues observed a similar sex difference in 

blood pressure at 6 months of age in offspring exposed to prenatal dexamethasone (6). 

Bourque et al. reported that prenatal exposure to hypoxia (8) also induces sex-specific 

programming of CV risk with females protected relative to their male counterparts; a similar 

finding was demonstrated by Xiao and colleagues in a model of developmental origins 

induced by prenatal nicotine (9). However, recent studies indicate that females exposed to a 

developmental insult do not remain protected across the lifespan. Blood pressure is 

increased by 12 months of age in female IUGR offspring exposed to placental insufficiency 

(12, 25) or maternal protein restriction (26). CV risk is also increased with age in female 

exposed to prenatal nicotine (27). Thus, these studies suggest that protection against 

programmed CV risk is lost with age in females.

Models of Post-Menopausal Hypertension

Recent studies evaluating the prevalence of hypertension within the general population 

report that men in young adulthood exhibit a greater occurrence of hypertension compared 

to age-matched women (19). During mid-life (50–64 years of age), this difference subsides 

so that men and women display a similar prevalence of hypertension (19). However, as men 

and women age, the increase in blood pressure after menopause is accelerated in women 

compared to age-matched men (19). Production of E2, the predominant estrogen before 
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menopause, is greatly decreased after menopause (28). Production of estrone (E1), the 

predominant estrogen in postmenopausal women (PMW), is also decreased but to a lesser 

degree than E2 leading to an increase in the E1/E2 ratio (28). Testosterone increases after 

menopause (28) and is positively associated with blood pressure in women after menopause 

(29, 30). Despite studies that show a correlation between changes in sex steroids and 

increased CV risk in women as they age, the exact contribution of sex steroids remains 

unclear.

Although the increased prevalence of hypertension in women following menopause is well 

documented, few animal models are available to study the mechanisms of chronic disease 

related to the transition into reproductive senescence. Rodents in addition, to non-human 

primates, and other species are used to study the etiology and investigate potential therapies 

for chronic conditions and disease related to menopause (31, 32, 33). Menopause involves a 

gradual transition that occurs over a 5- to 10-year period that is referred to as 

perimenopause. Perimenopause is characterized by irregular cycle lengths and fluctuating 

estrogen levels. Ovariectomy is commonly used to induce a change in the hormonal milieu 

to investigate the importance of sex steroids on blood pressure. However, a major limitation 

for this model involves the abrupt loss of estrogens rather than a gradual decline in E2 levels 

due to a slower depletion of ovarian follicles. Other limitations to studies that utilize 

ovariectomy include the loss of ovarian tissue as an endocrine secreting organ, and 

experiments conducted in females in young adulthood that fail to reproduce outcomes 

specific to females in later life. A more recently developed model of menopause uses 

repeated daily injections of a ovotoxic chemical, 4-vinylcyclohexene diepoxide (VCD), to 

produce a gradual depletion of ovarian follicles in rodents in association with retention of 

ovarian tissue and androgen secreting potential (31). This model mimics the natural 

transition into menopause and includes a period of perimenopause during induction (31). 

Another well-characterized animal model is the aged spontaneously hypertensive rat (SHR) 

(32), an experimental model that mimics the sexual dimorphism of human hypertension. 

Blood pressure is reduced in female SHR in young adulthood relative to age-matched male 

SHR (32). Yet, blood pressure increases in age in association with a decrease in E2 levels 

and an increase in testosterone levels in intact-aged SHR females relative to female 

counterparts in young adulthood, and loss of the sex difference in blood pressure in the aged 

female SHR relative to the age-matched male SHR (32, 34).

The Renin Angiotensin System, Sex Steroids, Menopause and Blood Pressure

The renin-angiotensin system (RAS), a major hormonal system involved in the regulation of 

arterial blood pressure and sodium homeostasis, is implicated in the etiology of 

postmenopausal hypertension (35). Recent studies suggest that regulation of the RAS via E2 

may contribute to the development of hypertension that occurs after menopause. Dean and 

colleagues reported that ovariectomy in the female rat is associated with an increase in 

angiotensin converting enzyme (ACE) and angiotensin II type 1 (AT1) receptor expression 

(36), components of the classic vasoconstrictor arm of the RAS. They further demonstrated 

that these increases are abolished by E2 replacement (36) suggesting direct regulation of the 

RAS by E2. In a study by Ji et al., ovariectomy decreased the activity of ACE2 (37); Baiardi 

et al. reported a similar effect on AT2 receptor expression in female rats (38) implicating that 
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physiological changes in E2 can also alter the counter-regulatory arm of the RAS. In a study 

by Dai and colleagues, treatment with an AT2 receptor agonist attenuated salt/DOCA–

induced hypertension in female rats in conjunction with increased ACE2 and AT2 receptor 

expression (39). Thus, this study by Dai et al. demonstrated that direct activation of the AT2 

receptor is cardio-protective in the female rat (39). However, whether hypertension in 

females after reproductive senescence involves an imbalance in the ACE/Ang II pathway 

versus the ACE2/AT2 receptor pathway of the RAS is not yet clear. Furthermore, whether 

modulation of the RAS via E2 as noted in experimental studies conducted in young female 

rats (36, 37, 38, 39) translates towards the etiology of postmenopausal hypertension is not 

known.

Yanes and colleagues, using the aging female SHR as a model of postmenopausal 

hypertension, reported that plasma renin activity and circulating angiotensinogen are 

elevated in aged female SHR relative to younger counterparts that exhibited an elevated 

blood pressure in later life (40). Although blockade of the RAS with losartan, an inhibitor of 

the AT1 receptor, resulted in a partial reduction in blood pressure in aged female SHR, 

losartan did not fully normalize blood pressure in aged female SHR equivalent to blood 

pressure in young female SHR (40). Thus, this study indicates that although the RAS 

contributes to the increase in blood pressure that occurs with aging in the female SHR, other 

factors may also be involved. Yanes and colleagues also demonstrated that blockade of the 

RAS reduces blood pressure to a greater degree in aged male SHR relative to aged female 

SHR (34) implicating a sex difference in the blood pressure response to RAS blockade in 

aging rats. However, it is important to note that numerous clinical studies report that use of 

RAS blockade is beneficial against hypertension after menopause (41) suggesting a potential 

caveat for interpretation of results obtained from experimental models of postmenopausal 

hypertension. Fernández-Vega and colleagues found that blockade of the RAS significantly 

decreased blood pressure and enhanced blood pressure control in a cohort of post-

menopausal women (42). Yet, no beneficial effect on blood pressure was observed in 

postmenopausal women treated with hormone replacement therapy (HRT) (42). Clearly, 

additional studies are needed to determine if E2-mediated regulation of the RAS contributes 

to the increase in blood pressure that occurs after menopause.

E2 is decreased in women after menopause (28). Yet, not all studies indicate a positive effect 

of estrogen replacement on CV health in postmenopausal women (43, 44). The Heart and 

Estrogen/Progestin Replacement Study (HERS) (43) and the Women’s Health Initiative 

(WIH) both sought to identify whether HRT would decrease the incidence of adverse CV 

events. The HERS study included postmenopausal women with coronary heart disease and 

concluded that HRT does not reduce adverse CV events in this population (43). The WIH 

trial was terminated early due to findings that estrogen + progestin increased the risk of 

breast cancer and stroke in healthy postmenopausal women (44). However, reevaluation of 

HRT in newly menopausal women versus aging patients indicates that HRT may exert less 

risk (45).

Like E2, testosterone is indicated in the regulation of the local RAS and as an influence on 

CV risk. In contrast to E2, testosterone inhibits AT2 receptor expression in the female rat 

(46). Mishra et al. reported that AT2 receptor mRNA and protein expression are lower in 
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male versus female Sprague Dawley rats (46). Their study also demonstrated that 

administration of exogenous androgen decreases AT2 receptor expression in male and 

female rats, an effect that is reversed by treatment with the androgen receptor antagonist, 

flutamide (46). AT2 receptor expression was also decreased ex vivo in the absence of 

confounding factors (46) implicating a direct effect of testosterone on AT2 receptor 

expression. This study by Mishirea and colleagues also showed that blood pressure increases 

in response to an increase in exogenous androgens in the female rat (46) suggesting that 

testosterone may induce adverse CV events in the female. There is a positive association 

between testosterone and blood pressure in women (30). Whether testosterone is beneficial 

or permissive in the etiology of CV disease after menopause is controversial (47, 48). Yanes 

and Reckelhoff propose that a shift in the testosterone to estrogen ratio contributes to 

increased blood pressure after menopause (48). As highlighted above, increased testosterone 

can reduce expression of the protective arm of the RAS in the female. Thus, additional 

studies are needed to clarify the exact contribution of testosterone to blood pressure and CV 

outcomes in women after menopause.

The Sympathetic Nervous System, Menopause and Blood Pressure

The SNS plays an important role in the regulation of blood pressure and renal function via 

activation of the renal sympathetic nerves (49). A study by Hart and colleagues 

demonstrated that an increase in sympathetic nerve activity is associated with an increase in 

blood pressure in women after menopause (50). Furthermore, this study showed that the 

sympathetic nervous system (SNS) plays a greater role in blood pressure control in women 

after menopause relative to women in young adulthood (50) suggesting that activation of the 

SNS contributes to the greater prevalence of hypertension in women as they age. Maranon 

and colleagues also demonstrated an important role for the SNS in the etiology of increased 

blood pressure in the aged female SHR, a model of postmenopausal hypertension (11). Their 

studies indicated that adrenergic blockade reduces blood pressure in young and old female 

SHR whereas renal denervation attenuates the increase in blood pressure to a greater extent 

in the aged female SHR relative to the young (11). Thus, these studies reinforce findings 

from a prospective study conducted in a large multi-ethnic cohort of postmenopausal women 

that reports beta-blockers are cardio-protective in women (51).

Low Birth Weight, Early Reproductive Aging and Cardiovascular Risk

Women typically enter menopause around 50–55 years of age (52). Low birth weight 

women; however, are more likely to experience menopause at 44–45 years of age compared 

to normal birthweight counterparts (17). Additionally, ovarian development is impaired in 

fetuses complicated by IUGR (53). Experimental models of low birth weight mimic this 

finding (54, 55, 56, 57, 58) (Table 1) and demonstrate that fetal exposure to maternal 

undernutrition and placental insufficiency program an accelerated depletion of ovarian 

follicles (53, 55, 58) and early age at cessation of estrous cyclicity (54, 55, 56) associated 

with a reduction in anti-Müllerian hormone (58) and an increase in circulating testosterone 

(57), factors indicative of reproductive senescence. In the rat model of IUGR induced by 

placental insufficiency, Intapad et al. demonstrated that timing of cessation of estrous 

cyclicity (54) coincides with the development of increased blood pressure in female IUGR 
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rats at 12 months of age (Table 1) (12, 25). An increase in blood pressure, associated with a 

depletion of ovarian reserve, was also observed in a bovine model of fetal undernutrition 

(Table 1) (57). Collectively, these findings suggest that fetal exposure to an adverse 

environment not only alters later CV health, but also influences reproductive aging in the 

female offspring (Table 1). It is well-established that early onset menopause is associated 

with greater CV risk (16). Andersson and colleagues reported that the prevalence of 

hypertension is increased in low birth weight women relative to normal birth weight women 

in later life (15). Yet, whether the association between early reproductive aging and 

enhanced CV risk in low birth weight women is correlative or causative is not yet known. 

Furthermore, the mechanisms that contribute to enhanced CV risk have not been elucidated. 

However, recent studies using experimental models of low birth weight are investigating the 

link between birthweight and later CV risk in female offspring and indicate that testosterone, 

the RAS and the SNS are all potential mediators of hypertension that develops with age.

Testosterone, the Renin Angiotensin System, Blood Pressure and Models of Low Birth 
Weight

Using an experimental model of low birth weight induced via placental insufficiency in the 

rat, Alexander demonstrated that blood pressure is not increased in female IUGR offspring 

in young adulthood (3). However, other studies from the Alexander laboratory showed that 

blood pressure is increased by 12 months of age (25) in conjunction with the development of 

early reproductive senescence (54), a significant increase in circulating testosterone (12, 54) 

and renal expression of the AT1 receptor in female IUGR offspring (12). Pharmacological 

blockade with flutamide, an androgen receptor antagonist, abolishes the age-dependent 

increase in blood pressure in female IUGR offspring (12). Renal expression of the AT11 

receptor is also reduced in flutamide treated female IUGR relative to vehicle treated female 

IUGR (12). This study also reported that the age-dependent increase in blood pressure in 

female IUGR offspring at 12 months of age is abolished by blockade of the RAS using the 

ACE inhibitor, enalapril (12). Therefore, these findings suggest that activation of the RAS 

via testosterone may contribute to the etiology of hypertension that develops with age in the 

female IUGR rat. The RAS is implicated in the etiology of post-menopausal hypertension 

(41, 34); yet the relative importance of testosterone in postmenopausal hypertension remains 

unclear (47, 48). Whether testosterone contributes to enhanced CV risk in low birth weight 

women relative to normal birth weight women after menopause is not yet known suggesting 

that additional studies are needed to investigate the role of sex steroids as mediators of age-

related enhanced CV in low birth weight women.

Sex Steroids and Low Birth Weight

Circulating androstenedione and dehydroepiandrosterone (DHEA) levels are increased at 20 

years of age in low birth weight women relative to normal birth weight counterparts (59) 

suggesting an altered adrenal synthesis of sex steroids. Androstenedione and DHEA serve as 

precursors to testosterone and estrogens. Like testosterone, circulating levels of 

androstenedione and DHEA increase during the menopausal transition (52). Testosterone is 

the most biologically active androgen during menopause (60) and the adrenals function as 

the primary site of androgen synthesis after menopause (52). Yet, adipose tissue is also an 

important site for aromatization of androgens to estrogens, providing another site for 

Davis et al. Page 7

Curr Hypertens Rep. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



production of testosterone and E2 after menopause (61). Visceral fat increases after 

menopause and is positively associated with testosterone in post-menopausal women (62). 

Thus, sex steroid production is altered in low birth weight women in early adulthood. 

Whether sex steroid production differs in low birth weight women as they transition through 

menopause is unknown. Furthermore, the role of sex steroids in the etiology of the enhanced 

prevalence of hypertension in low birth weight women in later life is not known.

The Sympathetic Nervous System, Blood Pressure and Models of Low Birth Weight

Activation of the SNS contributes to increased blood pressure in menopausal women (48). A 

role for the SNS is also observed in the experimental model of low birth weight induced via 

placental insufficiency in the rat that exhibits a significant increase in blood pressure (25) 

associated with early reproductive senescence at 12 months of age (54). Intapad et al. 

demonstrated that bilateral renal denervation abolishes the age-dependent increase in blood 

in female IUGR rats at 12 months of age (25). In this study, Intapad and colleagues also 

reported that the significant increase in blood pressure at 12 months of age is also associated 

with an increase in total fat mass, visceral adiposity and circulating leptin levels in female 

IUGR rats relative to age-matched female controls (25). Leptin is a satiety hormone 

produced by adipose cells that stimulates sympathetic nerve activity (63). A role for 

activation of the SNS is reported in models of obesity-induced hypertension (64) suggesting 

that activation of the SNS is an important link between adiposity and increased blood 

pressure. Central adiposity is increased after menopause (65) with ovarian status linked to 

the change in fat distribution (66). Whether enhanced activation of the SNS contributes to 

the greater prevalence of hypertension in low birth weight women in later life relative to 

their normal birth weight counterparts has not yet been examined. However, findings from 

the study by Intapad and colleagues indicate a role for the SNS in the etiology of age-

dependent hypertension in female IUGR rats.

Conclusion

As women age, the incidence of high blood pressure increases indicative of a loss of CV 

protection after menopause relative to pre-menopause. Mechanisms that contribute to the 

age-related increase in blood pressure are in women are not well-understood. This review 

focuses on the role of sex steroids in the etiology of post-menopausal hypertension and also 

discusses potential mechanisms that may contribute to the enhanced prevalence of 

hypertension in low birth weight women in later life. Although it is well-established that 

birth weight and blood pressure are inversely related, few studies have investigated the effect 

of age on this association; fewer still have examined the effect of age on CV risk in low birth 

weight women. An experimental model of IUGR indicates a role for the RAS and the SNS 

in the etiology of hypertension that develops with age in the female rat; factors also 

implicated in the etiology of hypertension in PMW and in the aged female SHR, an 

experimental model of post-menopausal hypertension (Table 2). Testosterone is elevated in 

PMW and in the aged female SHR (Table 2). Testosterone is also elevated in female IUGR 

rats that develop an increase in blood pressure associated with early reproductive senescence 

at 12 months of age (Table 2); blockade of the androgen receptor abolishes age-dependent 

hypertension in the female IUGR rat. However, whether testosterone plays a permissive role 
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in the increased prevalence of hypertension in women after menopause, or the aged female 

SHR, is not yet clearly understood. Additionally, whether testosterone contributes to the 

enhanced CV risk reported in low birth weight women relative to age-matched normal birth 

weight counterparts after menopause is also not known. Developing a better understanding 

of mechanisms involved in the pathophysiology of the increased prevalence of hypertension 

in women as they age, in particular those born low birth weight, may lead to more effective 

therapeutics and pharmacological therapies.
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Table 1

Low birth weight and markers of early reproductive senescence: A comparison of the characteristic changes in 

the transition into menopause in low birth weight women and two experimental models of low birth weight.

Low Birth Weight Placental Insufficiency Maternal Protein Restriction

Early Onset Cessation of Estrous Cyclicity Women (17) Rat (54) Rat (56, 57)

Depletion of Ovarian Reserve Women (53) --------- Rat (55)
Bovine (58)

Increased Testosterone ---------- Rat (12, 54) Rat (56, 57)
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Table 2

A comparison of the markers of early reproductive senescence associated with increased cardiovascular risk in 

experimental models of low birth weight.

Placental Insufficiency Maternal Protein Restriction

Early Onset Cessation of Estrous Cyclicity Rat (54) Rat (56, 57)

Depletion of Ovarian Reserve --------- Rat (55)
Bovine (58)

Increased Testosterone Rat (12, 54) Rat (56, 57)

Reduced Anti-Müllerian Hormone --------- Bovine (58)

Increased Blood Pressure Rat (12, 25) Rat (26)
Bovine (58)
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