&ﬁ marine drugs MBPY

Communication
Chalcomycins from Marine-Derived Streptomyces sp.
and Their Antimicrobial Activities

Shutai Jiang I'T, Lili Zhang 1'3*, Xuechang Pei !, Fang Deng !, Dan Hu !, Guodong Chen 1,
Chuanxi Wang "*, Kui Hong 2, Xinsheng Yao ! and Hao Gao 1*

1 Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province

Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research,
Jinan University, Guangzhou 510632, China; vstjiang@stu2014.jnu.edu.cn (S.].); qymuzinini@126.com (L.Z.);
cyan2014@stu2014.jnu.edu.cn (X.P.); xff@stu2014.jnu.edu.cn (ED.); thudan@jnu.edu.cn (D.H.);
chgdtong@jnu.edu.cn (G.C.); tyaoxs@jnu.edu.cn (X.Y.)
Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of
Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; kuihong31@whu.edu.cn
Food and Drug Department, Qingyuan Polytechnic, Qingyuan 511510, China
*  Correspondence: tcxwang@jnu.edu.cn (C.W.); tghao@jnu.edu.cn (H.G.);

Tel./Fax: +86-20-8522-8369 (C.W. & H.G.)
t These authors have contributed equally to this work.

Academic Editors: Tracy John Mincer, David C. Rowley and Orazio Taglialatela
Received: 8 March 2017; Accepted: 22 May 2017; Published: 29 May 2017

Abstract: Dihydrochalcomycin (1) and chalcomycin (2), two known chalcomycins, and chalcomycin E
(3), anew compound, were isolated from marine-derived Streptomyces sp. HK-2006-1. Their structures
were elucidated by detailed spectroscopic and X-ray crystallographic analysis. The antimicrobial
activities against Staphylococcus aureus, Escherichia coli, Candida albicans, and Aspergillus niger of 1-3
were evaluated. Compounds 1-2 exhibited activities against S. aureus with minimal inhibitory
concentrations (MICs) of 32 pg/mL and 4 pg/mL, respectively. The fact that 1-2 showed
stronger activity against S. aureus 209P than 3 indicated that the epoxy unit was important for
antimicrobial activity. This structure—-activity tendency of chalcomycins against S. aureus is different
from that of aldgamycins reported in our previous research, which provide a valuable example
for the phenomenon that 16-membered macrolides with different sugars do not have parallel
structure—activity relationships.

Keywords: marine-derived Streptomyces; secondary metabolite; 16-membered macrolide;
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1. Introduction

Infectious diseases seriously imperil human health. Antibiotics are important medicines against
infectious diseases [1]. However, the prolonged, extensive, and indiscriminate use of antibiotics has
triggered widespread resistance [2]. The global epidemic of continually rising resistance has become a
critical threat to human health and therefore the discovery of new antibiotics is urgently needed [2].
Macrolide antibiotics such as erythromycins, tylosins, avermectins, and milbemycins have significant
activity against a broad spectrum of Gram-positive bacteria [3-5], playing an important role in the
chemotherapy of infectious diseases [6,7]. Macrolides are usually characterized by a 12-, 14-, 16-,
18-, 20-, 22-, or 24-membered lactone ring with one or more sugar moieties [3,8]. Different types of
macrolides have different structure-antimicrobial activity relationships. For example, 16-membered
macrolides with different sugars have no parallel structure-activity tendencies. Omura reported that
the structure—activity relationships of some 16-membered macrolides (rosamicins, angolamycins, and
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neutramycins) differed from the evidence found in other 16-membered macrolides (leucomycins) [9].
The 16-membered macrolides with different sugar moiety for instance spiramycins, neospiramycins,
and forocidins have different structure—activity relationships [10].

Many interesting strains were obtained in our continuing investigations on active components
from microorganisms. Among our recent discoveries [11-21], we recently reported that a
strain of Streptomyces sp. HK-2006-1 produced both aldgamycins and chalcomycins, which are
16-membered macrolides [11,21]. Chalcomycin and seven aldgamycins were isolated from this
strain, and chalcomycin showed more potent antibacteria activity against Staphylococcus aureus than
aldgamycins [11]. Chalcomycin, the first member of chalcomycins, was reported with its activity
against bacteria as early as 1962 [22]. However, there have only been seven chalcomycins (chalcomycin,
chalcomycins B-D, dihydrochalcomycin, 8-deoxy-chalcomycin, 250-144C) reported until now [23-27],
and there is no discussion on the structure-antimicrobial activity relationship of chalcomycins against
S. aureus. Thus, in this study, the fermentation volume of this strain Streptomyces sp. HK-2006-1 was
scaled up in search of more chalcomycins. The crude extract of the culture of the strain was subjected
to column chromatography (CC) over silica gel, Sephadex LH-20, octadecylsilane (ODS), and high
performance liquid chromatography (HPLC), yielding three chalcomycins, dihydrochalcomycin (1),
chalcomycin (2), and a new compound, chalcomycin E (3) (Figure 1). In addition, their antimicrobial
activities against two bacteria, Gram-positive S. aureus 209P and Gram-negative Escherichia coli
ATCCO0111, as well as two fungi, Candida albicans FIM709 and Aspergillus niger R330, were evaluated.
Details of the isolation, structural elucidation, and antimicrobial activities of compounds 1-3 are
presented herein.
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Figure 1. The structures of compounds 1-3.

2. Results and Discussion

Compounds 1 and 2 were established as dihydrochalcomycin and chalcomycin respectively by
precisely comparing the nuclear magnetic resonance (NMR) data with literature values [11,24,28]. The
single-crystal X-ray crystallographic analysis of dihydrochalcomycin (1) was reported for the first time
(Figure 2). Chalcomycin (2) was also obtained and identified in our previous study on the strain of
Streptomyces sp. HK-2006-1 [11].

Figure 2. X-ray structure of 1.
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Compound 3 was obtained as a white amorphous powder. The quasi-molecular ion at m/z
707.3616 [M + Na]* by high resolution electrospray ionization mass spectroscopy (HRESIMS) indicated
that the molecular formula of 3 was C35Hs¢013 (eight degrees of unsaturation), which was 16 atomic
mass unit (O) less than 2. Analysis of its 1H and 3C NMR spectroscopic data (Table 1) revealed
nearly identical structure features to 2, except that two mono-oxygenated methine carbons at 5¢
59.0 and 58.7 disappeared, and two olefinic carbons at 5c 143.3 and 133.0 appeared. Analysis of
'H—'H COSY and the coupling values of the protons revealed the presence of the spin system
C-10—C-11-C-12—C-13—C-14(C-20)—C-15—C-16. Therefore, 3 was the reduction product of 2 at
C-12/C-13. The geometrical configuration of the double bond moiety (C-12/C-13) was deduced as E
on the basis of the coupling constant of the olefinic protons (J12,13 = 14.1 Hz). Thus, compound 3 can be
recognized as a new member of the chalcomycin family, consisting of the 16-membered lactone ring,
mycinose, and chalcose, and its structure was further confirmed by two-dimensional NMR (2D NMR)
data (Table 1 and Table S1). The observed rotating frame overhauser effect spectroscopy (ROESY)
correlations (Figure 3) were consistent with the stereochemistry of the 16-membered lactone ring.
All the reported mycinose and chalcose units in natural products have D configurations. The mycinose
and chalcose units in the isolated macrolides from the strain of Streptomycetes sp. HK-2006-1 also had
D configurations [11]. Therefore, the absolute configurations of the mycinose and chalcose units in 3
were assumed to be D. The relative configurations of the two units were established as 3 from the
coupling constants of the anomeric protons (H-1" and H-1""). Thus, the structure of 3 was elucidated
as (3E,5S,65,75,9511E,13E,15R,16R)-9-hydroxy-15-(((2R,3R 4R,5R ,6R)-5-hydroxy-3,4-dimethoxy-6-
methyltetrahydro-2H-pyran-2-yloxy)methyl)-6-((25,3R 45,6R)-3-hydroxy-4-methoxy-6-methyltetrahydro-
2H-pyran-2-yl)oxy)-5,7,9,16-tetramethyloxacyclohexadeca-3,11,13-triene-2,10-dione, and named as
chalcomycin E.
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Figure 3. The observed rotating frame overhauser effect spectroscopy (ROESY) correlations (dashed
double arrow in blue) of C-4—C-5—C-6—C-7—C-8 and C-14—C-15in 3.

Until now, only seven chalcomycins had been reported. The discovery of chalcomycin E
(3) adds a new member to chalcomycins. The single-crystal X-ray crystallographic analysis of
dihydrochalcomycin (1) was firstly reported. Compounds 1-3 were tested for antimicrobial activities
against two bacteria, Gram-positive S. aureus 209P and Gram-negative E. coli ATCCO0111, as well as
two fungi, C. albicans FIM709 and A. niger R330 (Table 2). Compounds 1-2 showed activities against
S. aureus, but no activity against the other test strains. The fact that 1 and 2 exhibited stronger activity
against S. aureus 209P than 3 suggested that the epoxy unit was important for antimicrobial activity.
However, the replacement of the double bond in C-10 to C-13 by the epoxy unit in aldgamycins is not
beneficial for antimicrobial activity. The difference in structure between aldgamycins and chalcomycins
is just the sugar type at C-5, but the two types of macrolides have different structure-activity tendencies.
Our findings provide a valuable example for the phenomenon that 16-membered macrolide antibiotics
with different sugars do not have parallel structure-activity relationships [9,10].
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Table 1. NMR (600 MHz, CDCl3) data for 3.

4of6

Position dc, Mult. Ou (Jin Hz) § 1H, TH-COSY HMBC ROESY
aglycone
1 165.6, C - - - -
2 121.4, CH 5.75d (15.4) 3 4 4,17
3 151.7, CH 6.62 dd (15.4,9.5) 2,4 1 5,6,17
4 41.0,CH 2.66 3,517 2,3 2,6,7a,7b
5 88.1, CH 3.19 4,6 3,4,6,7,17,18,1 3,6,17,18,1'
6 34.0,CH 1.30 5,7a,7b, 18 - 3,4,5,7a,10
7 37.4,CH, 1.89, Ha 6,7b 6,8,9,18 4,6,10,19
1.83, Hb 6,7a 6,18 4,18,19
8 78.3,C - - - -
9 202.0,C - - - -
10 122.0,CH 6.18 d (15.1) 11 8,9,11,12 6,7a,19
11 144.1,CH 7.30dd (15.1, 10.1) 10,12 9,12,13 -
12 133.0,CH 6.15dd (14.1, 10.1) 11,13 10,11,13,14 -
13 143.3, CH 6.14 dd (14.1,9.2) 12,14 11,12, 14,20 15, 20b
14 51.2,CH 2.47 13, 15, 20a, 20b 12,13,15 16, 20a
15 69.2, CH 5.06 dq (10.2, 6.2) 14,16 1,13,14 13, 20a, 20b
16 18.6, CH; 1.36d (6.3) 15 14, 15 14, 20a, 20b
17 19.2, CHj 1.18d (6.9) 4 3,4,5 2,351
18 19.3, CHj 1.00 d (6.9) 6 56,7 5,7b
19 27.9,CHs 138 s - 7,8,9 7a,7b, 10
20 68.4, CHy 4.04dd (9.6,3.7), Ha 14, 20b 13,14,15,1” 14,15, 16, 20b, 1”
3.57dd (9.6, 6.1), Hb 14, 20a 13,14, 15,1” 13, 15, 16, 20a, 1”
-D-chalcose unit
1 103.0, CH 419d (7.6) 2! 5,5 517,35
2! 75.1, CH 3.32dd (8.8,7.6) 1,3 1,34 4'p
3/ 80.4, CH 3.22 2/, 4'a,4'b 1,2,4,7 1,4'a,5
, 2.04ddd (12.7, 4.9, Lo o Vs
4 36.8, CH, 1.9), Ha 3,4b,5 2,3 35,6
1.25, Hb 3/, 4'a, 5 2,35 2,6
5/ 67.8, CH 3.48 4'a,4'b, 6 1 1,3, 4'a
6 20.9, CH; 1.23d (6.2) 5! 4,5 4'a,4'b
7' 56.7, CHz 341s - 3 -
[3-D-mycinose unit
1” 101.1,CH 4.58d (7.8) 2" 20,3”,5" 20a, 20b, 5”7, 8”
2" 81.9, CH 3.04dd (7.8,3.1) 17,3” 17,7 37,47,7"
3” 79.8, CH 3.76 t (3.1) 2”,4” 17,2”,4”,5",8"” 2”,4”,8"
4” 72.7, CH 3.18 3”7,5” 2”7 27,3"7,6"
5" 70.6, CH 3.52 4”7, 6" 37,4” 1”7
6” 17.8, CH; 1.27d (6.2) 5” 47,5" 47
7" 59.8, CH; 3.52s - 27 2"
8” 61.8, CHj 3.62s - 3” 17,3”

§ Indiscernible signals owing to overlapping or having complex multiplicity are reported without designating
multiplicity. NMR: nuclear magnetic resonance; 'H, 'H COSY: 'H, 'H chemical shift correlated spectroscopy;
HMBC: heteronuclear multiple-bond correlation; ROESY: rotating frame overhauser effect spectroscopy.

Table 2. Antimicrobial activities of 1-3 (minimal inhibitory concentrations (MICs): pg/mL).

Bacteria Fungi
Compound
S. aureus E. coli C. albicans A. niger

1 32 >512 >512 >512

2 4 >512 >512 >512

3 >512 >512 >512 >512
Tobramycin 04 2 NT NT

Actidione NT NT 64 32

NT: not tested.
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3. Conclusions

Two known chalcomycins, dihydrochalcomycin (1) and chalcomycin (2), together with a new
one, chalcomycin E (3) were isolated from marine-derived Streptomyces sp. HK-2006-1. Their
structures were determined by detailed spectroscopic and X-ray crystallographic analysis. The
discovery of chalcomycin E (3) adds a new member to chalcomycins. The antimicrobial activities
of 1-3 were tested against S. aureus, E. coli, C. albicans, and A. niger. Compounds 1-2 showed
activities against S. aureus with minimal inhibitory concentrations (MICs) of 32 ug/mL and 4 nug/mL,
respectively. Compounds 1-2 showed stronger activity against S. aureus 209P than 3, which
suggested a different structure-activity tendency against S. aureus from that of aldgamycins. This
case indicated that 16-membered macrolide antibiotics with different sugars do not have parallel
structure—activity relationships.

Supplementary Materials: The following are available online at www.mdpi.com/1660-3397/15/6/153/s1,
materials and methods, one-dimensional NMR (1D NMR) data and spectra for 1 and 2, and 1D/2D NMR,
ultraviolet (UV), and HRESIMS spectra for 3.
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