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Abstract

In linear regression models with high dimensional data, the classical z-test (or t-test) for testing the 

significance of each single regression coefficient is no longer applicable. This is mainly because 

the number of covariates exceeds the sample size. In this paper, we propose a simple and novel 

alternative by introducing the Correlated Predictors Screening (CPS) method to control for 

predictors that are highly correlated with the target covariate. Accordingly, the classical ordinary 

least squares approach can be employed to estimate the regression coefficient associated with the 

target covariate. In addition, we demonstrate that the resulting estimator is consistent and 

asymptotically normal even if the random errors are heteroscedastic. This enables us to apply the 

z-test to assess the significance of each covariate. Based on the p-value obtained from testing the 

significance of each covariate, we further conduct multiple hypothesis testing by controlling the 

false discovery rate at the nominal level. Then, we show that the multiple hypothesis testing 

achieves consistent model selection. Simulation studies and empirical examples are presented to 

illustrate the finite sample performance and the usefulness of the proposed method, respectively.
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1. Introduction

In linear regression models, it is a common practice to employ the z-test (or t-test) to assess 

whether an individual predictor (or covariate) is significant when the number of covariates 

(p) is smaller than the sample size (n). This test has been widely applied across various fields 

(e.g., economics, finance and marketing) and is available in most statistical software. One 

usually applies the ordinary least squares (OLS) approach to estimate regression coefficients 

and standard errors for constructing a z-test (or t-test); see, for example, Draper and Smith 

(1998) and Wooldridge (2002). However, in a high dimensional linear model with p 
exceeding n, the classical z-test (or t-test) is not applicable because it is infeasible to 

compute the OLS estimators of p regression coefficients. This motivates us to modify the 

classical z-test (or t-test) to accommodate high dimensional data.

In high dimensional regression analysis, hypothesis testing has attracted considerable 

attention (Goeman et al., 2006, 2011; Zhong and Chen, 2011). Since these papers mainly 

focus on testing a large set of coefficients against a high dimensional alternative, their 

approaches are not applicable for testing the significance of a single coefficient. Hence, 

Bühlmann (2013) recently applied the ridge estimation approach and obtained a test statistic 

to examine the significance of an individual coefficient. His proposed test involves a bias 

correction, which is different from the classical z-test (or t-test) via the OLS approach. In the 

meantime, Zhang and Zhang (2014) proposed a low dimensional projection procedure to 

construct the confidence intervals for a linear combination of a small subset of regression 

coefficients. The key assumption behind their procedure is the existence of good initial 

estimators for the unknown regression coefficients and the unknown standard deviation of 

random errors. To this end, the penalty function with a tuning parameter is required to 

implement Zhang and Zhang’s (2014) procedure. Later, van de Geer et al. (2014) extended 

the results of Zhang and Zhang’s (2014) to broad models and general loss functions.

Instead of the ridge estimation and low dimensional projection, Fan and Lv (2008) and Fan 

et al. (2011) used the correlation approach to screen out those covariates that have weak 

correlations with the response variable. As a result, the total number of predictors that are 

highly correlated with the response variable is smaller than the sample size. However, Cho 

and Fryzlewicz (2012) found out that such a screening process via the marginal correlation 

procedure may not be reliable when the predictors are highly correlated. To this end, they 

proposed a tilting correlation screening (TCS) procedure to measure the contribution of the 

target variable to the response. Motivated by the TCS idea of Cho and Fryzlewicz (2012), we 

develop a new testing procedure that can lead to accurate inferences. Specifically, we adopt 

the TCS idea and introduce the Correlated Predictors Screening (CPS) method to control for 

predictors that are highly correlated with the target covariate before a hypothesis test is 

conducted. It is worth noting that Cho and Fryzlewicz (2012) mainly focus on variable 

selection, while we aim at hypothesis testing.

If the total number of highly correlated predictors resulting from the CPS procedure is 

smaller than the sample size, their effects can be profiled out from both the response and the 

target predictor via projections. Based on the profiled response and the profiled predictor, we 

are able to employ a classical simple regression model to obtain the OLS estimate of the 
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target regression coefficient. We then demonstrate that the resulting estimator is -

consistent and asymptotically normal, even if the random errors are heteroskedastic as 

considered by Belloni et al. (2012, 2014). Accordingly, a z-test statistic can be constructed 

for testing the target coefficient. Under some mild conditions, we show that the p-values 

obtained by the asymptotic normal distribution satisfy the weak dependence assumption of 

Storey et al. (2004). As a result, the multiple hypothesis testing procedure of Storey et al. 

(2004) can be directly applied to control the false discovery rate (FDR). Finally, we 

demonstrate that the proposed multiple testing procedure achieves model selection 

consistency.

The rest of the article is organized as follows. Section 2 introduces model notation and 

proposes the CPS method. The theoretical properties of hypothesis tests via the CPS as well 

as the FDR procedures are obtained. Section 3 presents simulation studies, while Section 4 

provides real data analyses. Some concluding remarks are given in Section 5. All technical 

details are relegated to Appendix.

2. The methodology

2.1. The CPS method

Let (Yi, Xi) be a random vector collected from the ith subject (1 ≤ i ≤ n), where Yi ∈ ℝ1 is 

the response variable and Xi = (Xi1, …, Xip)⊤ ∈ ℝp is the associated p-dimensional 

predictor vector with E(Xi) = 0 and cov(Xi) = Σ = (σj1j2 ) ∈ ℝp×p. In addition, the response 

variable has been centralized such that E(Yi) = 0. Unless explicitly stated otherwise, we 

hereafter assume that p ≫ n and n tends to infinity for asymptotic behavior. Then, consider 

the linear regression model,

(2.1)

where β = (β1, …, βp)⊤ ∈ ℝp is an unknown regression coefficient vector. Motivated by 

Belloni et al. (2012, 2014), we assume that the error terms εi are independently distributed 

with E(εi|Xi) = 0 and finite variance  for i = 1, …, n. In addition, define the 

average of error variances as , and assume that  as n → ∞ for some 

finite positive constant σ̄2. To assess the significance of a single coefficient, we test the null 

hypothesis H0 : βj = 0 for any given j. Without loss of generality, we focus on testing the first 

regression coefficient. That is,

(2.2)

and the same testing procedure is applicable to the rest of the individual regression 

coefficients.
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For the sake of convenience, let  = (Y1, …, Yn)⊤ ∈ ℝn be the vector of responses,  = (X1, 
…, Xn)⊤ ∈ ℝn×p be the design matrix with the jth column j ∈ ℝn, and ℰ = (ε1, …, εn)⊤ ∈ 
ℝn. In addition, let ℓ be an arbitrary index set with cardinality |ℓ|. Then, define Xiℓ = (Xij : j ∈ 
ℓ)⊤ ∈ ℝ|ℓ|, ℓ = (X1ℓ, …, Xnℓ)⊤ = ( j : j ∈ ℓ) ∈ ℝn×|ℓ|, Σℓ = (σj1j2 : j1 ∈ ℓ, j2 ∈ ℓ) ∈ ℝ|ℓ|×|ℓ|, and 

. Moreover, define Σℓaℓb = (σj1j2 : j1 ∈ ℓa, j2 ∈ ℓb) ∈ 
ℝ|ℓa|×|ℓb| for any two arbitrary index sets ℓa and ℓb, which implies Σℓℓ = Σℓ.

Before constructing the test statistic, we first control those predictors that are highly 

correlated with Xi1. Otherwise, they can generate a confounding effect, due to 

multicollinearity and yield an incorrect estimator of β1. Specifically, the marginal regression 

coefficient  is not a consistent estimator of β1 when  − 

1β1 and 1 have a strong linear relationship. To remove the confounding effect, define ρ1j 

= corr(Xi1, Xij) as the correlation coefficient of Xi1 and Xij for j = 2, …, p, and 

. We also assume that |ρ1j| are distinct. Then, let k be the set 

of k indices whose associated predictors have the largest absolute correlations with Xi1:

(2.3)

The choice of k (i.e., k) will be discussed in Remark 2. With a slight abuse of notation, we 

sometimes denote k by  in the rest of the paper for the sake of convenience. To remove 

the confounding effect due to Xi , we construct the profiled response and predictor as 𝕐̃ = 

 and 𝕏̃
1 = 1, respectively, where  and In ∈ ℝn×n 

is the n×n identity matrix. We next follow the OLS approach and obtain the estimate of the 

target coefficient β1,

We refer to the above procedure as the Correlated Predictors Screening (CPS) method, β1̂ as 

the CPS estimator of β1, and  as the CPS set of Xi1.

It is of interest to note that the proposed CPS estimator β̂1 is closely related to the estimator 

obtained via the “added-variable plot” approach (e.g., see Cook and Weisberg, 1998). To 

illustrate their relationship, let −1 be the collection of all covariates in  except for 1. 

Then the method of “added-variable plot” essentially takes the residuals from regressing 

against −1 as the response and the residuals from regressing 1 against −1 as covariates. 

Although both approaches can be used to assess the effect of −1 on the estimation of β1, 

they are different. Specifically, the “added-variable plot” approach requires regressing 1 on 

all remaining covariates, which is not computable when the dimension p is larger than n. By 

contrast, CPS only considers those predictors in  that are highly correlated with 1, which 

is applicable in high dimensional settings.
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Making inferences about β1 in high dimensional models is challenging because these 

inferences can depend on the accuracy of estimating the whole vector β; see Belloni et al. 

(2014), van de Geer et al. (2014) and Zhang and Zhang (2014). The main contribution of our 

proposed CPS method is employing a simple marginal regression approach to estimate β1 

after controlling for the predictors that are highly correlated with 1. As a result, the 

profiled predictor, 𝕏̃
1, is approximately independent of the remaining covariates. This 

allows us to not only directly estimate β1, but also make inferences about β1. The theoretical 

properties of the CPS estimator and associated test statistic are presented below.

2.2. Asymptotic normality of the CPS estimator and test statistic

To make inferences, we study the asymptotic properties of the CPS estimator β̂1. Define 

, which measures the partial covariance of Xij1 
and Xij2, after controlling for the effect of Xi  = (Xij : j ∈ )⊤ ∈ ℝ| |. Then, we make the 

following assumptions to facilitate the technical proofs, while admittedly not the weakest 

possible assumptions.

(C1) Gaussian condition. Assume that the Xis are independent and normally 

distributed with mean 0 and covariance matrix Σ.

(C2) Bounded diagonal elements. There exist two finite constants cmax and  such 

that the diagonal components of Σ and Σ−1 are bounded above by cmax and  , 

respectively.

(C3) Predictor dimension. There exist two positive constants ħ < 1 and ν > 0 such 

that log p ≤ νnħ for every n > 0.

(C4) Partial covariance. There exists a constant ξ > 3/2 such that maxj∉  |ϱ1j( )| = 

O(| |−ξ ) as | | → ∞.

(C5) Dimension of the CPS set. There exist a CPS set | | and two positive constants 

Ca and Cb such that Canν1 ≤ | | ≤ Cbnν2, where ν1 and ν2 are two positive 

constants with 1/(2ξ) < ν1 ≤ ν2 < 1/3 and ħ + 3ν2 < 1, where ħ is defined in 

Condition (C3).

(C6)
Regression coefficients. Assume that  for some 

constant Cmax > 0 and ϖ < min(1/4, ξν1 − 1/2), where ξ and ν1 are defined in 

(C4) and (C5), respectively.

Condition (C1) is a common condition used for high dimensional data to simplify theoretical 

proofs; see for example, Wang (2009) and Zhang and Zhang (2014). This condition can be 

relaxed to the sub-Gaussian random variables (Wang, 2012; Li et al., 2012) and our 

theoretical results still hold. Condition (C2) is a mild condition that has been well discussed 

in Liu (2013). Condition (C3) allows the dimension of predictors p to diverge exponentially 

with the sample size n, so that p can be much larger than n. Condition (C4) is a technical 

condition for simplifying the proofs of our theory, and it requires that the partial covariance 

between the target covariate and any other predictor that does not belong to , after 

controlling for the effect of Xi  (i.e., key confounders), and that it converges towards 0 at a 
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fast speed as | | → ∞. This condition is satisfied for many typical covariance structures, 

e.g., diagonal and autoregressive structures. It is worth noting that, according to (C1), the 

conditional distribution of Xi1 given Xi,−1 = (Xi2, …, Xip)⊤ ∈ ℝp−1 remains normal. As a 

result, there exists a coefficient vector θ(1) = (θ(1),1, …, θ(1),p−1)⊤ ∈ ℝp−1 such that 

, where ei1 is a random error that is independent of Xi,−1. Furthermore, if 

 ⊂ θ = {j : θ(1),j ≠ 0}, then it implies that maxj∉  |ϱ1j( )| = 0. Hence, Condition (C4) is 

satisfied. Furthermore, this condition is closely related to the assumption given in Theorem 5 

of Zhang and Zhang (2014). Moreover, Condition (C5), together with Condition (C4), 

ensures that the size of the CPS set is much smaller than the sample size, but it does not 

imply that the number of regressors highly correlated with 1 is bounded. Condition (C5) is 

used to guarantee that maxj∉  |ϱ1j( )| is of order o(n−1/2), so that the bias of β̂1 vanishes. 

Note that the size of the CPS set in Condition (C5) depends on the rate of maxj∉  |ϱ1j( )| 

→ 0. Thus, Condition (C5) can be dropped if θ(1) has finite non-zero elements or Σ follows 

an autoregressive structure so that maxj∉  |ϱ1j( )| = O{exp(−ζ̄ | |η
̄
)} for some positive 

constants ζ̄ and η̄. Lastly, Condition (C6) is satisfied when β is sparse with only a finite 

number of nonzero coefficients. Under the above conditions, we obtain the following result.

Theorem 1—Assume that Conditions (C1)–(C6) hold. We then have 

, where 

, 
+ = {1}∪ , and * = {j : j ∉ +}.

Using the results of two lemmas in Appendix A, we are able to prove the above theorem; see 

the detailed proofs in Appendix B. By Theorem 1, we construct the test statistic,

(2.4)

where ,ℰ̂ + is the residual vector 

obtained by regressing Yi on Xi +, and Xi + = (Xij : j ∈ +)⊤. Applying similar techniques 

to those used in the proof of Theorem 1 under Conditions (C1)–(C6), together with Slutsky’s 

theorem and the result that  obtained from Lemma 3 and 

Condition (C2), we can verify that  is the consistent estimator of . As a result, Z1 is 

asymptotically standard normal under H0, and one can reject the null hypothesis if |Z1| > 

z1−α/2, where zα stands for the αth quantile of the standard normal distribution. Note that if 

p < n and  = {j : j ≠ 1}, the test statistic Z1 is the same as the classical z-test statistic.

To make the testing procedure practically useful, one needs to select the CPS set  among 

the sets k for k ≥ 1. Since k in (2.3) is unknown in practice, we consider its estimator
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(2.5)

where ρ̂1j is the sample correlation coefficient of Xi1 and Xij and 

. The connection between k and its sample counterpart 𝒮̂
k is 

established in the following proposition.

Proposition 1—Let |ρ1ji | be the ith largest absolute value of {ρ1j : 2 ≤ j ≤ p}. For any 1 ≤ 

k ≤ Cbnν2 with Cb and ν2 being defined in Condition (C5), mini≥dmaxnν2/2(|ρ1jk| − |ρ1jk+i |) 

> dmin/nν2 for some positive constants dmin and dmax. Then, under Conditions (C1) and 
(C3), for any CPS set k0 satisfying k0 ≤ Cbnν2, there exists k* ≤ k0 + dmaxnν2 such that 
P(𝒮k̂* ⊂ k0 ) → 1.

The proof is given in Appendix C. The condition mini≥dmaxnν2/2(|ρ1jk | − |ρ1jk+i |) > dmin/nν2 

for some finite positive constants dmin and dmax is quite mild, and it ensures that the 

difference between |ρ1jl | and |ρ1jm| cannot be too small when |jl − jm| is large enough. By 

Condition (C5), there exists a positive integer k0 ∈ (Canν1, Cbnν2 ) such that k0 is the CPS 

set. According to Proposition 1, we can then find k* ≤ k0 + dmaxnν2 = O(nν2 ) satisfying 

P(𝒮̂
k* ⊂ k0 ) → 1. This indicates that there exists a set among the paths 𝒮k̂ that contains 

the CPS set. By Condition (C4), we further have that 

. Using this result, one can verify that Theorem 

1 holds by replacing k0 with 𝒮̂
k*.

Proposition 1 indicates that the sequential selection of the CPS set along the paths �̂�k (k = 1, 
…, p − 1) is attainable. In practice, however, k is unknown and needs to be selected 

effectively. By the results of Corollary 1 of Kalisch and Bühlmann (2007), we have that |

ϱ̂1j(𝒮̄) − ϱ1j(𝒮̄)| = Op(n−1/2) uniformly for any conditional set with size |𝒮̄| = O(nν2 ), which 

leads to  for any k = O(nν2 ). This indicates that 

the sample partial correlation is close to its true partial correlation as the sample size gets 

large. Motivated by this finding, we propose choosing the CPS set among the paths 𝒮̂
k by 

sequentially testing the partial correlations. Specifically, for any k ≥ 1, 

 be the sample counterpart of ϱ1j( k) and define F̂
1j(𝒮̂

k) = 2−1 log[{1 

+ ϱ̂1j(𝒮̂
k)}/{1 − ϱ̂1j(𝒮̂

k)}], which is in the spirit of Fisher’s Z-transformation for the purpose 

of identifying nodes (variables) that have edges connected to the variable Xi1 in a Gaussian 

graph (see Kalisch and Bühlmann, 2007). Then, we select the smallest size of k sequentially 

such that  (denoted as k̂), for every , 

where γ is a pre-specified significance level and . Employing Lemma 3 in 

Kalisch and Bühlmann (2007) that |F̂
1j(𝒮̄)−F1j(𝒮̄)| = Op(n−1/2) uniformly for any conditional 

set with size |𝒮̄| = O(nν2 ), we then have , which immediately 

leads to . Using the result of Proposition 1 and Condition 
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(C4), we further obtain |𝒮̂
k̂| ≤ (Cb + dmax)nν2. Hence, the k̂ selected via the sequential 

testing procedure is of order O(nν2 ), which is directly related to the assumption imposed on 

k in Condition (C5).

Remark 1—It is worth noting that the proposed CPS method is based on the same idea as 

the tilting method of Cho and Fryzlewicz (2012), namely controlling the effect of the 

predictors that could generate a confounding effect. However, there is a difference between 

these two methods in one of their scaling factors. Specifically, our proposed test statistic is

and the tilted correlation of Cho and Fryzlewicz (2012) is

Note that + =  ∪ {1}. The asymptotic properties of these two quantities above can be 

quite different when β1 ≠ 0 because the difference between ⊤ +  and ⊤  can be 

large. This indicates that the tilted correlation approach designed for variable selection may 

not be appropriate for hypothesis testing.

Remark 2—Based on partial correlation, we construct the CPS set. An alternative approach 

is via the correlation approach proposed by Cho and Fryzlewicz (2012, Section 3.4), who 

focused on testing correlations between covariates by controlling the false discovery rate. 

Although their method is quite useful for variable selection, it raises the following two 

concerns for our testing procedure. First, Theorem 1 may not be valid via the correlation 

approach. The reason is that Theorem 1 requires the partial covariance, maxj |ϱ1j( )|, to 

converge to 0 at a fast rate so that the bias of β1̂ is asymptotically negligible; see the proof of 

Theorem 1 in Appendix B for details. However, the correlation approach only ensures the 

convergence of maxj |ρ1j|, but not maxj |ϱ1j( )|. Hence, β̂1 may yield a nontrivial bias by 

using the correlation approach. Second, their method requires that only a small proportion of 

the ρj1j2 s are nonzero. Accordingly, it may not be applicable for our proposed test when 

correlations among predictors are either non-sparse or less sparse (see the covariance 

structure with the polynomial decay setting above Example 4).

Remark 3—We use a single screening approach to obtain the CPS set of the target 

covariate, which yields the CPS estimator of the target regression coefficient. On the other 

hand, Zhang and Zhang (2014) employed the scaled lasso procedure of Sun and Zhang 

(2012) to obtain the initial estimators of all regression coefficients and the scale parameter 

estimator. Then, they apply the classical lasso procedure to find the low dimensional 

projection vector. In sum, Zhang and Zhang (2014) applied the lasso approach to find the 

low dimensional projection estimator (LDPE) for the target regression coefficient. When 
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has orthogonal columns and p < n, both approaches lead to the same parameter estimator as 

that obtained from the marginal univariate regression (MUR). However, these two 

approaches are quite different, and it seems nearly impossible to find the exact relationship 

between the CPS estimator and LDPE when the columns of  are not orthogonal.

2.3. Controlling the False Discovery Rate (FDR)

In identifying significant coefficients among the high dimensional regression coefficients βj 

(j = 1, …, p), a multiple testing procedure can be considered by testing H0j : βj = 0 

simultaneously. Denote the p-value obtained by testing each individual null hypothesis, H0j, 

as pj = 2{1 − Φ(|Zj|)}, where Zj is the test statistic and can be constructed similarly to that in 

Eq. (2.4). To guard against false discoveries, we next develop a procedure to control the false 

discovery rate (Benjamini and Hochberg, 1995).

Let 0 = {j : βj = 0} be the set of variables whose associated coefficients are truly zero and 

1 = {j : βj ≠ 0} be the set of variables whose associated coefficients are truly nonzero. For 

any significance level t ∈ [0, 1], let V(t) = #{j ∈ 0 : pj ≤ t} be the number of falsely 

rejected hypotheses, S(t) = #{j ∈ 1 : pj ≤ t} be the number of correctly rejected 

hypotheses, and R(t) = #{j : pj ≤ t} be the total number of rejected hypotheses. We adopt the 

approach of Storey et al. (2004) to implement the multiple testing procedure, which is less 

conservative than the method of Benjamini and Hochberg (1995) and is applicable under a 

weak dependence structure (Storey et al., 2004). To this end, define FDP(t) = V(t)/[R(t)∨1] 

and FDR(t) = E{V(t)/[R(t)∨1]}, where R(t) ∨ 1 = max{R(t), 1}. Then, the estimator 

proposed by Storey (2002) is

(2.6)

where π̂
0(λ) = {(1−λ)p}−1{p−R(λ)} is an estimate of π0 = p0/p, p0 = | 0| is the number of 

true null hypotheses, and λ ∈ [0, 1) is a tuning parameter. Then, for any pre-specified 

significance level q and a fixed λ, consider the cutoff point chosen by the thresholding rule, 

. We reject the null hypotheses for those p-values 

that are less than or equal to .

To study the theoretical property of , we begin by introducing two notations. Let 

 be the average probability of all rejected hypotheses and j be 

the CPS set of covariates Xij. We next demonstrate that asymptotically provides 

strong control of FDR at the pre-specified nominal level q.

Theorem 2—Assume that p0/p → 1 as p goes to infinity, limn→∞ T1,n(t) = T1(t) and, for 

any k ∈ 0, , where T1(t) is a continuous function and Λ0 = 
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max{maxj∈ 0 | j|, | 1|}. Under Conditions (C1)–(C6), we have that 

.

The proof is given in Appendix D. In general, the dependences among the test statistics Zj 

become stronger as the overlap among the CPS sets increases. To control the dependences, 

they must have weaker dependence among covariates as the size of overlap increases. 

Accordingly, the condition  for any k ∈ 0, in Theorem 2, 

controls the overall dependence between the covariates in the union of the CPS sets ∪l∈ 0 

l for any fixed k ∈ 0; see Fan et al. (2012) for a similar condition on dependence. In 

addition, Λ0 provides an upper bound on the size of the overlap among the CPS sets. 

Assume that Σ follows an autoregressive structure such that the | j|s are small compared 

with n and  for any 1 ≤ k ≤ p. Hence, the above condition is satisfied. In sum, 

 in (2.6) is applicable under weak dependence. For a more general dependence 

structure, one might apply the FDP estimation procedure proposed by Fan et al. (2012).

2.4. Model selection consistency

According to Theorem 2, for any given significance level q > 0, the FDR can be controlled 

asymptotically by setting the threshold at . This result motivates us to further 

investigate the model selection consistency by letting q → 0. In fact, the model selection 

consistency in high dimensional linear models has been intensively studied in the variable 

selection literature. There is a large body of papers discussing the model selection 

consistency via the penalized likelihood approach (e.g., Meinshausen and Bühlmann, 2006; 

Zhao and Yu, 2006; Huang et al., 2007). However, the use of p-values for model selection 

has not received considerable attention. Some exceptions include Bunea et al. (2006) who 

considered variable selection consistency using p-values under the condition p = o(n1/2), and 

Meinshausen et al. (2009) who investigated the consistency of a two-step procedure 

involving screening and then a multiple test procedure. It is worth noting that the p-value 

obtained in Meinshausen et al. (2009) is not designed for assessing the significance of a 

single coefficient. The aim of this section in our paper is to study the model selection 

consistency using p-values obtained from the test proposed in Section 2.2.

For any given nominal levels αn, let  be an estimate of 1, the set 

containing all the variables whose associated coefficients are truly nonzero. Assume that αn 

→ 0 as n → ∞. By Theorem 2, the probability of obtaining false discoveries is 

, which implies that . Thus, this 

procedure requires a sure screening property  to obtain model selection 

consistency. Before demonstrating this property, two additional assumptions are given 

below.

(C7) There exist two positive constants κ and Cκ such that minj∈  1 |βj| > Cκn−κ for 

κ + ħ < 1/2, where ħ is defined in (C3).
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(C8) There exists some positive constant Ce such that for any ℓ > 0 and 1 ≤ j ≤ p, 

.

Condition (C7) is a minimum signal assumption, and similar conditions are commonly 

considered in the variable screening literature (Fan and Lv, 2008; Wang, 2009). We further 

assume that the random errors εi are independent and normally distributed. Using the fact 

that n−1|| j||2 → 1 and that  follows a normal distribution with finite variance for j 
= 1, …, p, Condition (C8) is satisfied. The above conditions, together with Conditions (C1)–

(C6), lead to the following result.

Theorem 3—Under Conditions (C1)–(C8), there exists a sequence of significance levels 

αn → 0 such that .

The proof of Theorem 3 is given in Appendix E. According to the proof of Theorem 3, one 

can select αn at the level of αn = 2{1 − Φ(nj)} with ħ < j < 1/2 − κ. This selection implies 

that pαn/log(p) → 0 as n → ∞, which is similar to the assumption (Cq) in Bunea et al. 

(2006). Compared with the penalized likelihood method, the proposed testing procedure is 

able to control the false discovery rate and the family-wise error rate for the given αn. This is 

important especially in the finite sample case; see Meinshausen et al. (2009) for a detailed 

discussion.

3. Simulation studies

To demonstrate the finite sample performance of the proposed methods, we consider four 

simulation studies with different covariance patterns and distributions among predictors. 

Each simulation includes three different sample sizes (n = 100, 200, 500) and two different 

dimensions of predictors (p = 1000 and 2000). All simulation results presented in this 

section were based on 1000 realizations. The nominal level α of the CPS test and the 

significance level q of FDR are both set to 5%. Moreover, to determine the CPS set for each 

predictor, three different significance levels were considered (α = 0.01, 0.05, and 0.10). 

Since the results were similar, we only report the case with the nominal level α = 0.05.

To study the significance of each individual regression coefficient, consider the proposed test 

statistic Zrj for testing the jth coefficient in the rth simulation, where j = 1, …, p and r = 1, 

…, 1000. Then, define an indicator measure Irj = I(|Zrj| > z1−α/2) and compute the empirical 

rejection probability (ERP) for the jth coefficient test, . As a result, 

ERPj is the empirical size under the null hypothesis H0j : βj = 0, while it is the empirical 

power under the alternative hypothesis. Subsequently, define the average empirical size (ES) 

and the average empirical power (EP) as ES = | 0|−1Σj∈  0 ERPj and EP = | 1|−1Σj∈  1 
ERPj, respectively. Accordingly, ES and EP provide overall measures for assessing the 

performance of the single coefficient test. Based on the p-values of the Zrj tests, we next 

employ the multiple testing procedure of Storey et al. (2004) to study the performance of 

multiple tests via the empirical FDR discussed in Section 2.3. It is worth noting that we 

adopt the commonly used tuning parameter λ = 1/2 in the first two examples, and its 

robustness is evaluated in Example 3. To assess the effect of model selection consistency, we 
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examine the average true rate  and the average false rate 

. When the true model can be identified consistently, TR and FR 

should approach 1 and 0, respectively, as the sample size gets large. For the sake of 

comparison, we also examine the marginal univariate regression (MUR) test (i.e., the 

classical t-test obtained from the marginal univariate regression model) and the low 

dimensional projection estimator (LDPE) proposed by Zhang and Zhang (2014) and van de 

Geer et al. (2014) in Monte Carlo studies. The tuning parameter of the LDPE method is set 

to {2 log p/n}1/2, as suggested by Zhang and Zhang (2014). It is noteworthy that we do not 

include the method of Bühlmann (2013) for comparison since it is not optimal, as shown by 

van de Geer et al. (2014).

Example 1: Autocorrelated predictors—Consider a linear regression model with 

autocorrelated predictors Xi generated from a multivariate normal distribution with mean 0 

and covariance Σ = (σj1j2) ∈ ℝp×p with σj1j2 = 0.5|j1−j2|. Although different predictors are 

correlated with each other, the correlation decreases to 0 as the distance |j1 − j2| between Xij1 
and Xij2 increases. The regression coefficient vector β is such that β3j+1 = 1 for any 0 ≤ j ≤ 

d0, and βj = 0 otherwise. Note that d0 = | 1| represents the number of non-zero regression 

coefficients. In this example, we consider three different values of d0 (d0 = 10, 50, 100) to 

investigate the performance of the proposed test under sparse (i.e., d0 = 10) and less sparse 

(i.e., d0 = 50 and 100) scenarios. In addition, the average variance of εi (i.e., σ̄2) is chosen to 

generate a theoretical . Moreover, the variance of 

 is independently generated from a uniform distribution with the lower and upper 

endpoints σ̄2/2 and 3 σ̄2/2, respectively. Accordingly, we generate the heteroscedastic linear 

regression model.

The results for d0 = 10 are presented in Table 1. Since the results for d0 = 50 and 100 yield a 

similar pattern to those in Table 1, we provide them in the supplementary material to save 

space. Table 1 shows that both CPS and MUR control the size well, while MUR has a larger 

power than CPS. After closely examining MUR’s performance, however, we find that its ES 

can be misleading. For example, Xi2 ∈ 0 is moderately correlated with a nonzero predictor 

Xi1 ∈ 1. As a result, the empirical size for testing H0 : β2 = 0 obtained from MUR could 

be as large as 0.90 in almost all realizations. On the other hand, most predictors in 0 are 

nearly independent of the predictors in 1 and the response variable. Accordingly, MUR 

can have a reasonable average empirical size and a high average true rate (TR). This 

misleading result can be detected by the empirical false discovery rate (FDR) being much 

greater than the nominal level. In addition, the average false rate (FR) becomes larger as the 

sample size increases. Therefore, the MUR approach should be used with caution when 

testing a single coefficient, conducting multiple hypothesis tests, or selecting variables.

We next study the performance of LDPE. Table 1 indicates that, although LDPE can control 

the size well at a reasonable level, it fails to control the FDR at the nominal level, 

particularly in small samples. For instance, when the sample size n = 100, the FDR values 

are 0.396 and 0.429 for p = 1000 and p = 2000, respectively. In contrast to MUR and LDPE, 

the CPS approach not only controls the size well, but also leads to FDR converging to the 
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nominal level as the sample size increases. Furthermore, the average TR increases towards 1 

and the average FR decreases to 0, both of which are consistent with theoretical findings.

In addition to d0 = 10, the results for d0 = 50 and 100 in Tables S1 and S2 of the 

supplementary material indicate that CPS is still superior to MUR and LDPE under the less 

sparse scenario. It is of interest to note that LDPE does not control the size well under less 

sparse regression models. This finding is not surprising since LDPE depends heavily on the 

accuracy of estimating the whole vector β. In sum, CPS performs well for testing a single 

coefficient, and the resulting p-values are reliable for multiple hypothesis tests and model 

selection.

Example 2: Moving average predictors—In this example, we generate data from a 

linear regression model with predictors following the moving average model with order 1: 

Xi = ui + 0.5ui−1 for i = 2, …, n and X1 = u1, where ui are independently generated from a 

multivariate normal distribution with mean 0 and covariance 0.8Ip for i = 1, …, n. 

Accordingly, the covariance matrix of Xi can be written as Σ = (σj1j2) ∈ ℝp×p with σj1j2 = 1 

if j1 = j2, σj1j2 = 0.4 if |j1 − j2| = 1, and σj1j2 = 0 otherwise. The regression coefficients β, the 

number of non-zero coefficients d0, and the variance of , are the same as those in 

Example 1.

Table 2 reports the results for d0 = 10, and similar findings for d0 = 50 and 100 can be found 

in Tables S3 and S4, respectively, of the supplementary material. Table 2 shows that both 

CPS and MUR control the size well. However, MUR fails to control FDR at the nominal 

level. In fact, its FDR is much greater than the nominal level. In addition, its average false 

rate (FR) becomes larger as the sample size increases. We next study the performance of 

LDPE. Table 2 indicates that LDPE fails to control the FDR at the nominal level, 

particularly in small samples, although it can control the size well at a reasonable level. In 

addition, LDPE fails to control the size well for less sparse regression models (see Tables S3 

and S4 for d0 = 50 and 100, respectively, in the supplementary material). This finding is not 

surprising since LDPE depends heavily on the accuracy of estimating the whole vector β. In 

contrast to MUR and LDPE, the resulting p-values obtained by CPS are reliable for multiple 

hypothesis tests and model selections. Furthermore, CPS performs well even under less 

sparse models (see Tables S3 and S4 in the supplementary material), and this nice property 

is not enjoyed by MUR and LDPE.

Example 3: Equally correlated predictors—Consider a model with equally correlated 

predictors, Xi, generated from a multivariate normal distribution with mean 0 and a 

compound symmetric covariance matrix Σ = (σj1j2) ∈ ℝp×p, where σj1j2 = 1 if j1 = j2 and 

σj1j2 = 0.5 for any j1 ≠ j2. In addition, the regression coefficients are set as follows: βj = 5 for 

1 ≤ j ≤ d0, and βj = 0 for j > d0. The number of non-zero regression coefficients d0 and the 

variance of  are the same as those in Example 1.

To save space, we only present the results for d0 = 10 in Table 3, and the results for d0 = 50 

and 100 are in Tables S5 and S6, respectively, of the supplementary material. Table 3 

indicates that MUR performs poorly in terms of both ES and FDR measures. This finding is 

not surprising because every predictor in 0 is equally correlated with those predictors in 
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1. As a result, the marginal correlation between any predictor in 0 and the response 

variable is bounded well away from 0. Thus, MUR’s empirical rejection probability is close 

to 100%, which leads to highly inflated ES and FDR. Furthermore, FR equals 1 at all sample 

sizes, which implies that MUR tends to over reject the null hypothesis. Moreover, the results 

of LDPE are similar to those in Tables 1–2. On the other hand, the ES and FDR of CPS are 

close to the nominal level, except for the case of CPS with n = 100. Moreover, TR and EP 

increase towards 1 as the sample size gets large, and FR equals 0 at all sample sizes.

From the above simulation studies, we find that FDR plays an important role for examining 

the reliability of test statistics. Hence, we next study the accuracy for the estimation of FDR 

discussed in Section 2.3. Since we are interested in the statistical behavior of the number of 

false discoveries V(t), we follow Fan et al.’s (2012) suggestion and compare  in 

(2.6), with λ = 1/2, to FDP(t) calculated via V(t)/[R(t) ∨ 1]. For the sake of illustration, we 

consider the same simulation settings as given in Examples 1 and 3 with n = 100, p = 1000 

and d0 = 10. Panels A and B in Fig. 1 depict  and FDP(t), obtained via the CPS 

method for Examples 1 and 3, respectively, across various t values. In contrast, Panels C and 

D are calculated via the MUR approach and Panels E and F are calculated via the LDPE 

method. Fig. 1 clearly shows that  calculated from the p-values of CPS is reliable 

and consistent with the theoretical finding in Theorem 2. However, MUR and LDPE do not 

provide accurate estimates of FDP, and they should be used with caution in high dimensional 

data analysis.

The above three examples have demonstrated that CPS performs well across three 

commonly used covariance structures. It is worth noting that Conditions (C4) and (C5) hold 

in the first two examples, while these conditions are invalid in the third example. However, 

CPS still performs well in Example 3, which shows its robustness. Motivated by an 

anonymous referee’s comments, we present an additional study with the covariance structure 

Σ = Ip+uu⊤, where u = (u1, …, up)⊤ ∈ ℝp, uj = δj−2 for j = 1, …, p, and δ is a finite constant. 

Accordingly, cov(Xi1, Xij) = (δ/j)2 so that covariates exhibit polynomial decay and ρ1j = 

(δ/j)2/{(1+δ2)(1+ δ2/j4)}0.5. Hence, there are quite a number of predictors that are highly 

correlated with Xi1 when δ is large enough. One can also verify that maxj∉∈  |ϱ1j( )| = O(|

|−2) as | | → ∞, and then both Conditions (C4) and (C5) hold. Our simulation results 

indicate that CPS performs well; see Table S7 in the supplementary material.

Example 4: Robustness of covariate distribution and λ parameter—In the first 

three examples, the covariate vector Xis were generated from a multivariate normal 

distribution and the tuning parameter λ was set to be 1/2. To assess the robustness of CPS 

against the covariate distribution and λ, we conduct simulation studies for various λs and 

three distributions of Xi = Σ1/2Zi, where each element of Zi is randomly generated from the 

standard normal distribution, the standardized exponential distribution exp(1), and the 

normal mixture distribution 0.1N(0, 32) + 0.9N(0, 1), respectively, for i = 1, …, n, and the Σs 

are correspondingly defined in Examples 1–3. Since all results are qualitatively similar, we 

only report the case when λ = 0.1, d0 = | 1| = 10 and Zi follows a standardized exponential 

distribution. The results in Tables 4–6 show similar findings to those in Tables 1–3, 
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respectively. Hence, Monte Carlo studies indicate that the CPS approach is robust against the 

covariate distribution and the threshold parameter λ.

4. Real data analysis

To illustrate the usefulness of the proposed method, we consider two empirical examples. 

The first example analyzes financial data and the second example studies supermarket data.

4.1. Index fund data

The data set consists of a total of n = 155 observations, in which the response Yi is the 

weekly return of the Shanghai composite index. Explanatory variables Xi are p = 382 stock 

returns that traded on the Shanghai stock exchange during the period from Oct. 9, 2010 to 

Sep. 28, 2013, with i = 1, …, 155. We assume that there is a linear relationship between Yi 

and Xi, which is , as given in Eq. (2.1). In addition, both the response and 

predictors are standardized so that they have zero mean and unit variance. The task of this 

study is identifying a small number of relevant stocks that financial managers can use to 

establish a portfolio that tracks the return of the Shanghai composite index.

To identify important stocks (predictors) that are associated with Yi, we employ the CPS, 

MUR, and LDPE methods and test the significance of each individual regression coefficient, 

namely, testing H0j : βj = 0 vs. H1j : βj ≠ 0 for j = 1, …, 382. Here, the tuning parameter of 

the LDPE method is set to {2 log p/n}1/2, as suggested by Zhang and Zhang (2014). Since 

the asymptotic distribution of the p-values obtained from the above test statistics is uniform 

[0, 1], we use the histogram to effectively illustrate their performances. Fig. 2 depicts the 

histograms of the p-values for testing H0j (j = 1, …, 382) via three tests. Based on the CPS 

test, we find 32 p-values that are less than the significance level α = 5%. After controlling 

the false discoveries rate via the method of Storey et al. (2004) at the level of q = 5%, the 

number of hypotheses H0j being rejected is 12. As a result, we have identified the 12 most 

important stocks that can be used for index tracking.

In contrast, the histogram of the p-values calculated from the MUR tests is heavily skewed 

with very thin tails. This suggests that most of its p-values are very small. Consequently, it 

rejected a total of 161 hypotheses H0j after controlling the FDR at the level of q = 5%. This 

finding is not surprising since the covariates in the model are highly correlated due to the 

existence of latent factors, as observed by Fama and French (1993). Analogous results can 

be found in the histogram of the p-values generated from LDPE. In sum, CPS is able to 

identify the most relevant stocks from high dimensional data, while MUR and LDPE cannot.

4.2. Supermarket data

This data set contains a total of n = 464 daily records. For each record, the response variable 

(Yi) is the number of customers and the predictors (Xi1, …, Xip) are the sales volumes of p = 

6398 products. Consider a linear relationship between Yi and Xi = (Xi1, …, Xip)⊤ ∈ ℝp, 

given by , where both the response and predictors are standardized so that they 

have zero mean and unit variance. The purpose of this study is to determine a small number 

of products that attract the most customers.
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We apply the proposed CPS, MUR, and LDPE methods to test the significance of each 

regression coefficient, namely H0j : βj = 0 vs. H1j: βj ≠ 0. Fig. 3 depicts the three histograms 

of the p-values computed via the CPS, MUR, and LDPE methods, respectively. As one can 

observe from the histogram, for the CPS method, the pattern indicates that most of the H0j 

are true and the p-values are asymptotically valid. There were 1426 p-values that are less 

than the significance level α = 5%. After controlling the false discoveries rate via the 

method of Storey et al. (2004) at the level of q = 5%, the number of hypotheses H0j being 

rejected is 132. In other words, we have identified 132 most important products on which the 

supermarket decision maker (or manager) might perform further analysis. In contrast, for the 

MUR method, the histogram of the p-values are extremely skewed with very thin tails. It 

rejected a total of 5648 hypotheses H0j after controlling the FDR at the level of q = 5%. In 

addition, the histogram of the p-values generated from the LDPE tests in Fig. 3 shows a flat 

pattern within the entire interval [0, 1]. As a result, it is not surprising to find that there were 

a total of 535 p-values that are less than the significance level α = 5%, while none of them 

were significant after controlling the false discoveries rate at the level of q = 5%.

The above two above examples indicate that the CPS method not only practically provides a 

simple and efficient approach to compute the p-value for testing a single coefficient in a high 

dimensional linear model, but also results in reliable p-values for multiple hypothesis 

testing.

5. Discussion

In linear regression models with high dimensional data, we propose a single screening 

procedure, Correlated Predictors Screening (CPS), to control for predictors that are highly 

correlated with the target covariate. This allows us to employ the classical ordinary least 

squares approach to obtain the parameter estimator. We then demonstrate that the resulting 

estimator is asymptotically normal. Accordingly, we extend the classical t-test (or z-test) for 

testing a single coefficient to the high dimensional setting. Based on the p-value obtained 

from testing the significance of each covariate, the multiple hypothesis testing is established 

by controlling the false discovery rate at the nominal level. In addition, we show that 

multiple hypothesis test leads to consistent model selection. Accordingly, the main focus of 

this paper is on statistical inference rather than variable selection and parameter estimation, 

which are often the aims of regularization methods such as LASSO (Tibshirani, 1996) and 

SCAD (Fan and Li, 2001).

The proposed CPS method can be extended for testing a small subset of regression 

coefficients. Consider the hypothesis:

(5.1)

where ℳ is a pre-specified index set with a fixed size and βℳ = (βj: j ∈ ℳ)⊤ ∈ ℝ|ℳ| is the 

subvector of β corresponding to ℳ. Without loss of generality, we assume that ℳ = {j: 1 ≤ j 
≤ |ℳ|} and 1 < |ℳ| ≪ n. Then, define an overall CPS set of ℳ as ℳ = ⋃j∈ℳ j, where j is 

the CPS set for the jth predictor in ℳ. Accordingly, the target parameter estimator βℳ = (βj: j 
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∈ ℳ) ⊤ ∈ ℝ|ℳ| can be estimated by , where ℳ = ( j: j ∈ 
ℳ) ∈ ℝn×|ℳ|. Applying similar techniques to those used in the proof of Theorem 1, we can 

show that n1/2(βℳ̂ −βℳ)→d N(0,Σβ), where  with 

 and 

. Consequently, an F-type test statistic can be constructed to test (5.1).

To broaden the usefulness of the proposed method, we conclude the article by discussing 

three possible research avenues. Firstly, from the model aspect, it would be practically useful 

to extend the CPS method to generalized linear models, single index models, partial linear 

models, and survival models. Secondly, from the data aspect, it is important to generalize the 

proposed CPS method to accommodate category explanatory variables, repeated 

measurements, and missing observations. Lastly, to control the FDR at the nominal level, we 

have imposed a weak dependence assumption in Theorem 2. Hence, it would be useful to 

employ the method of Fan et al. (2012) to adjust for the arbitrary covariance dependence 

among test statistics Zj. We believe these extensions would enhance the usefulness of CPS in 

high dimensional data analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Four useful lemmas

Before proving the theoretical results, we present the following four lemmas which are 

needed in the proofs. The first lemma is directly borrowed from Lemma A.3 of Bickel and 

Levina (2008), and the second lemma can be found in Bendat and Piersol (1966). As a 

result, we only verify the third and fourth lemmas.

Lemma 1

Let σ̂j1j2 = n−1Σi Xij1Xij2 and ρ̂j1j2 = σ̂
j1j2/{σ̂

j1j1 σ̂j2j2}1/2, and assume that Condition (C1) 
holds. Then, there exist three positive constants ζ0 > 0, C1 > 0, and C2 > 0, such that (i) P(|
σ̂

j1j2 − σj1j2| > ζ) ≤ C1 exp(−C2nζ2) and (ii) P(|ρ̂j1j2 − ρ̂j1j2 | > ζ) ≤ C1 exp(−C2nζ2) for any 
0 < ζ < ζ0 and every 1 ≤ j1, j2 ≤ p.

Lemma 2

Let (U1, U2, U3, U4)⊤ ∈ ℝ4 be a 4-dimensional normal random vector with E(Uj) = 0 and 
var(Uj) = 1 for 1 ≤ j ≤ 4. We then have E(U1U2U3U4) = δ12δ34 + δ13δ24 + δ14δ23, where δij 

= E(UiUj).

Lemma 3

Assume that Conditions (C1)–(C3) hold, and m = O(nν2) for some positive constant ν2 

which satisfies 3ν2 + ħ < 1, where ħ is given in (C3). Then, 

.

Proof

Since  and , it 

suffices to show that

(A.1)

Denote ||A|| = {tr(AA⊤)}1/2 for any arbitrary matrix A. Since  is the 

conditional variance of X1 given X , . Then by Condition (C2), 

we have . Then, we obtain (A.1) if the following two 

uniform convergence results hold:
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(A.2)

(A.3)

Accordingly, it suffices to demonstrate (A.2) and (A.3).

It is noteworthy that, for any  satisfying | | ≤ m, we have

This, together with the Bonferroni inequality, Condition (C1), Lemma 1(i), and the fact that 

#{  ⊂ {1, …, p}: | | ≤ m} ≤ pm, implies

(A.4)

Furthermore, by the assumptions in Lemma 3 (m = O(nν2)) and Condition (C3) (log p ≤ 

νnħ), we have that m log p = O(nν2+ħ). Moreover, using the assumptions in Lemma 3 again 

(3ν2 + ħ < 1), the right-hand side of (A.4) converges towards 0 as n → ∞. Hence, we have 

proved (A.2). Applying similar techniques to those used in the proof of (A.2), we can also 

demonstrate (A.3). This completes the entire proof.

Lemma 4

Assume that (a) limp→∞ V(t)/p0 = G0(t) and limp→∞ S(t)/(p − p0) = G1(t), where G0(t) and 
G1(t) are continuous functions; (b) 0 < G0(t) ≤ t for t ∈ (0, 1]; (c) limp→∞ p0/p = 1. Then, 

we have .
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Proof

By slightly modifying the proof of Theorem 4 in Storey et al. (2004), we can demonstrate 

the result. The detailed proof can be obtained from the authors upon request.

Appendix B. Proof of Theorem 1

Let  and . Then, β̂1 − β1 = T1 + T2. 

Using the fact that E(εi|Xi) = 0, one can show that cov(T1, T2) = E(T1T2) − E(T1)E(T2) = 0. 

Therefore, T1 and T2 are uncorrelated. To prove the theorem, hence, it suffices to show that 

 is asymptotically bivariate normal. By Conditions (C1)–(C3) and Lemma 

2, we obtain that , and 

. Accordingly, we have

Applying the same arguments as those given above, we also obtain that

Let  and . Then, it can 

be shown that E(ξi1) = 0, , and 

. Using Conditions (C4)–(C6), we further obtain 

that . 

Moreover,

The bivariate Central Limit Theorem, together with the above results, implies that
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is asymptotically bivariate normal with mean zero and diagonal covariance matrix V = 

Diag(Vii). In addition,  and 

. Consequently, 

 is asymptotically normal with mean zero and variance V11 + V22, which 

completes the proof.

Appendix C. Proof of Proposition 1

As defined in (2.3), k0 = {j1, …, jk0} contains the indices whose associated predictors have 

the k0 largest absolute correlations with Xi1. For a given k̄, 𝒮̂
k̄ is defined as in (2.5). In 

addition, the event {𝒮̂
k̄ ⊅ k0} indicates that there exists at least one index, say ji1 ∈ k0 (i1 

≤ k0), but ji1 ∉ 𝒮̂
k̄. Then, for any k̄ satisfying k0 + dmaxnν2/2 < k̄ < k0 + dmaxnν2 with 1 ≤ k0 

≤ Cbnν2, we have {𝒮̂
k̄ ⊅ k0} ⊂ {There exist indices i1 ≤ k0 and i2 > k̄ that satisfy |ρ1̂ji2

| > |

ρ̂1ji1
|}. The reasoning is as follows. When ji1 ∉ 𝒮̂

k̄, it implies that there exists some index, 

say ji2 with i2 > k̄, such that ji2 ∈ 𝒮k̂̄. Otherwise, all indices jk in 𝒮̂
k̄ satisfy k ≤ k̄0, which 

implies that 𝒮̂
k̄ = {j1, …, jk̄} contains k0 as a subset. This yields a contradiction. As a 

result, we have P(𝒮̂
k̄ ⊅ k0) ≤ P(There exist indices i1 ≤ k0 and i2 > k̄ that satisfy |ρ̂1ji2

 | > |

ρ̂1ji1
|). Thus,

After simple calculation, we obtain that

This, together with Lemma 1(ii) and the assumption in Proposition 1 that |ρ1ji1
| − |ρ1ji2

| > 

dminn−ν2 for any i2 − i1 > dmaxnν2/2, leads to
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By Condition (C3), the negative sign of the first term on the right-hand side of the above 

equation, , dominates the second term log p. As a result,

which completes the proof.

Appendix D. Proof of Theorem 2

We mainly apply Lemma 4 to prove Theorem 2. To this end, we need to show the following 

two results,

(D.1)

(D.2)

as p → ∞, where . Since the proofs for (D.1) and (D.2) are 

quite similar, we only verify (D.1). By the law of large numbers, it is enough to show that

(D.3)

It is worth noting that the left-hand side of (D.3) is equivalent to
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(D.4)

Using the fact that var{I(|Zj| ≥ z1−t/2)} ≤ E{I(|Zj| ≥ z1−t/2)} ≤ 1 and the assumption that p0/p 
→ 1, together with the Cauchy–Schwarz inequality, we have that J2 ≤ p−2| 1| Σj∈ 1 
var{I(|Zj| ≥ z1−t/2)} ≤ (p − p0)2/p2 → 0. In addition, applying the Cauchy–Schwarz 

inequality, we obtain

Accordingly, to prove (D.3), we only need to show that J1 = O(p−δ) for some δ > 0. It can be 

seen that

Since J11 ≤ p0/p2 → 0 as p → ∞, it suffices to show that J12 = O(p−δ) for some δ > 0. Note 

that

where I1 = E{I(Zj1≥ z1−t/2)I(Zj2 ≥ z1−t/2)} − E{I(Zj1 ≥ z1−t/2)}E{I(Zj2 ≥ z1−t/2)}, I2 = E{I(Zj1 
≥ z1−t/2)I(Zj2 ≤ −z1−t/2)} − E{I(Zj1 ≥ z1−t/2)}E{I(Zj2 ≤ −z1−t/2)}, I3 = E{I(Zj1 ≤ −z1−t/2)I(Zj2 
≥ z1−t/2)} − E{I(Zj1 ≤ −z1−t/2)}E{I(Zj2 ≥ z1−t/2)} and I4 = E{I(Zj1 ≤ −z1−t/2)I(Zj2 ≤ −z1−t/2)} 

− E{I(Zj1 ≤ −z1−t/2)}E{I(Zj2 ≤ −z1−t/2)}. Since the proofs for I1 to I4 are essentially the 

same, we only focus on I1.

Applying the asymptotic expansion of Zj given in the proof of Theorem 1, we have

(D.5)
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where 

, 

and . As a 

result, for any j ∈ 0,  and Zj can be expressed as a summation 

of independent and identically distributed (i.i.d.) random variables uij. In addition, Condition 

(C1) implies that uij has an exponential tail. This, together with the bivariate large deviation 

result (Zhong et al., 2013), leads to

where ρj1j2 = corr(uij1, uij2) and

Without loss of generality, we assume that ρj1j2 = corr(uij1, uij2) > 0 and z1−t/2 > 0. Then, by 

using the inequality in Willink (2004), we have

(D.6)

where ζ = {(1−ρj1j2)/(1+ρj1j2)}1/2. Accordingly, we obtain that

After algebraic simplification, (1 − ζ)/ρj1j2 → 1 as ρj1j2 → 0. Hence, I1/(CIρj1j2) → 1 for a 

positive constant CI, which implies that cov{I(|Zj1 | ≥ z1−t/2), I(|Zj2 | ≥ z1−t/2)} ≈ CI |ρj1j2 |. 

Consequently, if Σj∈ 0 |ρjk| = o(p) for any k ∈ 0, then J12 = O(p−δ) for some δ > 0.

To complete the proof, we next verify the above condition Σj∈ 0 |ρjk| = o(p) for any k ∈ 

0. By the Cauchy–Schwarz inequality, we need to show that . Since 

 is the conditional variance of Xj given X j, . 

Therefore,  uniformly by Condition (C2) and 

 is bounded, respectively, for any j ∈ 0. Hence, 
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maxj . In addition, (D.5) implies var(uij) = 1. As a result, we only need to 

demonstrate that , where υjk = cov(uij, uik).

It can be shown that υjk = υjk,1+υjk,2, where υjk,1 = cov(ξij, ξik), υjk,2 = cov(δij, δik), and ξij 

and δij are defined after Eq. (D.5). Hence, to complete the proof, it suffices to show the 

following results:

(D.7)

We begin with proving the first equation of (D.7). Applying the Cauchy–Schwarz inequality, 

it can be shown that

We then study the above three components separately.

By definition, we have 

uniformly for any j = 1, … , p. This, together with Condition (C5), implies that 

 uniformly for any j. As a result, we have

where the second summation on the right-hand side of the above equation is 0 since, for k ∈ 

j,  is one of the component of the vector 

. We next consider the second term . 

Using the fact that the conditional variance of Xij is non-negative and then applying 

Condition (C2), we have . This, together with the 

assumption in Theorem 2, Condition (C2), and the fact that | k| ≤ Λ0, leads to
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Employing similar techniques, we can show that 

. The above results complete the proof of 

the first equation in (D.7).

Subsequently, we will verify the second equation of (D.7). According to the result in the 

proof of Theorem 1,  for some positive constant Cδ. It 

follows that p−1Σj∈ 0
E2(δij)E2(δik) = o(1); hence, we only need to show that 

p−1Σj∈ 0E2(δijδik) = o(1). After algebraic simplification, we obtain that

For the sake of simplicity, we suppress the subscript i in the rest of the proof.

We first demonstrate Q1j = o(1) for each j ∈ 0. By Lemma 2 with some tedious 

calculations, we obtain that

By Condition (C2), we have |σj2j3| ≤ cmax. As a result.

Then employing Condition (C6), we obtain Σj |βj| = O(nϖ). In addition, Conditions (C4) and 

(C5) imply that ϱjk( j) = O(n−1/2). The above results lead to
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uniformly for any j. Applying similar techniques, we can also show that  and 

, which complete the proof of Q1j = o(1).

We next verify Q2j = o(1) for each j ∈ 0. After algebraic calculation, we obtain that

where  represents for the j3th elements of . By Conditions (C2), 

(C4) and (C5), we have that 

and ϱjj2 ( j) ≤ maxj2∉ jϱjj2( j) = O(n−1/2). These results, in conjunction with Condition 

(C6), yield

Employing similar techniques, we can also demonstrate that  and , 

which lead to Q2j = o(1). This, together with Q1j = o(1), implies that

which completes the proof of (D.1).

It is worth noting that G0,n(t) → t. This, in conjunction with (D.1), (D.2), and the 

assumptions T1,n → T1(t) with T1(t) continuous and p0/p → 1 as p→∞, indicates that 

Conditions (a), (b), and (c) in Lemma 4 hold. Accordingly, the proof of Theorem 2 is 

complete.
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Appendix E. Proof of Theorem 3

Let Zj = n1/2βĵ/σ̂βj be the test statistic and pj be the corresponding p-value for j = 1, … , p. 

Define αn = 2{1 − Φ(nj)} for some ħ < j < 1/2 − κ, where ħ and κ are given in Condition 

(C7); hence, αn → 0 as n → ∞. To prove the theorem, it suffices to show that

It is worth noting that n → ∞ implicitly implies p → ∞. We demonstrate the above 

equations in the following two steps accordingly.

STEP I

We show that P{V(αn) > 0} → 0. Using the fact that  for 1 ≤ j ≤ p, we have

This, together with Bonferroni’s inequality, leads to

(E.1)

Consider the quantity , which is in the first term of the right-

hand side of the above equation. Employing the same technique as used in the proof of 

Lemma 3, we obtain that . By 

Condition (C2), one can easily verify that . The above two 

results lead to  uniformly for any j. Accordingly, there exists some 

constant C3 such that
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This, in conjunction with Bonferroni’s inequality and Condition (C8), yields

for some positive constant C4. By definition, ħ < 2j. Thus, the first term on the right-hand 

side of the above equation, −Cℰn2j/4, dominates the second term νnħ, which immediately 

leads to

We next consider the quantity , which is in the second 

term of the right-hand side of Eq. (E.1). It is worth noting that

for some finite positive constant C5.

Using the results of  and 

 discussed after (E.1), we have that 

. In addition, Condition (C4), together with the fact that 

j satisfies Condition (C5), leads to . By Corollary 1 of 

Kalisch and Bühlmann (2007), we immediately obtain

for every ħ < b < 1. Taking b = (ħ + j)/2, we then have 

. This, in conjunction with the above result 

, results in
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In sum, we have shown the asymptotic behavior of the first component on the right-hand 

side of (E.1).

STEP II

We prove that limn→∞ P{S(αn)/(p − p0) = 1} → 1. By definition, we have

Applying the asymptotic result of the first component on the right-hand side of (E.1), we 

have maxj |n1/2( βĵ−βj)/σ̂βj| = o(nj). Then by Condition (C7) that minj∈ 1|βj| ≥ Cκn−κ for 

some constants Cκ > 0 and κ > 0, we can further obtain that minj∈ 1|n1/2βj/σ̂βj| = 

O(n1/2−κ). Moreover, by Bonferroni’s inequality and the fact that j +κ < 1/2, we have

which completes the proof of Step II. Consequently, the entire proof is complete.

Appendix F. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/

10.1016/j.jeconom.2016.05.016.
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Fig. 1. 

Panels A and B depict the estimated FDP value (i.e., ) compared with the true 

FDP value obtained via the CPS method for Examples 1 and 3, respectively. Panels C and D 

are obtained via the MUR approach, and Panels E and F are obtained via the LDPE method.
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Fig. 2. 
Index fund data. The histograms of the p-values for the CPS, MUR, and LDPE tests.
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Fig. 3. 
Supermarket data. The histograms of the p-values for the CPS, MUR, and LDPE tests.
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0 is moderately correlated with a nonzero predictor Xi1 ∈ 
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1. As a result, the empirical size for testing H0 : β2 = 0 obtained from MUR could be as large as 0.90 in almost all realizations. On the other hand, most predictors in
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0 are nearly independent of the predictors in 
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1 and the response variable. Accordingly, MUR can have a reasonable average empirical size and a high average true rate (TR). This misleading result can be detected by the empirical false discovery rate (FDR) being much greater than the nominal level. In addition, the average false rate (FR) becomes larger as the sample size increases. Therefore, the MUR approach should be used with caution when testing a single coefficient, conducting multiple hypothesis tests, or selecting variables.We next study the performance of LDPE. Table 1 indicates that, although LDPE can control the size well at a reasonable level, it fails to control the FDR at the nominal level, particularly in small samples. For instance, when the sample size n = 100, the FDR values are 0.396 and 0.429 for p = 1000 and p = 2000, respectively. In contrast to MUR and LDPE, the CPS approach not only controls the size well, but also leads to FDR converging to the nominal level as the sample size increases. Furthermore, the average TR increases towards 1 and the average FR decreases to 0, both of which are consistent with theoretical findings.In addition to d0 = 10, the results for d0 = 50 and 100 in Tables S1 and S2 of the supplementary material indicate that CPS is still superior to MUR and LDPE under the less sparse scenario. It is of interest to note that LDPE does not control the size well under less sparse regression models. This finding is not surprising since LDPE depends heavily on the accuracy of estimating the whole vector β. In sum, CPS performs well for testing a single coefficient, and the resulting p-values are reliable for multiple hypothesis tests and model selection.Example 2: Moving average predictors—In this example, we generate data from a linear regression model with predictors following the moving average model with order 1: Xi = ui + 0.5ui−1 for i = 2, …, n and X1 = u1, where ui are independently generated from a multivariate normal distribution with mean 0 and covariance 0.8Ip for i = 1, …, n. Accordingly, the covariance matrix of Xi can be written as Σ = (σj1j2) ∈ ℝp×p with σj1j2 = 1 if j1 = j2, σj1j2 = 0.4 if |j1 − j2| = 1, and σj1j2 = 0 otherwise. The regression coefficients β, the number of non-zero coefficients d0, and the variance of , are the same as those in Example 1.Table 2 reports the results for d0 = 10, and similar findings for d0 = 50 and 100 can be found in Tables S3 and S4, respectively, of the supplementary material. Table 2 shows that both CPS and MUR control the size well. However, MUR fails to control FDR at the nominal level. In fact, its FDR is much greater than the nominal level. In addition, its average false rate (FR) becomes larger as the sample size increases. We next study the performance of LDPE. Table 2 indicates that LDPE fails to control the FDR at the nominal level, particularly in small samples, although it can control the size well at a reasonable level. In addition, LDPE fails to control the size well for less sparse regression models (see Tables S3 and S4 for d0 = 50 and 100, respectively, in the supplementary material). This finding is not surprising since LDPE depends heavily on the accuracy of estimating the whole vector β. In contrast to MUR and LDPE, the resulting p-values obtained by CPS are reliable for multiple hypothesis tests and model selections. Furthermore, CPS performs well even under less sparse models (see Tables S3 and S4 in the supplementary material), and this nice property is not enjoyed by MUR and LDPE.Example 3: Equally correlated predictors—Consider a model with equally correlated predictors, Xi, generated from a multivariate normal distribution with mean 0 and a compound symmetric covariance matrix Σ = (σj1j2) ∈ ℝp×p, where σj1j2 = 1 if j1 = j2 and σj1j2 = 0.5 for any j1 ≠ j2. In addition, the regression coefficients are set as follows: βj = 5 for 1 ≤ j ≤ d0, and βj = 0 for j > d0. The number of non-zero regression coefficients d0 and the variance of  are the same as those in Example 1.To save space, we only present the results for d0 = 10 in Table 3, and the results for d0 = 50 and 100 are in Tables S5 and S6, respectively, of the supplementary material. Table 3 indicates that MUR performs poorly in terms of both ES and FDR measures. This finding is not surprising because every predictor in 
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0 is equally correlated with those predictors in 
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="13.977px" height="9.756px" viewBox="4.688 -1.531 13.977 9.756" enable-background="new 4.688 -1.531 13.977 9.756"
xml:space="preserve">
<path d="M18.664-1.298c-1.241,0.774-2.492,2.164-3.753,4.17c-0.604,0.963-1.196,1.961-1.776,2.995
c-0.548,0.986-0.951,1.772-1.211,2.357l-0.262-0.128c0.165-0.49,0.247-0.965,0.247-1.423c0-0.302,0.005-0.756,0.015-1.362
c0.009-0.607,0.014-1.061,0.014-1.363c0-0.67,0.106-1.39,0.318-2.159c0.081-0.27,0.183-0.675,0.305-1.218l-1.366,2.364
c-2.021,3.507-3.76,5.261-5.218,5.261c-0.359,0-0.656-0.083-0.893-0.248C4.821,7.76,4.688,7.495,4.688,7.156
c0-0.235,0.064-0.438,0.191-0.608c0.146-0.185,0.333-0.276,0.56-0.276c0.312,0,0.467,0.144,0.467,0.432
c0,0.303-0.137,0.453-0.41,0.453c-0.123,0-0.248-0.035-0.376-0.105C5.054,7.054,5.021,7.114,5.021,7.227
c0,0.472,0.323,0.708,0.97,0.708c1.289,0,2.88-1.619,4.772-4.857l2.697-4.609l0.198,0.127c-0.302,0.552-0.496,1.263-0.58,2.131
c-0.048,0.746-0.095,1.492-0.143,2.237c-0.137,1.431-0.354,2.73-0.65,3.901c0.68-1.279,1.283-2.36,1.813-3.243
c1.59-2.671,3.07-4.375,4.438-5.112L18.664-1.298z"/>
</svg>
1. As a result, the marginal correlation between any predictor in 
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0 and the response variable is bounded well away from 0. Thus, MUR’s empirical rejection probability is close to 100%, which leads to highly inflated ES and FDR. Furthermore, FR equals 1 at all sample sizes, which implies that MUR tends to over reject the null hypothesis. Moreover, the results of LDPE are similar to those in Tables 1–2. On the other hand, the ES and FDR of CPS are close to the nominal level, except for the case of CPS with n = 100. Moreover, TR and EP increase towards 1 as the sample size gets large, and FR equals 0 at all sample sizes.From the above simulation studies, we find that FDR plays an important role for examining the reliability of test statistics. Hence, we next study the accuracy for the estimation of FDR discussed in Section 2.3. Since we are interested in the statistical behavior of the number of false discoveries V(t), we follow Fan et al.’s (2012) suggestion and compare  in (2.6), with λ = 1/2, to FDP(t) calculated via V(t)/[R(t) ∨ 1]. For the sake of illustration, we consider the same simulation settings as given in Examples 1 and 3 with n = 100, p = 1000 and d0 = 10. Panels A and B in Fig. 1 depict  and FDP(t), obtained via the CPS method for Examples 1 and 3, respectively, across various t values. In contrast, Panels C and D are calculated via the MUR approach and Panels E and F are calculated via the LDPE method. Fig. 1 clearly shows that  calculated from the p-values of CPS is reliable and consistent with the theoretical finding in Theorem 2. However, MUR and LDPE do not provide accurate estimates of FDP, and they should be used with caution in high dimensional data analysis.The above three examples have demonstrated that CPS performs well across three commonly used covariance structures. It is worth noting that Conditions (C4) and (C5) hold in the first two examples, while these conditions are invalid in the third example. However, CPS still performs well in Example 3, which shows its robustness. Motivated by an anonymous referee’s comments, we present an additional study with the covariance structure Σ = Ip+uu⊤, where u = (u1, …, up)⊤ ∈ ℝp, uj = δj−2 for j = 1, …, p, and δ is a finite constant. Accordingly, cov(Xi1, Xij) = (δ/j)2 so that covariates exhibit polynomial decay and ρ1j = (δ/j)2/{(1+δ2)(1+ δ2/j4)}0.5. Hence, there are quite a number of predictors that are highly correlated with Xi1 when δ is large enough. One can also verify that maxj∉∈
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| → ∞, and then both Conditions (C4) and (C5) hold. Our simulation results indicate that CPS performs well; see Table S7 in the supplementary material.Example 4: Robustness of covariate distribution and λ parameter—In the first three examples, the covariate vector Xis were generated from a multivariate normal distribution and the tuning parameter λ was set to be 1/2. To assess the robustness of CPS against the covariate distribution and λ, we conduct simulation studies for various λs and three distributions of Xi = Σ1/2Zi, where each element of Zi is randomly generated from the standard normal distribution, the standardized exponential distribution exp(1), and the normal mixture distribution 0.1N(0, 32) + 0.9N(0, 1), respectively, for i = 1, …, n, and the Σs are correspondingly defined in Examples 1–3. Since all results are qualitatively similar, we only report the case when λ = 0.1, d0 = |
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1| = 10 and Zi follows a standardized exponential distribution. The results in Tables 4–6 show similar findings to those in Tables 1–3, respectively. Hence, Monte Carlo studies indicate that the CPS approach is robust against the covariate distribution and the threshold parameter λ.
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