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Patients With Vestibular Schwannoma:
A New Hybrid Approach for Analysis

of T1-W DCE-MRI
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Purpose: To develop and assess a “hybrid” method that combines a first-pass analytical approach and the Patlak plot
(PP) to improve assessment of low blood–brain barrier permeability from dynamic contrast-enhanced (DCE) magnetic
resonance imaging (MRI) data.
Materials and Methods: Seven patients with vestibular schwannoma were enrolled. T1-W DCE imaging was acquired on a
1.5T scanner. Normal-appearing white matter (NAWM) was divided into four regions of interest (ROIs) based on the magni-
tude of changes in longitudinal relaxation rate (DR1) after gadolinium administration. Kinetic analysis of ROI-averaged con-
trast agent concentration curves was performed using both the conventional PP and the hybrid method. Computer
simulated uptake curves that resemble those from NAWM were analyzed with both methods. Percent deviations (PD) of the
“measured” values from the “true” values were calculated to evaluate accuracy and precision of the two methods.
Results: The simulation showed that, at a noise level of 4% (a noise level similar to the in vivo data) and using a signal inten-
sity (SI) averaging scheme, the new hybrid method achieved a PD of 0.9 6 2.7% for vp, and a PD of –5.4 6 5.9% for Ktrans. In
comparison, the PP method obtained a PD of 3.6 6 11.3% for vp, and –8.3 6 12.8% for Ktrans. One-way analyses of variance
(ANOVAs) showed significant variations from the four WM regions (P < 10215 for DR1; P< 1026 for Ktrans; P < 1024 for vp).
Conclusion: Both computer simulation and in vivo studies demonstrate improved reliability in vp and Ktrans estimates
with the hybrid method.
Level of Evidence: 3
Technical Efficacy: Stage 1
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Quantification of low blood–brain barrier (BBB) perme-

ability from dynamic contrast-enhanced (DCE) mag-

netic resonance imaging (MRI) is associated with a number

of technical challenges. The analysis must be based on phar-

macokinetic analysis of time course data, which requires

accurate separation of the contribution of several variables.

This can be problematic where the signal-to-noise ratio

and temporal resolution are low, as is the case where BBB

permeability is low, resulting in inappropriate covariance

between parameters derived from curve-fitting approaches.

A common approach to these problems is the use of the Patlak

method,1–6 where the slope in the Patlak plot (PP) represents

the unidirectional influx constant (Ktrans), and the y-intercept

represents the fractional plasma volume (vp). In a previous

study, Ewing et al found higher vp values from Patlak analysis

compared to those estimated by integrating the area under the
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contrast concentration time course over the first-pass (FP)

transit period of the contrast agent (CA) bolus.3 This might

reflect the weakness of the Patlak method, which depends on

linear regression analysis, and is more prone to nonuniform

(distorted) noise. In addition, the model does not allow for

backflux of CA from the tumor into the plasma, which will be

of particular importance if an inappropriate time interval is

chosen for analysis.

In this study we propose a new “hybrid” method that

combines a first-pass analytical approach7,8 with the Patlak

plot (PP) to improve assessment of BBB permeability. The

PP model describes a unidirectional two-compartment sys-

tem and uses linear regression analysis to estimate Ktrans and

vp. The FP method7,8 performs an automatic decomposition

of the first-pass CA concentration curve into intravascular

and interstitial components to allow simultaneous mapping

Ktrans and vp. A leakage-corrected estimate of vp is obtained

by integrating the area under the intravascular CA concen-

tration curve over the first-pass of the bolus. When com-

bined with high temporal resolution DCE data, the FP

method provides accurate and robust measurements of vp.2,9

The aim of this study was to develop an easy-to-use and

reliable approach for detecting subtle BBB permeability in

normal-appearing white matter (NAWM) and to apply the pro-

posed techniques in patients with type II neurofibromatosis-

associated vestibular schwannoma (VS). We hypothesize that a

hybrid approach combining the benefits of the FP and PP ana-

lytical approaches will improve the accuracy of parameter esti-

mates in tissues with low permeability.

Theory

Patlak Plot
The Patlak model describes a highly perfused two-

compartment tissue assuming unidirectional transport from

the plasma into the extravascular extracellular space (EES).

The CA concentration in tissue is given by:

CtðtÞ5 vpCpðtÞ1K trans

ðt
0

CpðsÞds; (1)

where Cp(t) is the plasma CA concentration time course

curve, vp is the fractional plasma volume, and Ktrans is the vol-

ume transfer constant between blood plasma and the leakage

space. Dividing both sides of Eq. [1] with Cp(t), one obtains:

CtðtÞ
CpðtÞ

5vp1K trans

ðt

0

CpðsÞds

CpðtÞ
: (2)

Equation [2] expresses the PP, where the slope represents

Ktrans and the intercept represents vp. The term on the left

side of the equation, Ct(t)/Cp(t), represents the volume

of distribution (vd) of the CA in brain tissue at the time

of sampling, t.10 If the BBB is intact, then vd should be

equivalent to vp. If leakage occurs, then vd becomes larger

than the vp, as accessible extravascular compartments are

included.2 The abscissa has the units of time, but this is not

laboratory time. It is concentration-stretched time and will

be referred to hereafter as tstretch.3 Figure 1 shows the rela-

tionship between the lab time and tstretch calculated using a

Cp(t) measured from low CA dose, high temporal resolution

(LDHT) imaging in a patient with VS.11 It can be seen

that a tstretch interval 80–250 seconds2 corresponds to a lab

time interval 37–157 seconds. The relationship between

tstretch and lab time is approximately linear beyond a lab

time of �37 seconds, but fluctuates within the first-pass

and recirculation phase of the CA bolus. In most studies

permeability is evaluated during the steady-state component

of the plot, ignoring the initial bolus circulation. An addi-

tional problem is that experimental errors are distorted

when a nonlinear model is transformed to a linear one.12

How these distorted errors and the initial timepoints affect

the Patlak fitting will be investigated in the current study.

FP Model for Simultaneously Deriving vp

and Ktrans (FPsimul)
The FP method7,8 assumes that backflow during the first-

pass transit period of the bolus is negligible, and uses an

iterative approach8 to separate the intravascular and intersti-

tial components of the tissue CA concentration curve, which

are then used for vp and Ktrans estimation, respectively (see

details in Appendix A).

New Hybrid Method
The new hybrid method contains three parts:

1. a conventional PP for simultaneously deriving Ktrans and vp;

2. a modified FP analysis with a known Ktrans for deriving

vp only;

3. a modified PP analysis with a known vp for deriving

Ktrans only.

FIGURE 1: Relationship between tstretch, calculated as

ð
R t

0 CpðsÞdsÞ=CpðtÞ, and the lab time. The panel in the upper-

left corner of the graph shows the Cp(t) used in the simulation.
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A flow chart of the new hybrid method is presented in

Fig. 2. The analysis is performed in three steps:

Step 1: CA time course curves are fitted using the

conventional PP to derive an initial estimate of Ktrans

and vp values, with a tstretch interval of 85–250 sec used

in the fitting;

Step 2: The estimate of Ktrans from Step 1 is used into

Eq. [A.4] (Appendix A) as a known value and vp is then

calculated using Eqs. [A.5] and [A.6] (Appendix A);

Step 3: CA time course curves are then refitted with Eq.

[2] to obtain a refined Ktrans estimate. During the fitting,

the vp in Eq. [2] is fixed using the value obtained in Step

2, leaving Ktrans as the only free-fitting parameter.

The estimates of vp from Step 2, and Ktrans from Step

3 are the final output estimates from the analysis.

The conventional PP performed at Step 1 provides an

adequate estimate of Ktrans for use as the initial value3 in the

modified FP method enabling subsequent calculation of vp,

corrected for leakage. In low permeability tissues such as

NAWM the intravascular CA concentration is very high

compared to the amount of transendothelial leakage. This

means that errors in Ktrans estimation from Step 1 will have

only very small effects on the calculation of the integral of

the intravascular CA time course curve in Step 2. Conse-

quently, the modified FP approach becomes less sensitive to

covariance errors that result from simultaneous measurement

of Ktrans and vp. The resulting improved estimate of vp is

then used in the modified PP method, leaving Ktrans as the

only free-fitting parameter. The stepwise estimation of Ktrans

and vp may be expected to improve measurement accuracy

and enable more reliable estimation in tissue with very low

levels of endothelial permeability.

MATERIALS AND METHODS

Patients
Seven patients with type 2 neurofibromatosis (NF2), with a total

of 20 tumors (14 VS and 6 meningiomas), were recruited into the

study. DCE-MRI studies were performed in the absence of any

treatment. All subjects gave informed consent and the Local

Research Ethics Committee approved the study (reference number

O2-051).

MRI
Patients were imaged on a 1.5T whole body scanner (Philips

Achieva, Philips Medical Systems, Best, Netherlands) using an

8-channel head coil. LDHT DCE-MRI data were collected as part

of the dual temporal resolution technique, ICR-DICE, as described

previously.11 Prior to the LDHT DCE series, four consecutive 3D

axial fast gradient recalled echo acquisitions (GRE) with variable

flip angle (VFA; a 5 28, 88, 158, and 208) were performed for

native longitudinal relaxation rate (R1N 5 1/T1N) mapping. The

fourth sequence was then repeated (n 5 300) to produce a high

temporal resolution (Dt 5 1.03 sec) T1-W dynamic dataset with a

low dose of CA (gadoterate meglumine; Dotarem, Geurbet, Roissy,

France) given following the 30th dynamic scan. Contrast agent (a

fixed volume of 3 ml, �0.02 mmol/kg depending on body weight)

was administered by power injector as an intravenous bolus at a

rate of 3 ml/s, followed by a chaser of 20 ml of 0.9% saline admin-

istered at the same rate. Two sets of high spatial resolution T1-W

3D images with the voxel size of 1 3 1 3 1 mm, ie, isotropic

voxels, were acquired before (T1-weighted [W] without contrast)

and after the DCE MRI (T1-W 1 contrast).

Image Processing
Prior to kinetic analysis of the CA concentration curves observed

in NAWM, we performed pixel-by-pixel mapping of postinjection

changes in longitudinal relaxation rate (DR1) to show CA distribu-

tion due to BBB leakage in the brain tissue. A four-color scheme

was applied to the WM-segmented DR1 maps, which divided the

WM into four ROIs based on the magnitude of DR1. Kinetic

analysis of ROI-averaged CA concentration curves was then per-

formed using both the conventional PP and the hybrid method.

Computer simulations were performed to generate CA concentra-

tion curves that resemble the in vivo CA curves to evaluate accura-

cy (bias) and precision (standard deviation) of the new hybrid

method.

MEASURING PLASMA CA CONCENTRATION TIME COURSE

CURVE (CP(t)). The plasma CA concentration time course curve

(Cp(t)) was measured from the superior sagittal sinus (SSS) in patient

data as shown in Fig. 1. A semiautomatic extraction technique was

used in the Cp(t) measurement (see Appendix B for details).

CALCULATION OF R1N AND M0. Maps of M0 and R1N were

calculated by fitting the signal intensities from VFA images using a

nonlinear least squares method (see details in Appendix C).

PIXEL-BY-PIXEL CALCULATION OF CA-INDUCED R1 CHANGES.

To reduce the influence of Rician noise, the average of the signal

intensity (SI) in the last 10 dynamic frames (around 4.5 min post-

injection) was used to calculate the postinjection tissue R1 (R1post).

FIGURE 2: Flow chart of the FP-PP hybrid method.
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Calculation of R1post based on R1N, mean preinjection signal

intensity (SIpre), and postinjection signal intensity (SIpost), with a

subtraction method (SIpost – SIpre), is described in Appendix D.

Maps of DR1 ( 5 R1post – R1N) were generated. To view the

spatial distribution of the residual CA in brain tissues, WM-

segmented DR1 maps were displayed in four colors (blue, green,

red, and yellow) based on the magnitude of DR1, and associated

vp values. The criteria setting for the color-coding (blue: DR1 < 0

or vp < 0.01; green: 0 < DR1 < 0.012 and vp > 0.01; red: 0.012

� DR1 < 0.025 and vp > 0.01; and yellow: DR1 � 0.025 and vp

> 0.01; vp was estimated by integrating the area under the first-

pass CA concentration curves without leakage correction) was

based on in vivo observation from a patient with NF2, and will be

explained in more detail in the Results section below.

SEGMENTATION OF GRAY AND WHITE MATTER. SPM213

was used for 1) spatial alignment between R1N VFA, DCE-MRI,

and 3D T1-W isotropic images, and 2) segmentation of the MRI

data into GM, WM, and CSF. The probability maps of GM,

WM, and CSF segmented from the T1-W isotropic images were

realigned and resliced to the space of the 3D individual frames of

the DCE-MRI, as well as the 3D R1N and 3D pharmacokinetic

parametric images, ie, Ktrans and vp. WM masks were generated

from the WM probability maps by including only voxels with a

probability greater than 0.95 and were used for the subsequent

quantitative analysis.

QUANTITATION OF TISSUE BBB PERMEABILITY WITH THE

NEW HYBRID METHOD. ROI-averaged (SI) time course data

were used to test the new hybrid method. Each ROI was made as

a collection of all the pixels with same color in a WM-segmented

image. Both conventional Patlak and the new hybrid methods were

applied and compared. In addition, three tstretch intervals (85–250

sec, 85–300 sec, and 0–250 sec) were used in the fitting to evalu-

ate how much the specific time intervals could affect the results.

Computer Simulation to Evaluate the
New Hybrid Method
Based on the results from the in vivo data analysis,

Ktrans 5 0.0074 min21 and vp 5 0.024 were chosen as “true” values

to synthesize tissue CA concentration curves, which resemble the

in vivo CA uptake curve in the yellow-coded region. The Cp(t)

shown in Fig. 1 was used in the CA concentration curve simula-

tion and fitting.

To investigate the effects on parameter estimation of the

assumption that no backflux of CA occurs, zero noise tissue uptake

curves were synthesized with the modified Tofts model14,15 (assum-

ing the fractional volume of the extravascular extracellular space,

ve 5 0.20) and the unidirectional two-compartment model, respec-

tively. The modified Tofts model with no backflux corresponds to

the unidirectional two-compartment model expressed as Eq. [1].

Fitting errors due to ignoring backflux when using the PP and the

new hybrid method were compared.

To investigate the effects of noise on parameter estimation,

CA concentration curves were simulated with the modified Tofts

model and converted into an SI-time curve based on the in vivo

mean baseline SI (470; 33 baseline frames); the precontrast T1

relaxation time (T10), and a literature value of longitudinal

relaxivity (4.39 mM21 sec21).16 The generated SI-time courses

were sampled with a temporal resolution of 1.03 seconds. Rician

white noise with noise level (ie, standard deviation / mean baseline

signal) of 1%, 2%, 3%, 4%, and 5%, respectively, was added to

the simulated SI-time curves. Ktrans and vp were calculated using

the synthetic datasets to produce the so-called “measured” values.

Percentage deviations (PD) of the “measured” values from the

“true” values were calculated as: PD 5 (measured – true)/true.

Both the conventional PP and the new hybrid method were used

for kinetic analysis. A total of 20,000 repetitions were performed

for each method to produce mean and standard deviation (SD) of

PD for each parameter estimates.

To investigate the effects of averaging SI curves on parameter

estimation while using the two kinetic analysis methods, 100 individ-

ual SI-time curves, simulated as described above, were averaged to

resemble the ROI-averaged SI curves observed from the in vivo WM

yellow-coded region. 200 repetitions were performed for each method

to produce mean and SD of PD for each parameter estimates.

A tstretch interval 85–250 seconds was used in the above

Monte Carlo simulations. To investigate the effects of including

the initial timepoints in the Patlak fitting, we repeated the above

simulations using a tstretch interval 0–250 seconds instead. We also

repeated the simulations setting Ktrans at 0.004, 0.008, 0.012,

0.016, 0.020, 0.025, 0.030, 0.035 min21, respectively (other

parameters were fixed at ve 5 0.20, vp 5 0.024, and noise level of

4%), to identify what level of back-diffusion (kep 5 Ktrans/ve) will

cause the new hybrid method to fail, as indicated by high absolute

value of PD mean or high SD of PD.

Further In Vivo Study

CORRELATION BETWEEN DR1 AND KTRANS IN WM. Mean

DR1 of each of the four color-coded WM regions were calculated

for each slice in the DR1 image volumes. The unidirectional influx

constant Ktrans and vp were derived from the corresponding region-

al uptake curves using the new hybrid method. The whole tstretch

interval (from 0 to �460 sec) was used in the fitting, which was in

agreement with the lab time interval used for calculation of DR1.

Using longer tstretch interval also benefits the measurement of very

low BBB leakage (the red and green-coded WM regions). Linear

regression analysis was performed to evaluate the relationship of

DR1 and the unidirectional influx constant Ktrans.

COMPARISON OF THE FOUR COLOR-CODED REGIONS IN

WM. Mean DR1, Ktrans and vp measured in each of the four

color-coded WM regions were compared. Data are expressed as

mean 6 SD for the seven patients. Statistical tests were performed

with 95% confidence intervals, using one-way analysis of variance

(ANOVA) to assess variations of the parameters in relation to the

four color-coded WM regions. Post-hoc Tukey’s honestly signifi-

cant difference (HSD) test was performed to determine statistically

significant differences among the mean parameter values for each

pair of the WM regions.

ROBUST STABILITY AGAINST VARIATION IN THE TSTRETCH

INTERVAL. For assessing the degree of variation in Ktrans and vp

while using various tstretch intervals in the kinetic analysis, the coef-

ficient of variation (CoV), defined as the ratio of the standard

Journal of Magnetic Resonance Imaging
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deviation to the mean, was computed. Robust stability against vari-

ation in the tstretch interval was compared between the two kinetic

methods.

Statistical Analysis
The accuracy and precision of the two methods were compared by

computer simulation of the mean and SD of percentage deviations

for Ktrans and vp estimates assuming the existence of backflux of

CA and at varying levels of Rician noise. Stability of the two meth-

ods to variation in the tstretch interval was evaluated by computing

the CoV in Ktrans and vp estimates derived from the in vivo data

using a range of tstretch intervals. Linear regression analysis was per-

formed to assess the relationship between CA-induced R1 changes

and the unidirectional influx constant Ktrans in WM. Multiple

comparisons of the regional means of DR1, Ktrans, and vp in the

four color-coded WM regions were performed using one-way

ANOVA, followed by all pairwise comparisons using Tukey’s HSD

test (alpha 5 0.05). P < 0.05 was considered statistically

significant.

Results

CA-Induced R1 Changes in WM
Figure 3 shows maps of DR1 in WM measured around 4.5

minutes post-CA injection in a patient with NF2 who had

bilateral VSs and a frontal meningioma. The maps in Fig. 3

covers slices 37–54, whereas the right VS occurred in slices

14–24, the left VS in slices 15–17, and the meningioma in

slices 57–61. From the DR1 maps it can be seen that the

residual CA is not homogeneously distributed in WM.

It was found that about one-fifth of the segmented

WM voxels showed a negative DR1 value, and the WM

voxels with negative DR1 tended to show low vp estimated

with the FP technique. In the above patient, WM voxels

with negative DR1 had vp 0.0116 6 0.0107, while those

with positive DR1 had vp 0.0216 6 0.0150; WM voxels

with vp < 0.01 had DR1 0.0028 6 0.0141, while those

with vp > 0.01 had DR1 0.0161 6 0.0163. In Fig. 3, the

blue is the area of negative DR1. To reflect the low vp attri-

bute of the blue-coded region, we included all WM voxels

with vp < 0.01 into the blue-coded region.

ROI-averaged SI-time curves, which were obtained

from the blue-, green-, red-, and yellow-coded regions,

respectively, demonstrated variations in baseline level, peak

height of first pass of CA bolus, and enhancement extent

(Fig. 4).

Quantitation of Tissue BBB Permeability
With PP and the New Hybrid Method
Figure 5 shows the fittings of the four regional tissue CA

uptake curves using the two kinetic approaches and three

tstretch intervals, respectively. For the tstretch interval 85–250

seconds, the results from PP were quite close to those

derived from the hybrid method, although the values of vp

estimated with PP were generally higher, and the values of

FIGURE 3: Regional variation in the distribution of residual contrast agent (CA) in white matter (WM) as shown with WM-segmented
DR1 maps (blue: DR1 < 0 or vp < 0.01; green: 0 < DR1 < 0.012 and vp > 0.01; red: 0.012 £ DR1 < 0.025 and vp > 0.01; and yellow: DR1
� 0.025 and vp > 0.01; vp was estimated by integrating the area under the first-pass CA concentration curves without leakage
correction).
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Ktrans were generally lower, compared with their hybrid

counterparts. Comparing results with various tstretch inter-

vals, the hybrid method showed better robust stability

against variation in the tstretch interval.

Computer Simulation to Evaluate the
New Hybrid Method
Figure 6 shows that both PP and the hybrid model yielded

parameter estimates equal to the true values when there is

neither noise nor backflux (Fig. 6a,b). The Patlak analysis

overestimates vp (PD 5 4.2%) and underestimates Ktrans

(PD 5 –8.1%) when there is backflux (Fig. 6c). The impact

of the backflux was reduced when the new hybrid method

was employed (vp: PD 5 0.0%; Ktrans: PD 5 –5.4%) (Fig. 6d).

Figure 7a–d compares PD (mean and SD) in vp and

Ktrans derived from PP and the hybrid methods, at varying

noise levels. The conventional Patlak analysis overestimates

vp and underestimates Ktrans. The hybrid method estimates

vp accurately, and also reduced the bias in Ktrans estimation.

With the new method, the SD of PD for both vp and Ktrans

estimates is greatly reduced. In addition, averaging the SI-

time curves simulated under the same conditions produces

further improved the precision of both vp and Ktrans for

both methods. The simulation shows that, at a noise level

of 4% (a noise level similar to that in the current in vivo

study), it is theoretically possible to reach a PD of

0.9 6 2.7% for vp, and a PD of –5.4 6 5.9% for Ktrans

using the new hybrid method combined with the SI averag-

ing scheme. In comparison, the PP method could obtain a

PD of only 3.6 6 11.3% for vp, and a PD of –8.3 6 12.8%

for Ktrans. These PD means are similar to the PD values

shown in Fig. 6c,d. This means that, under simulation con-

ditions, the bias (means of PD) is caused by the existence of

backflux of CA, and the precision (standard deviations of

PD) is dominated by the noise. The new hybrid method is

shown to be more robust to effects from both the existence

of backflux of CA and nonuniform (distorted) noise.

With a tstretch interval 0–250 sec, the simulations

showed remarkable improvement in the conventional Patlak

analysis, but little effect on the hybrid method. That means

that including the initial data points effectively reduced the

effects of distorted errors on the Patlak analysis. The accura-

cy of both Ktrans and vp estimates and precision of Ktrans

were approaching those of their hybrid counterparts. The

precision of vp, from Patlak, however, remained inferior to

the estimate produced by the hybrid analysis. On the other

hand, in vivo data fitting with a tstretch interval 0–250 sec-

onds (the right columns in Fig. 5a,b) showed good agree-

ment between the two methods for uptake curves from the

red-, green-, and blue-coded regions; however, a strong over-

estimate of vp and underestimate of Ktrans were seen for the

yellow-coded range using the Patlak method. This implies

that some other factors, in addition to noise, affect the ini-

tial shape of the in vivo uptake curve, especially for the

yellow-coded region, and that the hybrid method is more

robust in these conditions.

Figure 7e shows that, at a noise level of 4% with SI aver-

aging, the conventional PP has started to yield Ktrans estimates

with negative PD beyond –0.20 and vp estimates with positive

PD beyond 0.20 when Ktrans > 0.02 min21 (kep >

0.1 min21). In contrast, the new hybrid method started to

yield Ktrans estimates with negative PD beyond –0.20 only

when the “true” Ktrans > 0.030 min21 (kep > 0.15 min21),

while PD mean for vp estimates remains less than 0.20 even

when Ktrans 5 0.035 min21. The SD of percent deviation for

Ktrans estimates reduces when the “true” value of Ktrans

increases, while the SD of PD for vp estimates was not much

influenced by the increase in the “true” value of Ktrans.

FIGURE 4: ROI-averaged SI-time curves showing dynamic enhancement in the four color-coded regions, respectively, in white
matter from the same patient as in Fig. 3. Each ROI was a collection of pixels coded with the same color in a WM-segmented slice
(slice 43, ie, the 1st image in the middle row of Fig. 3).
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Correlation Between DR1 and Ktrans in WM
Figure 8 shows scatterplots of DR1 and Ktrans measured

from the four color-coded WM regions in a representative

image slice for each of the seven patients. Linear regression

analysis performed on the positive DR1 (yellow, red, and

green) regions showed that DR1 and Ktrans are well correlat-

ed, with R2 5 0.991 6 0.011 and P 5 0.04 6 0.04 (n 5 7).

The blue-coded region contained voxels with negative DR1

FIGURE 5: Fitting the tissue CA uptake curves from each of the four color-coded regions. The Patlak analysis (a) and the hybrid
method (b) were used, with three tstretch intervals (left column: 85–250 sec; middle column: 85–300 sec; right column: 0–250 sec),
respectively. The “measured” values of Ktrans and vp are shown in the panel for each fitting.
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and voxels with vp less than 0.01 (their DR1 are generally

low but may be positive); these were not included in the

regression analysis. The correlation between DR1 and Ktrans

indicated that WM-segmented DR1 maps could be used to

distinguish between regions in the WM with different Ktrans

levels. However, the variation in the slope and the intercept

of the linear regression among the seven patients (slope 5

0.1740 6 0.0548; intercept 5 –0.0012 6 0.0011) implied

that DR1 only could not determine the absolute value of

Ktrans.

Comparison of the Four Color-Coded
Regions in WM
Table 1 illustrates multiple comparisons of mean values of DR1,

Ktrans, and vp measured from four color-coded WM regions in a

representative image slice for each of the seven patients as pre-

sented in Fig. 8 (right column). One-way ANOVAs showed sig-

nificant variations from the four WM regions (P < 10215 for

DR1; P < 1026 for Ktrans; P < 1024 for vp, respectively). Post-

hoc Tukey’s HSD tests indicated statistical differences between

the individual regions, except for the blue and green pair on

Ktrans and the green and red pair on vp. Table 1 quantitatively

revealed the regional inhomogeneity of BBB permeability in

NAWM. It also revealed a trend of positive correlation between

the Ktrans and vp in NAWM.

Robust Stability Against Variation in
the tstretch Interval
Table 2 lists the Ktrans and vp derived from fitting the yel-

low- or the red-coded regional curves as shown in Fig. 5a,b

using four tstretch intervals, respectively. Parameter mean

from the four tstretch intervals and corresponding CoV are

also listed in Table 2 for the Patlak method, and for the

hybrid method, respectively. The green- and blue-coded

regions were excluded from the CoV analysis due to exis-

tence of the negative Ktrans values in their fitting results. In

agreement with the simulation results, in vivo data also

showed the hybrid method superior to the Patlak in the

robust stability against variation in the tstretch interval.

FIGURE 6: Zero noise tissue uptake curves synthesized with the unidirectional two-compartment model (a,b) or the modified Tofts
model (c,d), which were fitted with the conventional Patlak analysis (a,c) or the new hybrid method (b,d) to assess the effects of
ignoring backflux on the parameter estimates. These tissue uptake curves were simulated with “true” values of
Ktrans 5 0.0074 min21 and vp 5 0.024. The panel in the upper-left corner of each graph presents the “measured” values of Ktrans

and vp from the fitting. A tstretch interval 85–250 seconds was used in the fitting.
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Discussion

Low-level BBB permeability has been identified in apparent-

ly normal-appearing white and gray matter in a range of

diseases including cerebrospinal vessel disease, diabetes,

dementia, stroke, multiple sclerosis, and systemic lupus

erythematosis, as well as normal aging.4,17–24 Recent work

has also identified changes in permeability in NAWM fol-

lowing whole brain radiotherapy in patients with cerebral

tumors.25 The increase in BBB permeability induced by

whole-brain radiotherapy has been used to improve penetra-

tion of therapeutic agents for the treatment of primary

central nervous system (CNS) lymphoma and metastatic dis-

ease typically depending on simultaneous measurement of

cerebrospinal fluid (CSF) and plasma concentrations of

the therapeutic agent.26,27 In patients with glioblastoma

and, to a lesser extent, some metastatic cerebral tumors,

FIGURE 7: PD analysis for Ktrans and vp estimates with varying noise levels (a–d), or with various backdiffusion levels (e,f). Mean
(a,b) and SD (c,d) of percent deviations for vp (a,c) and Ktrans (b,d) calculated from 20,000 Monte Carlo repetitions of fitting indi-
vidual SI-time curves (dashed lines) and 200 Monte Carlo repetitions of fitting an average of 100 individual SI-time curves (solid
lines) using the Patlak (green) and the hybrid (red) methods. The tissue uptake curves in a–d were simulated with “true” values of
Ktrans 5 0.0074 min21, ve 5 0.20, and vp 5 0.024. In e,f, the tissue uptake curves were simulated with varying “true” Ktrans (0.004–
0.035 min21) but with a fixed noise level of 4%. A tstretch interval 85–250 seconds was used in the fitting.
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there is commonly extensive disease spread beyond the

enhancing tumor areas identified by conventional imaging.28

There is therefore a need to effectively deliver drugs across

the BBB, which has led to a growing interest in therapeutic

manipulation of BBB permeability.29 The development of

techniques for effective measurement of low levels of BBB

permeability may provide a potentially valuable imaging

biomarker both for prognostic/predictive purposes and for

use in clinical trials where BBB permeability manipulation

is planned.

We describe a new method, which combines the FP

and PP approaches, to measure subtle CA leakage through

the BBB using DCE-MRI. Both the FP and PP approaches

start from the same equation (Eq. [1]), but use different

algorithms for deriving kinetic parameters. The FP approach

produces more reliable vp estimates using an integration

technique, while the Patlak approach is superior for Ktrans

estimation, collecting more data points beyond the first

pass, which is necessary to measure subtle leakage. By com-

bining the advantages of these two techniques, the hybrid

method becomes more robust to effects from nonuniform

(distorted) noise, variation in tstretch interval choice, and

error caused by the existence of backflux of CA.

A wide range of tstretch intervals has been used in PP

analysis in previous studies. For example, Larsson et al used

intervals of 70–250 seconds and 140–250 seconds in a

study with patients with brain tumors and healthy subjects,2

while Ewing et al performed the linear regression over a

tstretch interval of 30 minutes in their study with a rat mod-

el.3 In fact, heterogeneity in brain BBB permeability makes

optimization of a tstretch interval choice complicated. Shorter

tstretch intervals ensure that the linear regression is performed

before major backflux of CA occurs and are appropriate for

analysis of higher BBB permeability (yellow-coded WM,

eg). On the other hand, the longer tstretch intervals should

improve measurements of lower BBB permeability (red- and

green-coded WM, eg). A kinetic analysis method with the

ability to minimize bias due to backflux and variation in

tstretch interval choice, such as we present here, will help in

addressing this challenging problem.

This article also proposed the combined use of DR1

mapping and ROI-based pharmacokinetic analysis for BBB

permeability analysis in NAWM. The information on spatial

distribution of residual CA within NAWM is useful since

pixel-by-pixel kinetic analysis of WM tissues remains

challenging due to a low signal-to-noise ratio (SNR) in the

NAWM uptake curves. The color-coded DR1 maps were

used for automatic delineation of ROIs with different DR1

levels. The combined temporal- and spatial-averaging

scheme could minimize the effects of low SNR: frame-

averaged signal intensities were used to calculate R1pre and

R1post, producing DR1 maps, and then ROI-averaged tissue

uptake curves were used for kinetic analysis. In addition, the

FIGURE 8: Linear regression analysis of the relationship between
DR1 and Ktrans (left column) measured from the yellow-, red-, and
green-coded regions in WM segments in a representative slice from
each of the seven patients (right column).
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finding of a positive correlation between DR1 and Ktrans in

NAWM shows that WM-segmented DR1 maps may be

used to demonstrate the spatial distribution of relative levels

of BBB permeability.

The WM-segmented DR1 maps and the pharmacokinet-

ic analysis performed afterwards provided interesting informa-

tion on the spatially inhomogeneous distribution of BBB

permeability in NAWM. We found that a portion of WM

voxels showed negative values of DR1 and Ktrans, generally

associated with low vp values (<0.01). The mechanism for the

apparent negative DR1 and Ktrans is not clear. The Ktrans and

vp values we observed in the yellow- or red-coded WM regions

were similar to those reported by Larsson et al2 and Heye

et al.17 In addition, the WM regions with higher BBB

permeability tend to have higher vp. These observations have

the potential to provide quantitative information about WM

microstructure and its changes in pathology.

Low dose (1/5 of the standard Gd-DTPA dose) and high

temporal resolution DCE-MRI data were used in this study.

Taheri et al used a quarter of the standard Gd-DTPA dose and

found that R1 in the vicinity of this reduced dose changed

much more rapidly with changes in CA concentration than at

higher concentrations.6 A lower dose of Gd-DTPA entails less

possibility of introducing a T �2 effect or truncation of the bolus

peak of the arterial input function,2,30 and also less risk of

potential side effects of Gd-DTPA in patients with impairment

of renal function.6,31 Our study supported that a dose as low as

only 1/5–1/4 of the standard Gd-DTPA dose was still adequate

for performing the measurement of BBB permeability in WM.

This would enhance the applicability of the technique.

Our study had some limitations. First, we evaluated the

new hybrid method only in a small cohort of patients with

NF2. Larger studies will be needed to apply the new method

in a larger cohort, including patients and healthy subjects for

comparison. Second, the plasma concentration curve we mea-

sured from the superior sagittal sinus has the merits of high

SNR, distinctive peak of first pass, and is free of artifacts

resulting from partial volume error or in-flow signal loss.32

However, we realize that the ideal place to extract a vessel

input function is from the arteries which supply the white

matter. Nevertheless, to obtain a reliable measurement of

Cp(t) from the feeding arteries remains challenging.

In conclusion, this study proposed a new pharmacoki-

netic analysis method for the measurement of subtle BBB per-

meability in NAWM. Both computer simulation and in vivo

study demonstrated improved reliability in vp and Ktrans esti-

mates. The combination of the pharmacokinetic analysis with

pixel-by-pixel mapping CA-induced T1 changes provides easy-

to-apply and reliable imaging methods for evaluation of BBB

permeability. The heterogeneous distribution of DR1, vp, and

Ktrans, and the relation between them revealed by MRI, may

suggest differences in tissue composition between different

locations in WM. How it relates to etiology and tissue destruc-

tion will be an interesting field to explore.
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Appendix A

By assuming that backflow during the first-pass of the CA

bolus was negligible, Eq. 1 can be used for kinetic analysis

of FP MRI data.7,8 Note that the two terms on the right

side of Eq. [1] represent the intravascular (Cvas(t)) and

interstitial components (Cees(t)), respectively, ie:

CvasðtÞ5 vpCpðtÞ: (A.1)

and

CeesðtÞ5 K trans

ðt
0

CpðsÞds: (A.2)

Eq. [A.2] indicates that the interstitial component of the

bulk tissue concentration, Cees(t), is proportional to the

integral of the input curve when backflux of contrast is

not included in the model. Separation of the intra- and

extra-components of the enhancement curve during the

TABLE 2. Stability Against Variation in the tstretch

Interval for the Patlak (a) and the Hybrid (b) Methods

Yellow Red

Ktrans vp Ktrans vp

Patlak

85-250s 0.0065 0.027 0.0025 0.020

85-300s 0.0050 0.031 0.0009 0.024

0-250s 0.0043 0.033 0.0028 0.019

0-460s 0.0045 0.032 0.0013 0.022

Mean 0.0051 0.031 0.0019 0.021

CoV 19.6% 8.6% 49.0% 10.4%

Hybrid

85-250s 0.0076 0.023 0.0031 0.019

85-300s 0.0069 0.024 0.0024 0.019

0-250s 0.0075 0.024 0.0032 0.019

0-460s 0.0063 0.024 0.002 0.019

mean 0.0071 0.024 0.0027 0.019

CoV 8.5% 2.1% 21.4% 0.0%

Journal of Magnetic Resonance Imaging

90 Volume 46, No. 1



first pass of the CA bolus was based on the integral of the

input curve, which was termed the “leakage profile” (LP)

in previous studies7,8:

LPðtÞ5
ðt
0

CpðsÞ ds; 0 � t � TrR; (A.3)

where TrR is the time of the beginning of the recirculation

phase identified from the input function.7,8

An iterative analysis was proposed for separation of the

intra- and extra-components of the enhancement curve8:

CvasðtÞ5 CtðtÞ2K trans � LPðtÞ: (A.4)

The FP model calculates the corrected relative cerebral

blood volume with an integration method, a similar strat-

egy to the technique described in dynamic susceptibility-

contrast enhanced (DSC) MRI33–35:

rCBV T 1
correctd 5

ðt5TrR

0

CvasðtÞdt; (A.5)

and

vp5

ðt5TrR

0

CvasðtÞdt

, ðt5TrR

0

CpðtÞdt:

(A.6)

Appendix B

The 4D LDHT DCE-MRI data were spatially aligned with

and resliced to the high spatial resolution series of the ICR-

DICE,11,30 using SPM2.13 The voxel size of the spatially

aligned and resliced HT images is much smaller, ie, 1 3 1 3

2 mm3 (after reslicing) vs. 2.5 3 2.5 3 6.35 mm3 (before

reslicing). With the high temporal resolution (Dt 5 1s), for

catching up the peak of Gd-contrast enhancement, the SSS

could be easily outlined in several consecutive slices of the

axial orientation image slab, in spite of the low contrast dose.

A semiautomatic procedure for Cp(t) extraction was used.

Operator interaction is limited to the identification of: 1)

The axial slab for searching SSS ROIs. The operator

should first identify the time frame that caught the peak

of the first pass of CA bolus in the SSS, and then find the

axial slab (in the 3D volume identified) over which the

SSS spanned across. The two end slices of the predefined

axial slab were denoted as SLi-end and SLi1end. 2) The slice

where the automatic searching started (SLi). The starting

slice was chosen, whereas the SSS was approximately

perpendicular to the image plane, preferred to be near

the center slice of the predefined axial slab. A small oval

or rectangle ROI of a 3 b was manually drawn on the

selected slice (SLi), just covering the SSS. The ROI associated

with the selected slice (SLi) was denoted as ROIi.

The automatic searching for SSS ROIs was performed in the

order of SLi-1, SLi-2, . . ., SLi-end, and then SLi11, SLi12, . . .,

SLi1end. These ROIs were predefined as of the same shape

and size as ROIi, but might need to be slightly repositioned

along the SSS runs. The searching on slice SLi-1 started from

the X-Y-coordinates coincided with the center of ROIi, but

within a region with extended size (2a 3 2b). The search

ended when the ROIi-1 achieved its maximum mean SI val-

ues. The search of ROI i-2 on SL i-2 repeated as for ROIi-1,

but in a 2a 3 2b region whose center coinciding with the X-

Y-coordinates of the center of ROIi-1, and so on. As such,

candidate voxels were collected along the SSS over the

whole imaging volume. The SI time course for each of

the collected voxels was extracted from the 4D LDHT.

The area under the SI enhancing curve within 30 seconds

of the arrival time (AUC30) was calculated. A mean SI(t)

curve was calculated from N (~50) voxels, which had the

highest AUC30. The averaged mean SI(t) was then con-

verted to the plasma CA concentration time course curve

(Cp(t)). The number of voxels, N, for the calculation of

the final Cp(t), can be altered as different data acquisition

protocols are used. In principle, the finer of the spatial

resolution, the more voxels could be used for the

calculation.

Bolus arrival time (BAT) was estimated for each tissue

uptake curve. The Cp(t) measured from the SSS has to be

time-shifted to match the BAT for the kinetic analysis.

Appendix C

The theoretic prediction of the steady-state signal, S, from

a transverse-spoiled gradient-echo acquisition, assuming

short echo time (TE � T�2 , T�2 is the effective transverse

relaxation time), is given by:

S5M0 � sina � 12expð2TR � R1Þ
12cosa � expð2TR � R1Þ ; (C.1)

where a is the flip angle, TR is the repetition time, R1 is

the longitudinal relaxation rate, and M0 is the equilibrium

longitudinal magnetization, which depends on the proton

density, the profile of the receiver coil sensitivity, the

receiver gain setting, and the scaling parameters used for

image reconstruction.36

Maps of M0 and R1N were calculated by fitting the VFA

signals with Eq. [C.1]. A nonlinear least squares method

was used in the calculation of 3D R1N and M0 maps.7,12

Appendix D

There are two ways for calculation of R1post based on R1N,

mean preinjection signal intensity (SIpre), and postinjection

signal intensity (SIpost):
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By division:

SIpost=SIpre5
12expð2TR � R1postÞ

12cosa � expð2TR � R1postÞ
�

12cosa � expð2TR � R1N Þ
12expð2TR � R1N Þ

: (D.1)

By subtraction16:

SIpost2SIpre5M0 � sina �
�

12expð2TR � R1postÞ
12cosa � expð2TR � R1postÞ

2
12expð2TR � R1N Þ

12cosa � expð2TR � R1N Þ

�
: (D.2)

The subtraction method needs both R1N and M0 for cal-

culation of R1post. The M0 value obtained from fitting of

the VFA signal can be used for this purpose only when all

the factors affecting the value of M0 are identical in the

VFA and DCE sequences. That can be achieved when the

DCE acquisition repeats one of the sequences in the VFA

acquisition. In this study, the subtraction method was used

for R1post calculation to reduce computation instability

that might occur in case of fluctuation in small values of

SIpre.
16,37
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