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Abstract

The cellular prion protein (PrPC) has been extensively studied because of its pivotal role in

prion diseases; however, its functions remain incompletely understood. A unique line of

goats has been identified that carries a nonsense mutation that abolishes synthesis of PrPC.

In these animals, the PrP-encoding mRNA is rapidly degraded. Goats without PrPC are valu-

able in re-addressing loss-of-function phenotypes observed in Prnp knockout mice. As PrPC

has been ascribed various roles in immune cells, we analyzed transcriptomic responses to

loss of PrPC in peripheral blood mononuclear cells (PBMCs) from normal goat kids (n = 8,

PRNP+/+) and goat kids without PrPC (n = 8, PRNPTer/Ter) by mRNA sequencing. PBMCs

normally express moderate levels of PrPC. The vast majority of genes were similarly

expressed in the two groups. However, a curated list of 86 differentially expressed genes

delineated the two genotypes. About 70% of these were classified as interferon-responsive

genes. In goats without PrPC, the majority of type I interferon-responsive genes were in a

primed, modestly upregulated state, with fold changes ranging from 1.4 to 3.7. Among these

were ISG15, DDX58 (RIG-1), MX1, MX2, OAS1, OAS2 and DRAM1, all of which have

important roles in pathogen defense, cell proliferation, apoptosis, immunomodulation and

DNA damage response. Our data suggest that PrPC contributes to the fine-tuning of resting

state PBMCs expression level of type I interferon-responsive genes. The molecular mecha-

nism by which this is achieved will be an important topic for further research into PrPC

physiology.

Introduction

The cellular prion protein (PrPC) can misfold into disease-provoking conformers (PrP scrapie;

PrPSc) that give rise to several neurodegenerative prion diseases, such as Creutzfeldt-Jakob dis-

ease (CJD) in humans, scrapie in sheep and goats, and bovine spongiform encephalopathy in
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cattle [1]. The seeding of PrPSc in brain tissue acts as a template for further misfolding of PrPC,

ultimately leading to severe neurodegeneration and neuronal death [1].

PrPC is abundant throughout the nervous system, and, albeit at lower levels, in most other

tissues of the body [2]. The protein is conserved in mammalian species [3, 4] and expressed

already during early embryonal stages [5]. It was therefore surprising that Prnp0/0 mice devel-

oped normally and revealed no major phenotypes besides being prion-disease resistant [6–8].

Interestingly, in four Prnp0/0 mouse models (Ngsk, Rcm0, ZrchII, and Rikn), ablation of the

Prnp gene induced severe degeneration of cerebellar Purkinje neurons [9–12]. This was, how-

ever, subsequently shown to be caused by ectopic expression of the prion-like protein Doppel

(Dpl) in the brain, as a side-effect of the transgenic protocols [10]. Two additional Prnp-ablated

mouse lines (ZrchI and Npu) displayed no neurodegeneration [7, 8]. Furthermore, other

experiments have shown that a polymorphism in another Prnp flanking gene, Sirp-alpha,
could significantly influence the interpretation of data that concerns the roles for PrPC in

phagocytosis [13]. Despite these inherent challenges with Prnp-null models [14], collectively

known as the flanking-gene problem, the Prnp0/0 lines have proven extremely valuable in

exploring PrPC physiology. They have provided clues regarding maintenance of axonal myelin

[15–17], modulation of circadian rhythms [18], and neuronal excitability [19], in addition to

protective roles in severe stress such as ischemia [20] and hypoxic brain damage [21].

A more general problem is the gap between mice and human physiologies [22–24]. The two

species diverged about 65 million years ago, and differ substantially in both size and life span.

Mice have evolved into short-lived animals relying on massive reproductive capacity, whereas

humans reside at the other end of the spectrum, with low reproduction rates and life spans of

approximately 80 years. This is of particular significance in modeling chronic human diseases

that take decades to develop, and often involve subtle immunological imbalances [22]. In addi-

tion, translation to human medicine has proven challenging.

Recently, we identified what seems to be a unique line of dairy goats carrying a nonsense

mutation that completely abolishes synthesis of PrPC [25]. This spontaneous, non-transgenic

model, is referred to as PRNPTer/Ter. Approximately 10 percent of the Norwegian dairy goat

population carries the mutated allele. These animals appear to have normal fertility and behav-

ior in all aspects of standard husbandry. We have no data to suggest that they are over-repre-

sented in disease statistics or otherwise failing in production performance. Careful analysis of

hematological and blood biochemical parameters, as well as basic immunological features, did

not reveal any abnormalities [26]. It was, however, noted that goats without PrPC had slightly

elevated numbers of red blood cells, identical to an observation in transgenic cattle without

PrPC [27], suggesting that this is a true biological loss-of-function phenotype, at least in

ruminants.

Peripheral blood mononuclear cells (PBMCs) express moderate, but dynamic, levels of

PrPC [28]. We observed that goats heterozygous for the mutation (PRNP+/Ter) express half

the amount of cell surface PrPC on PBMCs [26]; however, a 50 percent reduction in levels

compared to PBMCs from PRNP+/+ goats did not stimulate compensatory expression from

the normal allele. Intrigued by this, and the fact that many reports have pointed to putative

functions for PrPC in immune cells (reviewed in [29], [30, 31]), mRNA sequencing of

PBMCs derived from normal goats and goats without PrPC was performed. The main goal

of this study was to evaluate whether the loss of PrPC elicits a transcriptional response in

PBMCs that could reveal biological processes involving PrPC. Our findings show that in the

absence of PrPC, a subtle, but highly significant change in the transcriptional profile of

PBMCs is seen, dominated by upregulation in the expression of type I interferon-responsive

genes.

PrPC modulates type I interferon signaling
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Results

RNA-seq data quality control

High quality RNA sequencing data (FASTQ) were derived from Beijing Genome Institute

(BGI), with an average total reads of 58,806,319 per sample, average total mapped reads of

42,168,758, and average uniquely mapped reads of 38,253,898 per sample (S1 Fig). To validate

the sequencing data, primers (S1 Table) were designed for 12 randomly selected differentially

expressed genes (DEGs), using reverse transcription (RT) quantitative real-time PCR (qPCR)

on the original RNA. As shown in Fig 1, qPCR analysis of mRNA levels correlated well with

the RNA-seq analysis (r = 0.9616, p< 0.0001, Pearson correlation). Minor discrepancies could

be due to sample variations, as RNA from only six goats per group were used for qPCR valida-

tion, compared with eight goats per group for RNA-seq analysis.

Lack of PrPC subtly alters the transcriptome in immune cells

A high correlation was observed between averaged PRNP+/+ and PRNPTer/Ter normalized gene

expression data (r = 0.99, Pearson correlation). However, we found that not all PRNP+/+ and

PRNPTer/Ter goats could be clearly separated from each other, probably reflecting the pheno-

typic diversity of the goats (S2 Fig). Despite this, using edgeR [32] and a p-value cut-off < 0.05,

735 genes were differentially expressed between the two genotypes (S1 File). Further filtration

of the gene list using cut offs for fold change (log2 FC ± 0.5) and mean number of reads (> 100

reads in one of the groups) generated a high-confidence gene list of 127 DEGs, of which 67

were upregulated and 60 were downregulated in the PRNPTer/Ter genotype (S2 Table). Of note,

as we have previously shown that the PBMC cell populations, mainly T cells, B cells and mono-

cytes, are stable between the two genotypes compared in our study [26], the DEGs result from

real genotype-associated shifts in gene expression, not shifts in the cell populations. Reassur-

ingly, the PRNP gene was among the DEGs, with very few reads mapping to this locus in the

mutant. The chromosomal distribution of the DEGs is found in S3 Fig. The PRNP gene is

located on chromosome 13 in goats. Only 1 (SIGLEC1) of the 86 annotated DEGs also maps to

Fig 1. Validation of RNA sequencing data with quantitative PCR. Validation of 12 randomly chosen,

differentially expressed genes was performed with qPCR using the original RNA. Expression data from the

two methods are presented as relative expression between PRNPTer/Ter and PRNP+/+ animals (RNA-seq data

n = 8, qPCR n = 6; r = 0.9616, p < 0.0001, Pearson correlation).

https://doi.org/10.1371/journal.pone.0179881.g001
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chromosome 13. This gene is expressed at a low level and is irrelevant for the findings in our

study.

Of the average total number of genes expressed in PBMCs from both genotypes, only 0.7

percent of the genes were altered upon loss of PrPC (Fig 2A). Using Ingenuity Pathway An-

alysis (IPA), of the 127 high-confidence DEGs, 86 genes were functionally annotated. In-

terestingly, 22 of these genes were categorized as “Viral infection” (p-value = 3.27x10-5), and

additional genes were related to other anti-virus-associated terms. The majority of these genes

were upregulated in the PRNPTer/Ter genotype compared with the PRNP+/+ genotype. Of the

top canonical pathways, “Interferon signaling” was by far the most affected (p-value = 8.92x

10-6). Due to these findings, we performed further analyses of the annotated DEGs using the

Interferome database [33]. Strikingly, 60 of the 86 annotated DEGs were interferon-responsive

genes (Fig 2B). Of these, 42 were upregulated (red bar) and 18 downregulated (blue bar) in the

PRNPTer/Ter genotype. Fig 2C shows the inter-individual variation in gene expression of all

samples represented in a heatmap, and hierarchical clustering analysis of the 60 interferon-

responsive genes revealed a clustering of downregulated and upregulated genes between the

PRNP+/+ and PRNPTer/Ter genotypes.

Since the observed data could be due to altered expression levels of interferons or compo-

nents in type I interferon signaling, we analyzed expression levels of a number of genes that

could affect the expression of interferon-responsive genes. However, differences between the

genotypes were not detected (Table 1), except for IFNB2-like, which was slightly downregu-

lated in the PRNPTer/Ter genotype (p-value = 0.025).

Introduction of PRNP inhibited MX2 gene expression in SH-SY5Y cells

To test whether PrPC could influence IFN-α responsiveness in a cell culture system with a dif-

ferent genetic makeup, we used human neuroblastoma SH-SY5Y cells, which normally express

extremely low levels of PrPC. SH-SY5Y clones stably expressing human PrPC were generated

(SH-SY5Y PrPhigh) and assessed with regard to glycosylation and proteolytic processing to

ensure physiological post-translational modification and trafficking of PrPC (S4 Fig). Eight

clones stably expressing PrPC as well as untransfected SH-SY5Y cells were exposed to 3 U/ml

IFN-α for 3h. One of the transfected clones showed aberrantly highMX2 gene expression lev-

els and was excluded from the analysis. Of the seven clones included in the experiment, six dis-

played a significantly reduced response to IFN- α, as assessed by the interferon-responsive

geneMX2 expression levels, compared with the untransfected SH-SY5Y cells, using Dunnett’s

post hoc test for multiple comparisons (Fig 3) (n = 4, mean ± SEM). The levels of PrPC expres-

sion did not directly correlate with the degree ofMX2 expression-level inhibition; however,

this was not expected due to the complexity of the interferon signaling pathway, and the possi-

ble distance between PrPC interference andMX2 gene expression. On average, the clones

showed a significantly inhibited response to IFN- α (p-value = 0.0001) compared with the

untransfected SH-SY5Y cells, using a two-way ANOVA.

Increased interferon-responsive gene expression in blood leukocytes

devoid of PrPC after LPS challenge

In an independent, parallel study [34, 35], goats were challenged intravenously with lipopoly-

saccharide (LPS), thereby indirectly stimulating interferon pathways. RNA was extracted from

circulating blood leukocytes, and gene expression of interferon-responsive genes was assessed

by FLUIDIGM qPCR. As shown in Fig 4A, basal level expression (0h) of several interferon-

responsive genes was slightly higher in the PRNPTer/Ter (n = 13) genotype than in the PRNP+/+

(n = 12) genotype, albeit being significantly different for only IFI6 (p-value = 0.037). Moreover,

PrPC modulates type I interferon signaling
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Fig 2. Interferon-responsive genes dominate among the differentially expressed genes in goats

lacking PrPC. Graphical presentation of (A) the total number and percentage of differentially expressed

genes (DEGs) between the two genotypes, compared to the average total number of genes expressed in

peripheral blood mononuclear cells from both genotypes, and (B) the total number of upregulated and

PrPC modulates type I interferon signaling
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STAT1 mRNA expression levels did not differ between the genotypes. One hour after LPS

challenge, the mRNA expression level of interferon-responsive genes increased slightly and the

difference between the two genotypes was more pronounced (Fig 4B), with three genes show-

ing a statistically significant difference in expression level (ISG15 (p-value = 0.049), IFIT1 (p-

value = 0.02), andMX1 (p-value = 0.019), assessed by multiple t-tests).

Discussion

Similar to observations in transgenic mice [6], goats [36], and cattle [27] with knockout (KO)

of PRNP, the PRNPTer/Ter goats display no obvious loss-of-function phenotype [25, 26]. Conse-

quently, only subtle transcriptomic alterations were expected, corroborating data from KO

mouse models [37–41]. Accordingly, this study revealed subtle expression differences affecting

less than a percent of the expressed genes. However, analysis of the annotated DEGs using the

Interferome database [33], identified a distinct expression profile, with 70 percent of the DEGs

being classified as interferon responsive, of which several were among the top upregulated

genes. Importantly, animals were age-matched and derived from the same research flock. The

health status of this herd is frequently monitored and considered excellent. Prior to sampling,

animals were assessed clinically by a veterinarian and found healthy, which was also confirmed

by hematological analysis in an accompanying study [26]. Furthermore, we were unable to

detect any differences in gene expression levels of neither interferons nor IFN signaling com-

ponents. A flanking gene problem will also be present in the PRNPTer/Ter goats; however, pre-

liminary data indicate that this is very limited compared to inbred knockout mouse models. In

the absence of alternative explanations, we consider the observed gene expression profile to be

a true signature of PrPC loss-of-function. It is likely that this profile, which is evident at rest in

the outbred and immunocompetent goats, might be even weaker or absent in inbred trans-

genic mice, housed in pathogen-depleted environments. It is, however, interesting to note that

studies of prion disease in mice have revealed a gene expression profile similar to that observed

in PrPC-deficient goats. Analysis of transcripts from mouse whole brain throughout the course

of experimental CJD revealed an upregulation of several interferon-responsive genes, e.g. OAS,
ISG15, and IRF-family members. Importantly, the upregulation of these genes occurred very

early in the course of the disease, approximately 50 days before the onset of neuropathological

signs and detection of PrPSc [42]. Similar findings were recently reported in another study of

prion-infected mice [43]. In a hamster model of scrapie, several interferon-responsive genes,

including those encoding OAS and Mx protein, were upregulated during development of scra-

pie [44]. In addition, three interferon-responsive genes, assessed by qPCR studies, were mod-

erately upregulated in a hamster model and different mouse models inoculated with scrapie

strains [45]. Recently, transcriptomic data from cerebellar organotypic cultured slices infected

with prions showed that a slight upregulation of several interferon-responsive genes was evi-

dent at 38 and 45 days post infection [46]. It is tempting to speculate that some of the observed

gene expression alterations at very early stages of prion disease could, at least partly, reflect

induced loss-of-PrPC function, and, thus, explain the similarity with the expression profile

reported here. Further investigations are clearly needed to test this hypothesis.

Studies of human SH-SY5Y neuroblastoma cells transfected with human PRNP displayed

a significantly dampened response (MX2 expression) to a low-level IFN-α stimulation,

downregulated annotated DEGs. The fraction of upregulated (red) and downregulated (blue) interferon-

responsive genes among the DEGs are also shown. (C) Hierarchical clustering of the interferon-responsive

genes among the DEGs and expression data from all individual goats of both genotypes. Hierarchical

clustering was performed using the ward algorithm on log2-normalized fold changes.

https://doi.org/10.1371/journal.pone.0179881.g002
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Table 1. Mean unique reads of genes related to Interferon signaling from PRNP+/+ (n = 8, ± SEM) and PRNPTer/Ter (n = 8, ± SEM) goats.

Gene symbol Transcript ID PRNP+/+ PRNPTer/Ter

Interferons

IFNA-H-like XM_005683618.1 0.3 ± 0.3 0.0 ± 0.0

IFNB2-like XM_005702021.1 63.0 ± 5.3 43.4 ± 4.2 *

IFNK XM_005683589.1 0.1 ± 0.1 0.0 ± 0.0

IFNO1-like XM_005683620.1 26.5 ± 6.8 19.1 ± 4.9

IFNT2A XM_005683606.1 0.9 ± 0.4 0.9 ± 0.5

IFNG XM_005680208.1 38.4 ± 10.9 27.8 ± 4.5

IFNL3 XM_005692539.1 0.1 ± 0.1 0.0 ± 0.0

IFNL4-like XM_005692540.1 0.5 ± 0.3 0.3 ± 0.2

Interferon receptors

IFNAR1 XM_005674742.1 11565.5 ± 613.5 11818.3 ± 683.0

IFNAR2 XM_005674684.1 3484.1 ± 245.4 3664.9 ± 188.7

IFNGR1 XM_005684807.1 3056.4 ± 268.9 3772.4 ± 252.6

IFNGR2 XM_005674741.1 7492.8 ± 179.1 8209.5 ± 408.9

IFNLR1 XM_005677011.1 95.5 ± 10.8 122.4 ± 22.4

Interferon signaling components

JAK1 XM_005678310.1 31579.9 ± 920.9 31909.0 ± 908.7

JAK2 XM_005683698.1 2399.1 ± 109.3 2587.5 ± 84.7

JAK3 XM_005682189.1 11636.9 ± 600.5 9816.8 ± 603.9

TYK2 XM_005682457.1 4528.3 ± 205.6 4775.3 ± 328.4

STAT1 XM_005676277.1 26477.4 ± 2414.9 28314.6 ± 1119.4

STAT2 XM_005680347.1 5548.9 ± 332.1 6363.6 ± 408.4

STAT3 XM_005693850.1 98.5 ± 10.5 92.5 ± 8.2

STAT4 XM_005676278.1 2101.9 ± 158.6 1949.5 ± 120.6

STAT5A XM_005693847.1 5250.6 ± 172.7 5365.3 ± 194.9

STAT5B XM_005693846.1 4604.1 ± 137.3 4511.0 ± 155.2

STAT6 XM_005680308.1 15197.3 ± 704.8 15596.6 ± 692.7

IRF1 XM_005682621.1 12308.6 ± 1155.2 10936.5 ± 1329.5

IRF2 XM_005698710.1 624.5 ± 26.6 663.4 ± 17.1

IRF3 XM_005692726.1 1073.9 ± 74.3 1169.1 ± 60.4

IRF4 XM_005696935.1 1482.5 ± 157.3 1379.5 ± 140.9

IRF5 XM_005679456.1 764.9 ± 61.4 811.8 ± 65.6

IRF6 XM_005691036.1 7.3 ± 2.2 5.4 ± 1.9

IRF8 XM_005691907.1 3565.8 ± 219.0 3824.8 ± 210.8

IRF9 XM_005685224.1 205.8 ± 16.7 234.5 ± 28.2

Inhibitors and enhancers

IRF2BP-like XM_005686182.1 2686.3 ± 135.5 2794.5 ± 123.7

IRF2BP1 XM_005692789.1 1265.3 ± 33.0 1232.4 ± 32.3

IRF2BP2 XM_005699013.1 8090.8 ± 600.5 8588.9 ± 793.4

PIAS1 XM_005685148.1 1266.8 ± 66.9 1320.0 ± 86.4

PIAS2 XM_005697179.1 390.6 ± 16.9 405.0 ± 19.2

PIAS3 XM_005677741.1 99.1 ± 7.8 99.5 ± 8.1

PIAS4 XM_005682570.1 39.4 ± 2.7 40.0 ± 4.8

SOCS2 XM_005679820.1 0.8 ± 0.4 1.4 ± 0.6

SOCS3 XM_005694412.1 372.0 ± 48.8 346.4 ± 47.5

SOCS4 XM_005685884.1 845.4 ± 24.5 823.3 ± 28.0

SOCS5 XM_005686570.1 1748.9 ± 82.0 1737.6 ± 75.8

(Continued )
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compared with untransfected cells that are virtually devoid of PrPC. Furthermore, in an inde-

pendent, parallel study involving older goat kids than those recruited for the RNA seq study,

animals were challenged with LPS, which is a potent pro-inflammatory compound. In contrast

to mice, which are relatively tolerant towards LPS, goats have a similar sensitivity as humans

[34, 35]. In line with data from the present RNA sequencing study, resting state expression lev-

els of interferon-responsive genes in leukocytes were slightly elevated in the PRNPTer/Ter geno-

type. Interestingly, the expression differences between the genotypes were increased one hour

after LPS injection. Apparently, leukocytes without the expression of PrPC upregulated inter-

feron-responsive genes more rapidly than their PrPC-expressing counterparts. The regulation

of interferon-responsive genes expression level is multifaceted and tightly controlled at several

levels [47, 48], involving receptor downregulation, upregulation of a plethora of inhibitors as

well as epigenetic modifications.

Table 1. (Continued)

Gene symbol Transcript ID PRNP+/+ PRNPTer/Ter

SOCS6 XM_005709580.1 137.5 ± 14.4 144.6 ± 14.0

SOCS7 XM_005709575.1 2286.3 ± 193.8 2144.5 ± 198.7

IL18 XM_005689450.1 21.3 ± 4.5 18.9 ± 3.6

PTK2 XM_005688815.1 82.4 ± 11.4 92.1 ± 7.4

PTK2B XM_005684041.1 99.3 ± 11.6 114.5 ± 17.5

*: p = 0.025

https://doi.org/10.1371/journal.pone.0179881.t001

Fig 3. PrPC suppresses upregulation of MX2 gene expression upon INF-α stimulation in SH-SY5Y

cells. Untransfected human neuroblastoma SH-SY5Y cells and seven different clones transfected with a

plasmid containing human PRNP to produce SH-SY5Y clones expressing human PrPC, were stimulated for

3h with IFN-α (3 U/ml) (mean ± SEM, n = 4), and MX2 gene expression was assessed. Six out of seven clones

displayed a significantly lower response to IFN-α compared with the untransfected SH-SY5Y cells, using

Dunnett’s post hoc test for multiple comparisons.

https://doi.org/10.1371/journal.pone.0179881.g003
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Taken together, our data suggest that PrPC contributes to dampening of type I interferon

signaling at rest and that loss of PrPC induces a primed state of interferon-responsive genes.

Accordingly, direct or indirect stimulation of type I IFN signaling, elicits a somewhat stronger

immediate response when PrPC is absent. These data do not conflict with roles acclaimed to

the prion protein. Indeed, they might strengthen previous observations and provide mechanis-

tic hints of PrPC physiology.

Material and methods

Animals

The animals (FOTS approval number ID 8058) included in the study were of the Norwegian

Dairy Goat Breed obtained from a research herd of approximately 100 winter-fed goats at the

Norwegian University of Life Sciences. Based on health surveillance through membership in

the Goat health monitoring service and The Norwegian Association of Sheep and Goat Farm-

ers and daily monitoring, the general health status of the herd is considered to be good. The

entire flock was previously genotyped [25] concerning PRNP genotypes, and through selective

breeding, goat kids with the two genotypes PRNP+/+ (n = 8; 4 female and 4 male) and PRNPTer/

Ter (n = 8; 4 female and 4 male) were retrieved. Prior to inclusion in the experiment, all goat

kids were examined clinically and found to be healthy.

Isolation of peripheral blood mononuclear cells

Blood was sampled from the jugular vein into EDTA tubes at 2–3 months of age. Peripheral

blood mononuclear cells (PBMCs) were isolated by gradient centrifugation (Lymphoprep1,

Axis-Shield, Dundee, Scotland) at 1760 x g without brake, and washed with PBS supplemented

with EDTA (2 mM). Red blood cells were lysed by brief exposure to sterile water, and washed

with PBS supplemented with EDTA (2 mM) prior to counting and trypan blue viability assess-

ment using a Countess1 Automated Cell Counter (Life Technologies, Thermo Fisher Scien-

tific, Waltham, MA).

Fig 4. Expression of interferon-responsive genes in blood leukocytes after in vivo lipopolysaccharide (LPS) challenge in

goats without PrPC. RNA was extracted from circulating blood leukocytes from both genotypes, and gene expression was analyzed

by FLUIDIGM qPCR. (A) Basal expression level (0 h) of selected interferon-responsive genes and STAT1 in PRNP+/+ (n = 12) and

PRNPTer/Ter (n = 13) animals. (B) Gene expression of interferon-responsive genes and STAT1 after in vivo LPS challenge (1 h) from

PRNP+/+ (n = 7) and PRNPTer/Ter (n = 8) animals. Values are mean ± SEM. Statistical significance is indicated by *, p-value < 0.05, as

assessed by multiple t-tests.

https://doi.org/10.1371/journal.pone.0179881.g004
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Cell culture studies

Human neuroblastoma SH-SY5Y cells (Sigma-Aldrich, Merck, Kenilworth, NJ) were cultured

in Eagle’s Minimum Essential Medium and Ham’s F12 (1:1) (Sigma-Aldrich) supplemented

with 10% heat-inactivated fetal bovine serum (FBS), glutamine and antibiotics (1% streptomy-

cin and penicillin) (all from Gibco, Thermo Fisher Scientific), and cultivated in T25 flasks at

37˚C with 5% (v/v) CO2 at saturated humidity. SH-SY5Y cells were stably transfected with a

plasmid construct, pCI-neo (Promega, Madison, WI) encoding human PRNP, using jetPRIME

(Polyplus, Illkirch, France) according to the manufacturer’s instructions. Transfected cells

were grown under selection pressure of Geneticin (Thermo Fisher Scientific), and nine differ-

ent single clones with variable levels of PrPC (SH-SY5Y PrPhigh) were isolated (S4 Fig). Clone

no. 8 showed an abnormal phenotype, and was excluded from the studies.

Western blotting

Untransfected SH-SY5Y cells and transfected SH-SY5Y PrPhigh clones were lysed in ho-

mogenizer buffer (Tris HCl 50 uM, NaCl 150 mM, EDTA 1 mM, DOC 0.25%, NP40 1%) sup-

plemented with protease inhibitor cocktail (Roche complete, Roche Holding AG, Basel,

Switzerland). Protein concentrations were measured using Protein assay (Bio-Rad, Hercules,

CA). To obtain deglycosylated protein, 20 μg of total protein were incubated overnight with

PNGase-F (New England Biolabs, Ipswich, MA), according to the manufacturer’s instructions.

Fifty μg of protein or the deglycosylated samples were separated on sodium dodecyl sulfate

(SDS) polyacrylamide gel electrophoresis (12% Criterion™ XT Bis-Tris, Bio-Rad), and trans-

ferred to polyvinylidene fluoride (PVDF) membranes (GE Healthcare, Little Chalfont, United

Kingdom). After incubation with blocking buffer (5% non-fat milk in TBS-Tween) for 90 min-

utes at room temperature, samples were incubated in 1% non-fat milk in TBS-Tween contain-

ing mouse anti-PrPC primary antibody diluted 1:4000 (6H4, Prionics, Thermo Fischer

Scientific) over-night at 4˚C. Subsequently, the membrane was washed and incubated for 90

minutes in 1% non-fat milk containing Alkaline Phosphatase (AP)-conjugated anti-mouse

IgG diluted 1:4000 (Novex, Life Technologies, Thermo Fischer Scientific). Membrane was

developed using EFC™ substrate (GE Healthcare) and visualized with Typhoon 9200 (Amer-

sham Bioscience, GE Healthcare).

Isolation and sequencing of RNA

Total RNA was extracted using the Qiagen RNeasy mini plus kit (Qiagen, Germantown, MD)

following the manufacturer’s instructions. RNA concentration and purity was analyzed using

NanoDrop-1000 Spectrophotometer (Thermo Fisher Scientific) or Epoch Microplate Spectro-

photometer (BioTek Instruments Inc, Winooski, VT), and quality was assessed before RNA

sequencing using RNA Nano Chips on an Agilent 2100 Bioanalyzer (both from Agilent Tech-

nologies, Santa Clara, CA). RNA was stored at -80˚C. Individual RNA samples of high quality

(RIN� 9.8) were sequenced by mRNA poly-A-tail, paired-end sequencing (Illumina HiSeq

2000) with 91 bp read-lengths (Beijing Genomics Institute (BGI), Hong Kong), retrieving a

minimum depth of 5G clean data per sample. In detail, after the total RNA extraction and

DNase I treatment, magnetic beads with Oligo (dT) were used to isolate mRNA. Mixed with

the fragmentation buffer, the mRNA was fragmented into short fragments, and cDNA was

synthesized using the mRNA fragments as templates. Short fragments were purified and

resolved with EB buffer for end reparation and single nucleotide A (adenine) addition. The

short fragments were connected with adapters. After agarose gel electrophoresis, the suitable

fragments were selected for the PCR amplification as templates. During the QC steps, Agilent
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2100 Bioanalyzer and ABI StepOnePlus Real-Time PCR System were used in quantification

and qualification of the sample library.

For the IFN-studies, RNA quality was assessed by TAE/formamide RNA gel electrophore-

sis. RNA samples were mixed with formamide (50% v/v, Sigma) and orange loading dye (New

England Biolabs), denatured by heating for 5 min at 65˚C, put on ice, and loaded on 1% aga-

rose gel containing 1xTAE buffer (0.04 M Tris-acetate, 1 mM EDTA) and visualized with

SYBR™ Safe (Invitrogen, Thermo Fisher Scientific).

Analysis of RNA sequencing data

Reads were mapped to the goat genome assembly (CHIR_1.0) using SOAP2 [49]. Reads

per gene were obtained using SOAP2 and the goat genome annotation (RefSeq, CHIR_1.0).

Read counts were normalized to reads per kilobase per million mapped reads (RPKM) [50].

Testing for differentially expressed genes was performed using the function exactTest in edgeR

[32].

Expression analysis by reverse transcription (RT) quantitative real-time

PCR (qPCR) analysis

cDNA was synthesized using SuperScript III Reverse Transcriptase, RNase Out, dNTP mix

and Random Primers (all from Invitrogen, Thermo Fisher Scientific) at the following condi-

tions: 5 min at 65˚C,>1 min on ice, 5 min at 25˚C, 1 h at 50˚C and 15 min at 70˚C.

For the RNA sequencing validation study, qPCR was conducted with LightCycler 480 Sybr

Green I Master mix (Roche). cDNA corresponding to 2.5 ng RNA was used per reaction. The

samples were run in duplicates in a total volume of 20 μl on a LightCycler 96 System (Roche).

Conditions: 5 min at 95˚C; 40 cycles of 10 sec at 95˚C, 10 sec at 60˚C and 10 sec at 72˚C; and

melting curve with 5 sec at 95˚C, 1 min at 65˚C and 97˚C. Relative expression levels were cal-

culated using a standard curve generated from one randomly selected animal, run in triplicate,

with GAPDH as a reference gene, and one randomly selected animal as a positive control. The

average of six PRNPTer/Ter animals was divided by the average of six PRNP+/+ animals, and

compared relative to RNA sequencing data.

For the interferon-treatment studies using SH-SY5Y cells, qPCR was conducted with Light-

Cycler 480 Sybr Green I Master mix (Roche). cDNA corresponding to 10 ng RNA was used

per reaction. The samples were run in triplicate in a total volume of 10 μl on a LightCycler 96

System (Roche). Conditions: 5 min at 95˚C; 40 cycles of 10 sec at 95˚C, 10 sec at 60˚C and 10

sec at 72˚C; and melting curve with 5 sec at 95˚C, 1 min at 65˚C and 97˚C. Relative expression

levels were calculated using the ΔΔCt method. ActB was used as a reference gene. An inter-run

calibrator was included on every plate as a positive control. The qPCR-amplified sample was

run on a 1% agarose gel, and visualized using SYBR™ Safe (Thermo Fisher Scientific).

LPS challenge and FLUIDIGM qPCR of whole blood leukocyte

interferon-responsive genes

An intravenous LPS challenge was performed (0.1 μg/kg, Escherichia coli O26:B6) in 16 Nor-

wegian dairy goats age 6–7 months (8 PRNP+/+ (female) and 8 PRNPTer/Ter (7 female, 1 cas-

trated male)) (FOTS approval number IDs 5827, 6903, and 7881), and 10 controls were

included (5 of each genotype). In brief, blood samples were collected in PAX-gene blood RNA

tubes before (0 h) and after LPS challenge (1 h). High quality RNA (RIN 9.0 ± 0.34) was

extracted using the PAXgene Blood miRNA kit, and cDNA synthesis was performed in two

replicates (QuantiTect Reverse Transcription Kit). The relative expression of ISGs in
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circulating leukocytes was assessed after qPCR on the Fluidigm Biomark HD platform and

data analysis using GenEx5 software (MultiD, Sweden). The full study protocol, method

description, and primer sequences can be found in [34, 35].

Statistical analysis

Multiple t-tests or two-way ANOVA followed by Dunnett’s post hoc test for multiple compari-

sons were used for statistical analysis of the data using Graph Pad Prism v. 6.07 (Graphpad, La

Jolla, CA). For correlation analysis, the Pearson correlation coefficient was calculated. Mean

values are presented ± SEM.

Ethics statement

The animal experiments were performed in compliance with ethical guidelines, and approved

by the Norwegian Animal Research Authority (FOTS approval number IDs 8058, 5827, 6903,

and 7881) with reference to the Norwegian regulation on animal experimentation (FOR-2015-

06-18-761).
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S4 Fig. Clones of human neuroblastoma SH-SY5Y cells expressing human PRNP. Protein

expression of PrPC for untreated and PNGase-F-treated untransfected human neuroblastoma

SH-SY5Y cells and SH-SY5Y clones transfected with human PRNP (n = 8), determined by
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(TIF)
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tutive and activation-dependent expression of prion protein in human peripheral blood leucocytes. Brit-

ish Journal of Haematology. 2000; 108(3):488–95. https://doi.org/10.1046/j.1365-2141.2000.01881.x

PMID: 10759704

29. Isaacs JD, Jackson GS, Altmann DM. The role of the cellular prion protein in the immune system. Clini-

cal and Experimental Immunology. 2006; 146(1):1–8. https://doi.org/10.1111/j.1365-2249.2006.03194.

x PMID: 16968391

30. Isaacs JD, Garden OA, Kaur G, Collinge J, Jackson GS, Altmann DM. The cellular prion protein is pref-

erentially expressed by CD4+ CD25+ Foxp3+ regulatory T cells. Immunology. 2008; 125(3):313–9.

https://doi.org/10.1111/j.1365-2567.2008.02853.x PMID: 18462346
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