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Abstract

As a cost efficient data collection mechanism, the process of assaying pooled biospecimens is 

becoming increasingly common in epidemiological research; e.g. pooling has been proposed for 

the purpose of evaluating the diagnostic efficacy of biological markers (biomarkers). To this end, 

several authors have proposed techniques that allow for the analysis of continuous pooled 

biomarker assessments. Regretfully, most of these techniques proceed under restrictive 

assumptions, are unable to account for the effects of measurement error, and fail to control for 

confounding variables. These limitations are understandably attributable to the complex structure 

that is inherent to measurements taken on pooled specimens. Consequently, in order to provide 

practitioners with the tools necessary to accurately and efficiently analyze pooled biomarker 

assessments, herein a general Monte Carlo maximum likelihood based procedure is presented. The 

proposed approach allows for the regression analysis of pooled data under practically all 

parametric models and can be used to directly account for the effects of measurement error. 

Through simulation, it is shown that the proposed approach can accurately and efficiently estimate 

all unknown parameters and is more computational efficient than existing techniques. This new 

methodology is further illustrated using monocyte chemotactic protein-1 data collected by the 

Collaborative Perinatal Project in an effort to assess the relationship between this chemokine and 

the risk of miscarriage.
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1. Introduction

In resource limited environments, the process of assaying pooled biospecimens (i.e., a 

sample comprised of several individual specimens) has become a cost effective alternative to 

assaying specimens one-by-one. The origins of group (or pool) testing are commonly 

attributed to [1], where it was proposed as a means to reduce the cost of screening military 

inductees for syphilis during the Second World War. Since its advent, pool testing has been 
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adopted for the purposes of screening for various infectious diseases [2, 3, 4, 5] and the 

incidence of bioterrorism [6], identifying lead compounds in drug discovery [7], and 

detecting rare mutations in genetics [8]. The general advantages of collecting data on pools 

are three-fold: a reduction in the cost associated with measuring the outcome of interest, the 

ability to preserve irreplaceable specimens, and the means to collect information in a more 

timely fashion. Further, these advantages persist when the outcome of interest is continuous. 

For example, [9] reports that the 2005–2006 National Health and Nutrition survey reduced 

the number of analytical measurements required to characterize the distribution of 

polychlorinated and polybrominated compounds within the population of the United States 

from 2201 to 228 by pooling, which translated to a savings of $2.78 million in testing cost.

[10] was the first to consider modeling outcomes obtained from assaying pooled specimens 

in order to estimate population level characteristics; i.e., binary outcomes, measured on 

pools, were used to estimate the proportion of individuals within a population who possessed 

a characteristic of interest. In this context, the process of pooling offers a cost effective data 

collection mechanism, and for this reason has received a great deal of attention among the 

statistical literature; e.g., see [11, 12] and the references therein. Extending this earlier work, 

[13] proposed a regression framework which relates binary outcomes measured on pools to 

covariate information. The work of [13] has since seen numerous generalizations; to include 

allowing for random pooling and imperfect testing [14], confirmatory testing [15], random 

effects [16], and covariate measurement error [17], as well as the development of techniques 

that allow for a nonparametric [18, 19] and semiparametric [20, 21] regression analysis of 

group testing data. Note, all of the aforementioned techniques were specifically developed 

for binary outcomes measured on pools.

Broadening the utilitarian nature of pooling as a cost effective data collection mechanism, 

techniques for analyzing continuous outcomes obtained from assaying pooled specimens 

have been proposed. For example, in an effort to reduce cost, several authors have proposed 

methods of analyzing pooled measurements in order to evaluate the efficacy of a biological 

marker (biomarker) as a diagnostic tool; e.g., see [22, 23, 24, 25, 26, 27, 28]. More recently, 

this research area has shifted to consider the regression analysis of continuous biomarker 

measurements taken on pools; e.g., see [29] and Malinovsky et al. (2012). It is worthwhile to 

point out that the aforementioned regression techniques were developed under the rather 

stringent assumption that the biomarker levels of the individuals, and hence the pools, are 

conditionally Gaussian, given the covariate information. In most practical applications, 

biomarker levels tend to follow a right-skewed continuous distributions with positive 

support. Consequently, [30] proposed an Monte Carlo expectation maximization (MCEM) 

algorithm which could be used to conduct the regression analysis of pooled biomarker 

assessments under the assumption that the individual biomarker levels conditionally, given 

the covariates, follow a log-normal distribution. Further, these authors investigated several 

pooling strategies with respect to estimation efficiency, with their findings resounding the 

work of [31] in the binary regression group testing literature; i.e., measurements taken on 

pools that are formed homogeneously, with respect to covariate information, can be used to 

construct estimators that are nearly as efficient as the analogous estimators based on 

individual level data. Regretfully, the technique proposed by these authors allows for the 
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regression analysis under a single parametric model and does not account for measurement 

error, which is omnipresent in biomarker evaluation studies.

The regression analysis of continuous outcomes measured on pools is fraught with many 

complexities, thus the potential benefits from using pooling as a cost efficient data collection 

mechanism has been largely untapped when the response variable of interest is continuous. 

To circumvent this hurdle, herein a general regression methodology for continuous pooled 

biomarker assessments is proposed. Unlike previously proposed techniques, this 

methodology allows for the regression analysis under many common parametric models, to 

include distributions belonging to the class of generalized linear models, and can easily 

account for measurement error in the response variable, when it is present. Further, the 

proposed technique is more computationally efficient than other existing methods; e.g., 

MCEM algorithm of [30]. The asymptotic properties of the proposed approach are 

established, and through simulation studies the new methodology is shown to accurately and 

efficiently analyze pool response data, both subject to and free of measurement error, under 

several different parametric models.

The remainder of this article is organized as follows. Section 2 presents the general 

modeling framework which can be used to perform a regression analysis of continuous 

outcomes measured on pooled specimens. The asymptotic properties of the proposed 

approach are provided in Section 3, and Section 4 provides a simulation study which 

investigates the finite sample performance of the new methodology. In Section 5 the 

proposed approach is used to analyze monocyte chemotactic protein-1 data collected by the 

Collaborative Prenatal Project (CPP). Section 6 concludes with a summary discussion. All of 

the theoretical proofs and additional technical details are provided in the Web Appendix.

2. Methodology

In what follows a general methodology is proposed for the regression analysis of continuous 

outcomes measured on pooled specimens. In this context the observed data consists of J 
measurements taken on pools, where the jth pool is formed by amalgamating cj specimens 

collected from individuals. Let Ỹij denote the biomarker level of the ith individual in the jth 

pool, for i = 1, …, cj and j = 1, …, J. When assessments are being made on pools the Ỹij are 

latent, and the observed data consists of either the biomarker level of the pool, which is 

denoted by Ỹpj, or an error contaminated measurement of Ỹpj, which is denoted by Ypj. In 

order to relate the Ỹij to the Ỹpj, herein it is assumed that the biomarker level of the jth pool 

is the arithmetic average of the biomarker levels of the individuals of which the jth pool is 

comprised; i.e.,  This assumption is common among the literature [26, 

27, 30] and is reasonable as long as pools are formed from specimens of equal volume.

For modeling purposes, it is assumed that xij = (1, xij1, …, xijp)′, a (p + 1) × 1 vector of 

covariates, is available for each individual. Given the covariate information, it is assumed 

that the biomarker levels of the individuals are (conditionally) independent and follow a 

continuous distribution with probability density function f(·|xij, θ0); i.e., , 

for i = 1, …, cj and j = 1, …, J, where  denotes the collection of model 
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parameters, β0 = (β00, …, β0p)′ is a vector of regression coefficients, and γ0 is a set of 

nuisance parameters. The generality in the assumed parametric model for Ỹij is meant to 

illustrate the broad applicability of the proposed approach; e.g., f(·|xij, θ0) could belong to 

the class of generalized linear models, with Ỹij being related to xij in the usual fashion [32], 

or the regression analysis could be performed under other common parametric models for 

biomarker data, such as the Weibull and log-normal distributions; e.g., see [30].

If the individual biomarker levels were observed, the maximum likelihood estimator (MLE) 

of θ0 could be obtained through traditional techniques once the parametric model is 

assumed. However, when pooled assessments are being made, the Ỹij are latent and the 

observed data consists of either Ỹpj or Ypj, depending on whether or not the measured 

biomarker levels are subject to measurement error. Under the aforementioned assumptions, 

the probability density function of Ỹpj, for a given value of θ = (β′, γ′)′, can be expressed 

as

(1)

where ỹ (−1)j = (ỹ2j, …, ỹcjj) and xj = (x1j, …, xcjj). In the presence of measurement error, it 

is common to assume that the conditional distribution of the observed measurement, given 

the true level, is known; cf., [33]. Let fε(·|Ỹpj ) denote the conditional probability density 

function of Ypj, given Ỹpj. Thus, the density of Ypj can be expressed as

(2)

where ỹj = (ỹ1j, …, ỹcjj)′ and . Note, under most of the common 

parametric models for biomarker data, expressions for fj(·|xj, θ) and gj(·|xj, θ) do not exist in 

closed form, but they can be evaluated through the use of numerical integration.

For ease of exposition, herein the proposed method is presented under the assumption that 

the observed pooled assessments are subject to measurement error. Although, it is 

worthwhile to point out that this approach is still applicable when the true biomarker levels 

are observed, as is demonstrated in Sections 4 and 5. Under the aforementioned modeling 

assumptions, the log of the observed data likelihood is given by

(3)

where Yp = (Yp1, …, YpJ)′ and x = (x1, …, xJ ). By maximizing (3) one can obtain the MLE 

of θ0, which is denoted by θ̂; i.e., θ̂ = arg maxθ∈Θ l(θ|Yp, x). If gj(·|xj, θ) could be expressed 
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in closed form, obtaining the MLE of θ0 would be relatively straightforward. Alternatively, 

if gj(·|xj, θ) does not exist in closed form, numerical integration techniques (e.g., adaptive 

Gaussian quadrature) could be used to evaluate gj(·|xj, θ) at Ypj, and thus facilitate the 

maximization of (3). However, it is well known [34] that the computational burden 

associated with implementing these numerical techniques rapidly increases with the 

dimension of the integral, making this approach infeasible for cj > 2; for further discussion 

see [30]. Further, numerical integration techniques, like the adaptive Gaussian quadrature, 

may perform poorly for peaked-integrand distribution functions [35]. Consequently, it is not 

recommended that these techniques be used to facilitate the maximization of (3).

To overcome the drawbacks of implementing numerical integration methods, such as 

adaptive Gaussian quadrature, the proposed approach uses a Monte Carlo technique to 

approximate the value of gj(·|xj, θ) when evaluated at Ypj. Note, the value of gj(Ypj |xj, θ) 

can be viewed as the expected value of fε(Ypj |Ỹpj ) with respect to Ỹj = (Ỹ1j, …, Ỹcjj)′; i.e.

(4)

where  is the joint density of Ỹj. Let  be a 

random sample from hj(·|xj, θ), where , and define . 

A Monte Carlo estimate of gj(Ypj |xj, θ) can then be obtained as

(5)

Consequently, a Monte Carlo approximation of the log-likelihood, when evaluated at a 

specific value of θ, can be obtained as

(6)

By numerically maximizing (6), one can obtain the Monte Carlo Maximum Likelihood 

Estimator (MCMLE) of θ0, which is denoted by θ̂M; i.e., θ̂M = arg maxθ∈Θ lM(θ|Yp, x). 

Further, under mild regularity conditions, see Section 3, it can be shown that , as M 
→ ∞.

Regretfully, for the purposes of maximizing (6), when (5) is being used to approximate 

gj(Ypj |xj, θ), numerical optimization algorithms can often be unreliable; i.e., these 

algorithms have the propensity to converge before reaching θ̂M. This is a byproduct of the 

fact that these algorithms require that the Monte Carlo log-likelihood be evaluated at 
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multiple values of θ, and at each value of θ a new random sample from hj(Ỹj |xj, θ), for j = 

1, …, J, has to be taken in order to evaluate (6). Due to the inherent variability in each of the 

random samples, this process results in a coarse (non-smooth) objective function which is 

difficult to numerically optimize; for further discussion see [36]. To circumvent this issue, 

[36] suggests that a single random sample, for each j, be drawn from a predetermined 

importance distribution , where θ* is a known set of parameters. This random 

sample would then be used to evaluate (6) for each value of θ, thus insuring that the Monte 

Carlo log-likelihood is a smooth function and that optimization algorithms can be used 

reliably to obtain θ̂M.

Proceeding in this fashion, let  be a random sample from , and based 

on this sample a Monte Carlo estimate of gj(Ypj |xj, θ) can be obtained as

(7)

where . The corresponding Monte Carlo 

log-likelihood is given by

(8)

and the MCMLE of θ0 can be obtained as θ̂M = arg maxθ∈Θ lM(θ|Yp, x, θ*). Note, this 

process is identical to the approach described above, with the exception of the distributions 

from which the Monte Carlo samples were drawn.

Theoretically, there are very few restrictions on the choice of the importance distribution 

, but its specification can dramatically impact the computational efficiency of the 

proposed approach. In general, the computational burden associated with the proposed 

approach is due to the size of the Monte Carlo sample being drawn to construct the estimator 

in (7). That is, obtaining the MCMLE can be computationally inefficient if M is too large, 

and alternatively imprecise if M is to small. In Section 3, guidance is provided on how to 

choose the value of M in order to insure that a specified level of precision is attained, under 

a specific importance distribution. Note, the Monte Carlo sample size required to attain the 

specified level of precision is inherently tied to the choice of the importance distribution; 

i.e., a well specified importance distribution results in a smaller value of M, and vice versa. 

In general,  should have the same support as hj(·|xj, θ0), and the two densities 

should be similar in shape and center. Further,  should be easy to sample from. In 

Sections 4 and 5, the importance distributions were selected according to the strategies 

considered in [37] and [30]; for further discussion see Web Appendix A. Note, under 
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specific types of measurement error (e.g., additive) other more computationally efficient 

estimators akin to (7) can be derived; for further details see Web Appendix A.2.

3. Asymptotic properties

It is important to note that the Monte Carlo log-likelihood lM(θ|Yp, x, θ*) is evaluated using 

a random sample from the importance distribution and, as such, different random samples 

will yield different values of θ̂M. Therefore, θ̂M is a non-deterministic approximation of θ̂ 

whose variability is referred to as Monte Carlo error [38]. As was previously mentioned, the 

Monte Carlo sample size M plays a significant role with respect to determining the precision 

of θ̂M; i.e., the Monte Carlo error decreases as M is increased, and vice versa. By 

quantifying the Monte Carlo error, one can determine a value of M which will ensure that 

the approximation of θ̂ attains a specified level of precision. To this end, the asymptotic 

properties of θ̂M, as M → ∞, are presented and are further used to develop a method of 

identifying M which controls the Monte Carlo error at a specified level.

Throughout the remainder of this article, it is assumed that θ consists of k components and 

that the parameter space Θ is a compact subset of ℝk. From Kolmogorov’s Strong Law of 

Large Numbers (SLLN), under standard regularity conditions, it is easy to establish that ∀ θ 
∈ Θ, the Monte Carlo log-likelihood function (8) converges, as M → ∞, to the true log-

likelihood function with probability 1 (w.p.1). However, this point-wise convergence does 

not guarantee the consistency of θ̂M; i.e., it does not establish that . A sufficient 

condition under which consistency can be established is the uniform convergence of (8), i.e.

and Theorem 1 provides this result.

Theorem 1

Under regularity conditions i)–iii) provided in Web Appendix B, it can be shown that

For a proof of Theorem 1 see [39]. Given the uniform convergence established in Theorem 

1, the following result provides the consistency of θ̂M.

Corollary 1—Let θ̂ denote the unique element Θ, such that θ̂ = arg maxθ∈Θ l(θ|Yp, x), and 

let {θ̂M}M be a sequence of maximizers of {lM(θ|Yp, x, θ*)}M, then , as M → ∞.

For a proof of Corollary 1 see [39]. Given the consistency of θM̂, the asymptotic normality is 

established.
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Theorem 2

Under regularity conditions iv)–viii) provided in Web Appendix B, as M → ∞, then

where Σ = B−1AB−1 and B = −∇2l(θ̂|Yp, x).

The proof of Theorem 2 is classical [40] and a sketch is provided in Web Appendix C. 

Further, it is worthwhile to point out that it relatively easy to show that all of the parametric 

models considered herein adhere to the regularity conditions provided in Web Appendix C.

Establishing Theorem 2 provides two primary benefits; i.e., a means to identify the Monte 

Carlo sample size that maintains a specified level of precision and it allows one to perform 

typical large sample inference. Using the covariance matrix Σ, an asymptotic approximation 

of the Monte Carlo error associated with estimating θ̂ can be obtained. Consequently, a 

natural strategy for choosing the Monte Carlo sample size would be to specify M so that the 

Monte Carlo error is bounded by a predetermined value, say d2; i.e., choose M such that 

, where  is the maximum diagonal element of Σ. Regretfully, in general 

a closed form expression for Σ does not exist, but it can be estimated. Under the regularity 

condition provided in Web Appendix B, a consistent estimator of B is given by B̂(θ̂M|θ*) = 

−∇2lM(θ̂M|Yp, x, θ*), and in Web Appendix C an estimator of A, which is denoted by Â (θ̂M|

θ*), is developed. Thus, an estimator of the covariance matrix Σ is given by

(9)

Using this estimator, M can be chosen such that , where  is the 

maximum diagonal element of Σ̂ (θM̂|θ*). Further, B̂ (θ̂M|θ*)−1 is a consistent estimator of 

the observed Fisher information matrix; i.e., , where B = −∇2l(θ̂|Yp, x). 

Using this estimator, one can conduct typical Wald type inference.

One will note that the process of estimating Σ relies on obtaining θ̂M, which in turn depends 

on M. Consequently, for determining the appropriate Monte Carlo sample size, it is 

suggested that the following approach be implemented to ensure that a specified level of 

precision is attained.

Step 1: Choose a value of d2, the initial Monte Carlo sample size M0, and θ*.

Step 2: Find the MCMLE, θ̂M0, and calculate Σ̂(θ̂M0 |θ*).

Step 3: Based on , the maximum diagonal element of Σ̂(θ̂M0 |θ*):
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a. Accept θ̂M0 as the final estimate of θ̂, if .

b. Proceed to Step 4, if .

Step 4: Reselect θ* based on θ̂M0 and recompute Σ̂(θ̂M0 |θ*).

Step 5: Choose M such that  and find θ̂M, the MCMLE of θ̂.

Note, depending on the goals of the study, one could use this procedure either to control the 

precision of the whole parameter vector, or a subset of interest.

4. Simulation study

A simulation study was conducted in order to assess the finite sample performance of the 

proposed methodology. In this study, the following models for the biomarker levels of the 

individuals were considered:

for i = 1, …, cj and j = 1, …, J, where η1(·) and η2(·) are the inverse and log links, 

respectively, xij = (1, xij1, xij2)′, σ = 0.5, and ν = 4. Note, ST(μ, ν) denotes the shifted t-

distribution, which has mean μ and degrees of freedom ν. The two covariates were 

independently sampled: one, xij1, from a standard normal distribution (which was supposed 

to emulate a standardized age effect) and the other, xij2, from a Bernoulli distribution having 

success probability 0.5 (which was supposed to correspond to a gender effect). For the 

purposes of this study, a common pool size c was specified, where c ∈ {1, …, 5}; i.e., cj = c, 

for j = 1, …, J, where J ∈ {50, 100, 200, 500}. These choices were made to investigate the 

performance of the proposed approach across a broad spectrum of characteristics which 

could be encountered when modeling pooled biomarker data. In particular, the simulation 

configurations consider models both within (M1, M4, and M5) and outside (M2 and M3) of 

the class of generalized linear models which are commonly used to analyze biomarker data. 

Further, the different combinations of (c, J) provide an assessment of the impact of the pool 

and sample size on estimation and inference.

In both the binary group testing [31] and the pooled biomarker regression [30] literature it 

has been shown that pool composition, with respect to the covariates, has the potential to 

influence estimation efficiency. That is, randomly assigning subjects to pools, so that pools 

are heterogeneous with respect to covariate composition, can result in a loss in efficiency, 

while homogeneous pooling strategies (i.e., strategies which specify the pooling of subjects 

with similar covariates) maintain a high level of efficiency. For this reason, herein 

homogeneous pooling was used to assign subjects to pools. Once pool assignment was 

complete, the biomarker levels of the pools were determined as , for j = 
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1, …, J. To investigate the effect of measurement error, an error contaminated measurement 

of Ỹpj was obtained as Ypj |Ỹpj ~ N(Ỹpj, τ2), for j = 1, …, J and τ ∈ {0.05, 0.10, 0.20}. 

Combining these simulated values two separate pooled data sets were created: {(Ỹpj, xj), j = 

1, …, J} and {(Ypj, xj), j = 1, …, J}. This process was repeated 500 times for each model 

and configuration of (c, J, τ ), resulting in 200,000 simulated data sets.

The methodology proposed in Section 2 was then implemented to analyze each of the 

aforementioned data sets. Throughout, the importance distributions for models M1–M5 were 

selected according to the strategies outlined in [37] and [30]; see Web Appendix A for their 

explicit forms and further discussion. To implement the model fitting approach described in 

Section (3), an initial Monte Carlo sample size of M0 = 2000 was used and the tolerance was 

specified to be d2 = 0.01. Note: to model the non-error contaminated data, minor alterations 

to the proposed approach are necessary. In particular, the density of Ỹpj, which is given in 

(1), was approximated by

where , for m = 1, …, M, is a random sample from the importance 

distribution . Replacing  in (8) by  and 

maximizing with respect to θ results in obtaining an MCMLE of θ0 when the pooled 

assessments are non-error laden. To complete model fitting for the error contaminated data it 

was assumed, as is common in the literature [22, 27], that the distribution of the 

measurement error was known. In practice this assumption may not be reasonable, but the 

true form of this distribution could be replaced by an estimate, which can be obtained 

through standard techniques; e.g., see [33]. Further, this approach is implemented in Section 

5. Note, since additive measurement error is assumed the alternate formulation of (4), which 

is presented in Web Appendix A.2, is implemented herein.

In order to assess the performance of the proposed approach, it is first noted that when c = 1 

and the Ỹpj are observed (i.e., the individual level data is observed without measurement 

error), standard regression techniques are applicable, and were implemented. This was done 

in order to provide a baseline by which comparisons could be made. Further, under the 

considered simulation configurations for model M1 it is possible to obtain an analytical 

expression for the MLE of θ0 based on either {(Ỹpj, xj), j = 1, …, J} or {(Ypj, xj), j = 1, …, 

J}, for c = 1, …, 5; see Web Appendix D for further details. Consequently, both the proposed 

approach and the aforementioned analytical techniques were used to analyze the simulated 

data created under model M1. Comparisons between the results obtained from these two 

techniques allows one to assess the error that is introduced into the analysis by stochastically 

estimating the MLE through the proposed methodology. Lastly, the MCEM algorithm 

proposed in [30] was used to analyze the non-error contaminated data under model M2; i.e., 

{(Ỹpj, xj), j = 1, …, J}. This competing approach was specifically designed for analyzing 
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data of this form and this comparison allows one to assess the performance of the proposed 

methodology with respect to an existing technique.

Table 1 summarizes the estimates of the regression coefficients (i.e., β) that were obtained 

from analyzing the non-error contaminated pooled observations via the proposed approach 

and the alternate techniques, for all considered models and values of c, when J = 100. In 

particular, Table 1 summarizes the empirical bias and the sample standard deviation of the 

500 point estimates of the regression coefficients stratified by model and pool size. The 

average of the 500 estimated standard errors, and the estimated coverage probability 

associated with 95% Wald confidence intervals are also included. Web Tables 1 and 2 in the 

Web Appendix provide the analogous results for J = 50 and 200, respectively. From these 

results, one will first notice that the point estimates obtained by the proposed approach 

exhibit little if any evidence of bias. Secondly, the sample standard deviation and the average 

standard error of the 500 estimates are predominantly in agreement. Further, the estimated 

coverage probabilities are all at their nominal level. These finding suggest that the approach 

proposed in Section 3 for estimating the asymptotic variance performs well for finite 

samples, and could subsequently be used to reliably conduct Wald-type inference.

To assess the effect that pooling has on parameter estimation and inference, one may 

compare the parameter estimates obtained from the individual level data (i.e., when c = 1) to 

those obtained from the pooled data (i.e., when c > 1). These comparisons reveal two 

striking features of the proposed methodology. First, the estimates of the regression 

coefficients based on the pooled data are more efficient (i.e., have a smaller sample standard 

deviation and average standard error) than the estimates obtained from analyzing the 

individual level data. Moreover, the efficiency of the estimators tends to increase with the 

pool size c. This finding suggests that the process of analyzing biomarker assessments made 

on pools, rather than individuals, will result in more precise estimation and inference, when 

a fixed number of assessments J is mandated. Secondly, this comparison also suggests that 

the error that is introduced by approximating the observed data likelihood through the 

expression in (8), is appropriately controlled by the approach presented in Section 3. This 

assertion is reinforced when one considers the comparison between the estimates obtained 

from the proposed methodology and the analytical form of the MLE under model M1. In 

particular, the summary measures of the estimated regression coefficients obtained from 

these two techniques are practically identical. This finding provides evidence that the 

approach developed in Section 3 can be used to appropriately control the precision of the 

MCMLE.

Table 1 also provides a summary of the estimated regression coefficients obtained from the 

MCEM algorithm proposed by [30], for model M2. In comparing these results to the those 

obtained from the proposed methodology one will note that the two procedures are 

practically identical in terms of estimation and inference. Though similar in terms of 

estimation and inference, an advantage of the proposed methodology over that of the MCEM 

algorithm arises in the computational time required to complete model fitting. Figure 1 

provides the average model fitting time for both the proposed approach and the MCEM 

algorithm, for all considered combinations of (c, J) under model M2. From these results one 

will note that the proposed approach is able to complete model fitting roughly 5 to 8 times 

Liu et al. Page 11

Stat Med. Author manuscript; available in PMC 2018 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



faster than the MCEM algorithm, on average. Moreover, it appears that the average model 

fitting time for the MCEM algorithm increases more rapidly with both the sample size (J) 

and pool size (c). Note, the aforementioned comparisons between the proposed approach 

and the MCEM algorithm were implemented using code written solely in R, which used no 

advanced computing techniques (e.g., interfacing R with C++, parallel processing, etc.), and 

was run on a Optiplex 790 desktop running Windows 7 with an Intel i7-2600 3.40 GHz CPU 

and 16GB of RAM. Further, these comparisons are for data that are not subject to 

measurement error, as the MCEM algorithm was not designed to correct for the effect of 

error laden measurements.

Table 2 summarizes the estimates of the regression coefficients that were obtained from 

analyzing the error contaminated pooled observations via the proposed approach, for all 

considered models and values of c, when J = 100 and τ = 0.05. Web Tables 3–10 in the Web 

Appendix provides the analogous results for the other considered values of J and τ. The 

results from this study reinforce all of the main findings discussed above; i.e., the proposed 

approach can be used to accurately and efficiently analyze pooled biomarker data, while 

correcting for the effects of measurement error. In summary, the results of this study 

highlight the three definitive advantages of the proposed methodology, when compared to 

other existing techniques: first, the proposed technique can account for data subject to 

measurement error; second, the methodology outlined in Section 2 can be implemented 

under many different parametric models to conduct the regression analysis of measurements 

taken on pools; and third, the proposed methodology is far less computationally burdensome 

when compared to existing techniques.

5. Data application

The Collaborative Perinatal Project (CPP) was a longitudinal study, conducted from 1957 to 

1974, which was aimed at assessing multiple hypotheses regarding varying aspects of 

maternal and child health [41]. The data collected by this study constitutes an important 

resource for biomedical research in many areas of perinatology and pediatrics. In 2007 data 

from the CPP was used in a nested case-control study which examined whether circulating 

levels of chemokines are related to miscarriage risk; for further details see [42]. In particular, 

this study considered measuring cytokine levels, to include monocyte chemotactic protein-1 

(MCP1), on stored serum samples from CPP participants who had experienced a miscarriage 

(cases) and those who had not (controls), where cases and controls were matched based on 

gestational age. This analysis focuses on the MCP1 measurements obtained in the 

aforementioned study and considers only the participants for which full covariate 

information was available, where the selected explanatory variables consist of age 

(standardized; denoted by x1), race (1=Africa American/0=otherwise; denoted by x2), and 

miscarriage status (1=yes/0=no; denoted by x3).

This data set possess two unique features which are of particular interest; i.e., MCP1 

measurements were taken on both individual and pooled specimens, in duplicate. 

Consequently, the data available from this study can be divided into two separate data sets: 

the pooled data (PD) which consists of 81 and 350 MCP1 measurements taken on individual 

and pooled (with cj = 2 for all j) specimens, respectively, and the individual data (ID) which 

Liu et al. Page 12

Stat Med. Author manuscript; available in PMC 2018 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



consists of 752 measurements taken on individual specimens. This feature allows one to 

asses the effect of pooling on parameter estimation, a characteristics that could not be 

examined if only pooled data was considered. Further, within the PD and ID the MCP1 

measurements were taken in duplicate for most of the specimens (pooled and individual), 

which allowed for the detection and subsequently the estimation of the measurement error 

[33]. In particular, through differencing the replicated MCP1 measurements it was found that 

it was reasonable to assume that additive measurement error was present, and that the error 

terms followed a normal distribution with mean 0 and variance τ2. From these differences, 

τ2 was estimated to be 0.0442 and 0.0502 based on the ID and PD, respectively.

As with many cytokines, the MCP1 measurements are positive and seem to follow a right-

skewed distribution. For this reason, three parametric models were considered for the MCP1 

levels: a log-normal regression model and a gamma regression model under two different 

link functions, namely the log and inverse links. The linear predictor of the full model was 

specified to be

where β = (β0, …, β7)′ are the regression coefficients. To identify the final model, best 

subsets regression, driven by the Akaike information criterion, was implemented to evaluate 

each of the 27 = 128 submodels. In order to assess the effect of measurement error, this 

process, for each parametric model, was completed both acknowledging and ignoring 

measurement error for both data sets (i.e., ID and PD). Consequently, this analysis considers 

12 different scenarios, each of which required the fitting of 128 models. For all of these 

analyses, the proposed methodology was implemented in the same fashion as was discussed 

in Section 4.

Table 3 provides the top 5 models (ranked according to their AIC values) within each 

scenario. From these results, it can be seen that under all considered parametric models, both 

for the ID and PD, the collection of predictor variables most frequently selected include age 

(x1), miscarriage status (x3), and the interaction between miscarriage status and race (x2x3). 

For this reason, the final model under all scenarios was chosen to possess these predictor 

variables. For comparative purposes, the MCEM algorithm proposed by [30] was also 

implemented to perform model fitting and evaluation for the PD under the log-normal 

regression model, assuming that the observed outcomes were non-error laden. The model 

estimates, and consequently the AIC values, obtained by both the MCEM algorithm and the 

proposed methodology were practically identical. The marked difference between these two 

competing techniques arose in the computational time required to complete best subsets 

regression. In particular, the MCEM algorithm required 74 hours to complete this process, 

while the proposed approach took only 7. Consequently, based on these findings it is 

conjectured that the proposed methodology would likely be preferred in practice due to its 

computational efficiency, especially for the purposes of completing model selection via 

automated search algorithms.
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Table 4 provides the estimates of the regression coefficient along with their estimated 

standard errors and p-values for the final model, across the 12 different scenarios. These 

results warrant several comments, first one will note that ignoring measurement error in this 

application impacted both estimation and inference, for both the ID and PD; i.e., there were 

4 (1) cases for the ID (PD) in which a regression coefficient was deemed to be significant (at 

the α = 0.05 significance level) when measurement error was accounted for but were found 

to be insignificant when it was ignored. Secondly, the estimates obtained from the PD are in 

general agreement with the estimates resulting from the ID, across all of the considered 

configurations. Although, in some instances discrepancies were observed; e.g., under the 

gamma regression model with the inverse link, the estimates of the regression coefficient 

associated with the interaction term obtained from the ID and PD were 1.972 and 7.002, 

respectively.

One plausible explanation for these deviations involves the pooling strategy considered in 

the original study; i.e. cases were randomly pooled with cases and controls with controls. In 

order to investigate this assertion, a second pooled data (HPD) set was artificially 

constructed using the ID, where pools, of size 2, were formed homogeneously with respect 

to the participants covariate information and the MCP1 measurement for each pool was 

taken to be the average of the MCP1 measurements for the individuals of which it was 

comprised. Table 4 provides the parameter estimates obtained from the analysis of the HPD, 

and from these results one will note that the use of homogeneous pooling has practically 

resolved all of the aforementioned discrepancies; i.e., the regression parameter estimates 

based on ID and HPD are practically identical. Further, the regression parameter estimates 

obtained from the HPD were generally more accurate and efficient than those based on the 

PD which contains 80 more observations.

The aforementioned analysis illustrates the primary strengths of the proposed approach; i.e., 

this new methodology can be used to conduct the regression analysis of pooled data under a 

variety of parametric models, it can be used to directly account for the effects of 

measurement error, and it is computationally efficient. Further, this study also illustrates that 

in order to obtain the most accurate estimation and inference homogeneous pooling should 

be implemented in practice. Similar findings were reported in [30].

6. Discussion

In this work, a general framework for the regression analysis of assessments taken on pools 

has been developed. The proposed approach allows for the regression analysis under 

practically all parametric models, can be used to account for the effects of measurement 

error if present, and is computationally efficient. The asymptotic properties of the proposed 

technique have been established. Through simulation studies the proposed approach was 

shown to obtain precise estimates and accurate inference under several common parametric 

models, as well as to be superior, with respect to computational efficiency, to existing 

techniques. Further, the simulation study indicated that the regression analysis of pooled 

data can result in parameter estimates that are more efficient than those which are based on 

individual level data, if pools are formed homogeneously and a fixed number of assessments, 

J, are to be made. Similarly, from the data application one will observe that for a fixed 
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population size, there is practically no loss in estimation efficiency when analyzing 

homogeneously pooled outcomes. In order to further disseminate this work, software, 

programmed in R, which implements the proposed methodology has been developed and is 

available upon request.

The primary focus of the work presented in this manuscript was placed on developing a 

general methodology for conducting the regression analysis of pooled assessments, based on 

an assumed parametric model for the latent individual level data. A topic for future research 

could involve developing techniques which can be used to evaluate the selected parametric 

model; e.g., goodness-of-fit tests. Further, similar to [29], future research in this area could 

focus on developing pooling algorithms which attempt to minimize the loss in estimation 

efficiency that is incurred due to pooling.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Simulation study: Average model fitting times required by the proposed methodology and 

the MCEM algorithm developed in Mitchell et al. (2014) for data generated under model M2 

which is not subject to measurement error. Presented results are stratified by pool size (c) 

and the number of pools (J).
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