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Abstract

Necrotizing enterocolitis (NEC) is a devastating disease in premature infants with high case 

fatality and significant morbidity among survivors. Immaturity of intestinal host defenses 

predisposes the premature infant gut to injury. An abnormal bacterial colonization pattern with a 

deficiency of commensal bacteria may lead to a further breakdown of these host defense 

mechanisms, predisposing the infant to NEC. Here, we review the role of the innate and adaptive 

immune system in the pathophysiology of NEC.

Introduction

Necrotizing enterocolitis (NEC) remains a leading cause of morbidity and mortality in the 

neonatal intensive care unit (NICU)1-4. Because epidemiologic studies demonstrate that 

NEC incidence is inversely proportional to gestational age at birth5,6, Immature intestinal 

host defenses are thought to play a major role in its pathogenesis. These key immature 

defenses include intestinal barrier function, intestinal regulation of microbial colonization, 

regulation of intestinal circulation, and intestinal innate and adaptive immunity.
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Interestingly, NEC onset has also been associated with a developmental window of 

susceptibility (30-32 weeks postmenstrual age)7,8. Changes in microbial colonization 

patterns during postnatal development may explain this apparent window of susceptibility. 

Recent clinical studies implicate the importance of the intestinal microbial community in 

regulating health and disease in the premature infant. First, increased NEC incidence has 

been associated with increased early empiric antibiotic use9-12. Second, administration of 

probiotic bacteria has been associated with decreased risk of NEC13. Finally, longitudinal 

stool colonization studies using molecular techniques have implicated specific changes in 

microbial patterns prior to NEC onset14-22.

An imbalance in the maturation of intestinal innate and adaptive immune defense 

mechanisms may also explain the apparent developmental window of NEC susceptibility. 

Adaptive immunity is often thought to regulate the innate immune system which can cause 

disease when allowed to respond unchecked. Neonates, especially preterm infants, are born 

with underdeveloped adaptive immunity. Adaptive immune defenses transferred from mom 

(through breast milk and placental transfer of maternal IgG) are meant to protect the 

newborn infant until their own adaptive immunity develops23. Maternal transfer of these 

adaptive immune defenses are significantly reduced in preterm infants (especially formula 

fed infants)24, thus placing them at greater risk for inflammatory disorders such as NEC.

In this review, we will summarize the current evidence regarding the role of the innate and 

adaptive immune response in the pathophysiology of NEC. Specifically, we will discuss the 

relative contributions of passive immunity, physical barriers protecting the gastrointestinal 

(GI) tract, innate immune cells, and cytokines in NEC pathogenesis.

Passive Immunity in NEC

Passive antibody transfer

The two main mechanisms of passive immunity which may act to protect the preterm infant 

from NEC are passive transfer of maternal antibodies in the form if IgG from the placenta or 

secretory IgA (sIgA) from breast milk (Table 1). Neonates are known to be born with 

deficiencies in both cellular and humoral immunity and this passive immunity received from 

the mother is meant to protect the infant from disease until its own immune system can 

mature25,26. Placental transfer of IgG is mediated by the FcRN receptor in the 

syncytiotrophoblast and maternal antibodies have been shown to protect the infant in the first 

6 months of life25. Successful placental transfer of IgG is dependent upon maternal IgG 

levels and gestational age of the infant27. Antibody transfer begins as early as 13 weeks 

gestation but the greatest amount of antibody transfer occurs in the last 4 weeks of 

pregnancy. Preterm infants at less than 22 weeks gestation have antibody levels at < 10% 

maternal levels, which raises to 50% by 28-32 weeks, and continues to raise to 20-30% 

above maternal levels by term27. In contrast, breast milk from mothers of preterm infants 

have been found to have higher levels of sIgA compared to term mothers' milk28-30. Based 

on relative deficiency of IgG and IgA in preterm infants, several clinical trials have evaluated 

the effect of oral immunoglobulin administration in preterm infants31. However, the results 

of these trials have found no effect of oral immunoglobulin administration on risk of NEC. 

Of note, intestinal epithelial expression of the FcRN receptor has been demonstrated in 
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fetuses and may play a role in additional passive immunity in the preterm infant32. FcRN 

expression and function in humans is reduced compared to rodents which may explain partly 

why rodents are relatively resistant to NEC-like injury in animal models33,34.

Breast milk nutrients

Breast milk contains multiple additional components that help to protect the newborn infant 

from infectious and inflammatory diseases in the first 6-12 months of life35,36. These 

include antimicrobial and anti-inflammatory factors and components that also promote 

maturation of intestinal host defenses37. First, breast milk contains sugars, proteins, and fats 

that confer dual roles in nutrition and promoting intestinal homeostasis. Oligosaccharides, 

nondigestible sugars which promote the growth of commensal bacteria in the GI tract38-40. 

Oligosaccharide supplementation may reduce NEC risk in human41,42 and animal studies43. 

Caseins in breast milk are highly glycosylated proteins that are also thought to promote 

intestinal defenses by stimulating increased numbers of goblet and Paneth cells and also by 

promoting increased MUC2 gene expression (see more detailed discussion of importance of 

goblet and Paneth cells below)44. One casein subunit, κ-Casein, has also been shown to 

prevent attachment of bacteria to intestinal mucosal epithelia45. Triglycerides in human milk 

have also been shown to provide antiviral, antibacterial, and antiprotozoal activity26,46,47.

Breast milk bioactive proteins

Second, breast milk contains bioactive proteins, lactoferrin and lysozyme, with 

antipathogenic activity. Lysozyme can act synergistically with lactoferrin to kill gram 

negative bacteria48, but can independently have antibacterial effects as well49. Lactoferrin 

has been shown to have antibacterial, antifungal, and antiviral activity50-52, can reduce 

microbial activity by limiting iron availability, and be converted by gastric pepsin to 

lactoferricin, which disrupts gram-negative cell walls53. A recent meta-analysis reports that 

lactoferrin supplementation with or without probiotics may reduce the incidence of NEC and 

late-onset sepsis in preterm infants54. Breastmilk has also been shown to contain platelet 

activating factor acetylhydrolase (PAF-AH), which is thought to prevent NEC by 

inactivating the key pathogenic mediator PAF (see below for a more detailed discussion on 

PAF)55,56.

Breast milk immunoregulatory cytokines

Third, breast milk contains immunoregulatory cytokines, such as IL-10 and TGF-β57,58. 

Monocytes obtained from preterm infants also seem to have lower ability to produce IL-1059 

and TGF-β60, potentially putting them at greater risk for inflammatory diseases. IL-10 is 

believed to be an anti-inflammatory cytokine critical for intestinal homeostasis61,62. 

Multiple animal and human studies implicate the importance of IL-10 in protecting the 

preterm infant from developing NEC. Both IL-10 deficient mice63,64 and human infants with 

IL-10 receptor genetic defects65 are at increased risk for colitis. Animal models of NEC also 

show that maternal milk can reduce NEC severity while increasing intestinal IL-1066. 

Human infants whose mothers have low levels of IL-10 are at increased risk for NEC67 and 

probiotics may regulate IL-10 signaling in the immature gut68. TGF-β is also thought to 

regulate the inflammatory response69 and promote wound healing70,71. TGF-β can also 

initiate local production of IgA in the gut, providing additional protection72. Levels of TGF-
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β in human milk may predict feeding intolerance in growth restricted infants73. Both IL-10 

and TGF-β have been shown to reduce inflammatory signaling by fetal human enterocytes in 

vitro74.

Breast milk growth factors

Finally, breast milk contains growth factors such as epidermal growth factor (EGF) and 

insulin-like growth factor (IGF). IGF family members include IGF-1 and IGF-2 and have 

been thought to help intestinal homeostasis by promoting IEC proliferation and preventing 

IEC apoptosis36. Low serum IGF-1 levels in preterm infants may correlate with risk for 

NEC75 and IGF-1 supplementation has been shown to reduce NEC in animal models76,77. 

Increased IGF-1 receptors have also been detected in NEC tissue78. The EGF family 

members most studied are EGF and heparin-binding EGF (HB-EGF). Both are thought to be 

important for intestinal homeostasis and protective against NEC79. EGF is secreted by 

multiple cells throughout the GI tract. EGF promotes IEC proliferation and differentiation80, 

IEC restitution after injury81, and reduces IEC autophagy82. EGF may also act by increasing 

production of helpful mucus by increasing goblet cells and their production of MUC2 (for 

more detailed discussion on the importance of intestinal mucus layers, see below); by 

improving intestinal barrier function through increased tight junction protein expression 

(occludin and claudin)79,83; by reducing TLR-4 signaling84; and by promoting anti-

inflammatory macrophages and reducing pro-inflammatory macrophages85 (for more 

detailed discussion of the role of TLR-4 and macrophages in NEC, see below). EGF is 

supplied by amniotic fluid throughout pregnancy and by colostrum in human milk. 

Extremely preterm human milk contains 50-80% more EGF when compared to milk from 

mother's with full-term infants,86 which may help to protect against NEC, but decreases over 

time79. Salivary EGF levels increase in preterm infants postnatally87,88 and low EGF levels 

in cord blood89 and preterm saliva and serum has been associated with increased risk of 

NEC90. EGF and HB-EGF supplementation in animal NEC models reduces NEC 

incidence91-103 and EGF supplementation in human neonates has been shown to have 

trophic effects on intestinal mucosa104.

Physical Barriers Protecting the GI Tract

The physical barriers protecting the GI tract include gastric acid, the mucus layer present 

throughout the GI tract, the intestinal epithelial barrier, and antimicrobial peptides (Table 2). 

The intestine is lined by a single layer of highly polarized epithelial cells. Four different 

types of cells make up the intestinal epithelial layer: hormone-secreting enteroendocrine 

cells, mucus-secreting goblet cells, enterocytes with absorptive and secretory functions, and 

antimicrobial-secreting Paneth cells (specialized secretory enterocytes located at the base of 

small intestinal crypts). Below, we summarize how these cells contribute the physical 

barriers protecting the GI tract.

Gastric acid

Gastric acid protects the GI tract by decreasing the number of viable pathogens that can pass 

into the distal intestine. Enteroendocrine cells and the autonomic nervous system coordinate 

the secretion of hydrochloric acid by parietal cells located in gastric glands within the 
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epithelial lining. This, in turn, creates the acidic and bactericidal gastric environment. 

Mature gastric acid secretion seems to be present by 24 weeks gestation105-107. The 

importance of this acidic gastric environment to host defense is demonstrated by multiple 

observational studies linking the use of acid suppression by H2 antagonists to both NEC and 

late-onset sepsis108-111.

Mucus layer

The mucus layer lining the GI tract protects by lubricating and minimizing contact between 

the epithelium and commensal bacteria. The major proteins of mucus in the intestine are 

highly glycosylated proteins called mucins, secreted by goblet cells112,113. Goblet cells also 

produce secretory Immunoglobulin A (sIgA), which contribute to the function of mucus. 

Mucins secreted by salivary glands coat food and assist with esophageal transit114. The 

mucus layer in the stomach plays a role in protecting the epithelium from the harsh acidic 

environment114. MUC2 is the most predominant mucin in both the small and large 

intestine115. The single unattached layer of mucus in the small intestine works with 

antibacterial proteins to limit the ability of bacteria to reach the epithelium116. The mucus 

also moves along the small intestine with peristaltic waves, thus making it even more 

difficult for bacteria to approach the epithelial layer. Attached to the apical side of 

enterocytes in the small intestine is a separate, thin layer of mucus made up of 

transmembrane mucins. This layer is commonly referred to as the glycocalyx and affords 

protection to the intestinal epithelial cells (IECs) by means of a physical barrier and plays a 

role in cellular signaling117. The goblet cells in the large intestine contribute to an inner and 

an outer layer of mucus. The inner mucus layer is inpenetrable to larger entities, such as 

bacteria. The outer layer is the area where the commensal bacteria of the large intestine 

reside. In this way, the commensal bacteria can help in digestion of the glycans found on the 

mucins.118 Mucins also bind and stabilize key trophic and reparative factors (intestinal 

trefoil factor and epidermal growth factor, EGF) at the epithelial surface, which may aid 

epithelial repair119,120.

Human infants with NEC have fewer mucin-containing goblet cells121,122. The premature 

infant's impaired ability to secrete mucus in response to an infection, coupled with a poorly 

developed mucus system may contribute to the increased risk of NEC123. Reduced number 

of MUC2 and trefoil factor 3 goblet cells have been found in both human121,122 and rodent83 

NEC, and mice with genetically aberrant MUC2 develop more severe disease124. Trefoil 

factor 3 supplementation may reduce NEC in animal models125.

Growth restriction may also impair intestinal barrier defenses. In rats with intrauterine 

growth retardation (IUGR), colonic barrier function was impaired126. This is of interest due 

to the possible association between NEC and IUGR127-130. The decreased function was a 

product of decreased colonic length, fewer goblet cells per crypt, and disruption of the 

normal gene expression and amount of mucin throughout the large intestine126. Decreased 

Paneth cell number has also been reported in murine models of IUGR and human IUGR 

intestinal tissue131. The combination of these differences in intestinal integrity of premature 

and IUGR infants compared to term infants may play a role in the possible association with 

NEC.
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Epithelial barrier

The intestinal epithelial barrier is composed of a single layer of highly polarized intestinal 

epithelial cells (IECs), which creates a physical barrier regulated by the apical junction 

complex (AJC), consisting of tight junctions (TJ) and adherens junctions132. Tight junctions 

(TJs) regulate paracellular permeability and maintain separation of tissue compartments by 

sealing the intercellular space133,134. Three types of proteins make up TJs: occludins, 

claudins, and junctional adhesion molecules. The AJC starts to form as early as 10 weeks 

human gestation when intercellular tight junctions can be detected. However, full secretory 

and absorptive capabilities of the intestinal epithelia continues to occur in utero due to 

amniotic fluid growth and trophic factors, which induces mucosal maturation from 26 weeks 

to term135. Ongoing postnatal intestinal epithelial barrier maturation can also be induced by 

multiple factors including diet136-138, epidermal growth factor80, endogenous 

glucocorticoids139, and commensal bacteria140,141.

Premature infants have impaired epithelial barrier function compared to term infants142,143, 

which is thought to contribute to the pathogenesis of NEC2,3,144-147. The role of TJ proteins 

in the pathogenesis of NEC has been extensively studied in human148,149 and 

animal83,148,150-152 studies. Many studies have also demonstrated how cytokines induced 

during intestinal inflammation can further weaken intestinal barrier function153-158, leading 

to a vicious cycle of increased intestinal inflammation and injury. In addition, two promising 

biomarkers in early detection of NEC, I-FABP and claudin-3, are measures that indicate gut 

barrier disruption159.

IECs are also responsible for sampling intraluminal contents which instigates transcellular 

signaling and transcription of genes resulting in a defense response via the release of 

cytokines and chemokines and subsequent attraction of leukocytes. This function is 

mediated by multiple pattern recognition receptors (PRRs) critical for the identification of 

both foreign elements such as peptidoglycan, lipoproteins, viral DNA and commensal 

microflora. The remarkable ability of these receptors to distinguish between harmful and 

helpful bacteria with subsequent appropriate signaling is critical to intestinal homeostasis141. 

Toll-like receptors (TLRs) are the predominant type of PRR found on the apical side of 

IECs. Another group of PRRs that cooperate with TLRs are the intracellular Nod-like 

receptors (NLRs). Nod1 is expressed by IECs, and Nod2 is found in monocytes, dendritic 

cells, and Paneth cells117. Multiple TLRs (TLR-2, TLR-4) as well as NOD2 have been 

implicated in the pathogenesis of NEC in human160-164 and animal studies165-175. TLR-2 

primarily senses peptidoglycan (a component of gram positive bacteria cell wall); TLR-4 

primarily senses lipopolysaccharide (LPS, a component of gram negative bacteria cell wall); 

and TLR-9 primarily senses bacterial or viral DNA (CpG dinucleotides)176. In particular, 

exaggerated TLR-4 signaling and LPS are thought to play a major role in the inflammatory 

signaling in NEC177,178. Of note, platelet activating factor (PAF) is also an important acute 

mediator in the pathogenesis of NEC, which is not only a chemokine that induces 

inflammatory signaling but also can increase expression of TLR-4179-182. TLR-9 may play a 

protective role183-186.
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Antimicrobial peptides

Antimicrobial peptides can be secreted into the lumen of the gut by IECs, Paneth cells, and 

recruited neutrophils. Antimicrobial peptides are thought to promote intestinal homeostasis 

by regulating the microbial population187. Traditional antimicrobial peptides are directly 

microbicidal (defensins (α and β), cathelicidins); other peptides regulate microbes by 

sequestering nutrients (e.g. iron, zinc, manganese) necessary for growth (calprotectin, 

REG3γ)188. For the purposes of this review, we will limit our discussion to the first group. 

Initially discovered in human neutrophils, defensins are small cationic peptides that kill 

microbes in an oxygen-independent manner189. Defensins and cathelicidins function by 

inserting into the membranes of a broad range of prokaryotic cells, including gram-positive 

and gram-negative bacteria, fungi, protozoa, spirochetes, and enveloped viruses187,190. Once 

inside the microbial cell membrane, they form pores allowing the passage of anions through 

the membrane, thus depolarizing and killing the organism191.

IECs primarily secrete β-defensins (hBD1, 2, and 3) with specific tissue distribution varying 

along the intestinal axis for each member of the β-defensin family191. Paneth cells secrete 

lysozyme, phospholipase A2, and antimicrobial peptides (defensins (α and β) and 

cathelicidins189,192). Paneth cells secrete α-defensins (human defensin, HD5 and HD6) in 

response to microbial or cholinergic stimuli, contributing to the relatively sterile and 

protected environment within intestinal crypts.

In vitro studies suggest that antimicrobial peptides may also contribute to host defense 

indirectly, by inducing host responses193. Cathelicidins and defensins may have 

proinflammatory properties by activating chemokine release resulting in immune cell 

chemotaxis and differentiation. α-defensins released into the intestinal crypt may stimulate 

chloride secretion from nearby enterocytes in order to flush pathogens and toxins away from 

sensitive stem cells194. β-defensins may promote homeostasis by promoting IEC migration, 

barrier function, and reducing pro-inflammatory cytokine expression195. Stool hBD2 

expression has been reported as high in neonates with NEC196 and may increase in response 

to changes in microbiota composition associated with NEC so has been proposed as a 

possible biomarker for early detection197. Intestinal expression of hBD2 is high in resected 

NEC tissue but low in more severe cases198.

Ontogeny studies have demonstrated that Paneth cells can be detected by 12 weeks gestation 

and begin to produce antimicrobial defensins at 13 weeks and lysozyme at 20 weeks199,200. 

Significant HD5 expression can be detected at above 29 weeks201. Premature infants have 

been shown to have fewer Paneth cells with decreased function191,199,201,202. Multiple 

animal studies implicate the importance of Paneth cells in NEC pathogenesis203,204. Preterm 

infants with NEC have been shown to have normal4 to reduced122,205,206 numbers of Paneth 

cells or poorly functioning Paneth cells202,206, but infants recovering from NEC have been 

shown to demonstrate Paneth cell hyperplasia207.

Contribution of Innate and Adaptive Immune Cells

In addition to the physical and chemical barriers that limit unrestricted translocation of 

intestinal microbiota, numerous innate immune cells coordinately regulate responses that 
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contribute to barrier fortification and host defense208,209. In the process of attempting to 

protect the host from real or perceived threats, however, innate immune cells can elaborate 

serious bystander effects that are associated with the pathogenesis of NEC including 

excessive intestinal damage and impaired repair process. Below, we briefly outline the 

current state of knowledge with regards to complex role of innate and adaptive immune cells 

and cytokines in regulating NEC.

Intraepithelial lymphocytes

Positioned directly between intestinal epithelial cells in both the small and large intestine are 

intra-epithelial lymphocytes (IEL). The two main subsets of IEL can be distinguished by 

expression of either αβ or γδ T cell receptors and can be further categorized into specific 

subsets using CD4, CD8α, and CD8β co-receptors210. γδ IEL are the pioneer T cells that 

colonize the intestinal epithelium during embryogenesis and the very early postnatal period 

when conventional αβ T cell responses are not yet fully established211,212. Given their 

“front-line” positioning at epithelial surfaces and expression of NK receptors, γδ IEL are 

poised to contribute to barrier protection and mucosal defense in response to infection and 

stress213. Thus, at the earliest stages of ontogeny γδ IEL are among the first intestinal-

resident immune cells contributing to the maintenance of epithelial integrity.

Given the putative beneficial role for γδ IEL in the intestine early in life, these cells may 

fundamentally contribute to barrier defense in the preterm infant. Consistent with this 

hypothesis, γδ IEL were observed to be preferentially reduced in the ileum of surgical NEC 

patients when compared to non-NEC controls. Additionally, TCR8-deficient mice, which 

lack γδ IEL altogether, were more susceptible to experimental NEC-like intestinal injury149. 

These complementary observations from both human and experimental NEC further 

provided a link between loss of γδ IEL and reduction of IL-17 and RORC, the master 

transcription factor involved in the differentiation of IL-17 producing T cells (Th17)214. 

IL-17A was originally viewed as a pro-inflammatory cytokine involved in driving systemic 

and intestinal inflammation. However, more recent data suggests that IL-17A is involved in 

maintaining barrier function via regulation of tight junction proteins215-217. In addition to 

IL-17A, γδ IEL can afford barrier protection and repair of damaged mucosa by secretion of 

other factors such as epithelial growth factor218. Collectively, during the precarious 

developmental window in preterm infants when the intestinal epithelial barrier is 

functionally immature, γδ IEL appear to provide important early immune-mediated barrier 

protection219.

Natural killer (NK) cells and innate lymphoid cells (ILCs)

The function of natural killer (NK) cells in anti-tumor and anti-viral mediated immunity is 

well established220. More recently, accumulating evidence suggests a fundamental 

contribution of NK cells in intestinal barrier protection and regulation of inflammation. 

Using the DSS model of acute intestinal damage, depletion of NK cells was reported to 

significantly augment colonic damage, neutrophil infiltration, and proinflammatory cytokine 

production221. The mechanism of NK cell-mediated protection from acute barrier damage in 

this study was linked to expression of the NK cell inhibitory receptor NKG2A. NK cells 

have also been implicated in protection from chronic T cell-dependent intestinal 
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inflammation. In the CD45RBhi model of colitis, loss of NK cells results in dramatically 

accelerated Th1-driven disease222. Consistent with these data, flow cytometric analyses of 

immune cell subsets in preterm infants established a link between a decrease in NK cells and 

the development of NEC223. Thus, NK cells and perhaps NK-like innate lymphoid cells224 

may protect from intestinal barrier damage, promote barrier repair and decrease the risk of 

NEC.

Neutrophils

Despite being one of the most well studied innate immune cell populations, the role of 

neutrophils in NEC has remained enigmatic. Neutrophils are the most abundant= innate 

immune cell population among white blood cells and are normally absent from healthy 

peripheral tissues including the intestine. In response to intestinal damage or danger signals. 

However, neutrophils rapidly exit the circulation, enter affected tissues, and elaborate 

numerous “pro-inflammatory” effector functions including phagocytosis, production of 

reactive oxygen and nitrogen intermediates and ultimately killing of microbes225. While the 

function of neutrophils is aimed at host protection, localized tissue damage can be an 

unfortunate complication of neutrophil effector responses. Interestingly, neutrophils isolated 

from blood of preterm infants have been reported to exhibit defective phagocytic and 

microbicidal activities as well as impaired chemotaxis and adhesion, which could increase 

the risk of developing NEC226.

In the preterm infant intestine, which is developmentally immature, neutrophils may provide 

transient barrier protection in response to threats from potentially pathogenic bacteria or 

tissue damage/injury. In support of this concept, early-onset neutropenia in small-for-

gestational-age infants has been shown to correlate with increased odds for developing 

NEC227. Additionally, depletion of neutrophils and macrophages in an experimental model 

of NEC induced by treating newborn mice with the virulent gram-negative pathogen 

Cronobacter sakazakii resulted in exacerbated disease228. Somewhat paradoxically, 

neutrophils are increased in intestinal tissue obtained from NEC patients229. However, 

whether these cells are simply “guilty-by-association” as they attempt to provide critical 

barrier fortification remains unclear. Consistent with these findings, inducing acute intestinal 

damage in mice using dextran sodium sulfate (DSS) results in neutrophil accumulation in 

the colon as damage to the mucosa increases in severity. This accumulation coincides with 

barrier repair and resolution of damage and depletion of neutrophils impairs this process230. 

Interestingly, one of the key mediators of neutrophil-dependent barrier repair following 

DSS-induced acute intestinal damage is the IL-10 family cytokine IL-22. IL-22 is a potent 

inducer of intestinal epithelial proliferation and mucosal healing and also leads to enhanced 

production of antimicrobial peptide expression by IECs231-233. Thus, it is tempting to 

speculate that neutrophil recruitment and neutrophil-dependent IL-22 production may help 

to protect the premature intestine during development.

Macrophages and dendritic cells

Like neutrophils, macrophages play important roles in host defense at barrier surfaces such 

as the intestine. An important dichotomy between neutrophils and macrophages, however, is 

that the latter reside in peripheral tissues in the steady state even very early in life. 

Denning et al. Page 9

Semin Perinatol. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Interestingly, macrophages are already present in the fetal intestine where they are believed 

to contribute to maintenance of tissue homeostasis and tolerance234,235. At this stage of 

development, intestinal macrophages are hypo-responsive to stimulation with 

lipopolysaccharide (LPS). So-called “endotoxin tolerance” of intestinal macrophages is 

likely beneficial in establishing and maintaining a mutualistic relationship with the intestinal 

microbiota234.

With intestine resident macrophages being in a state of hypo-responsiveness, blood 

monocytes can be rapidly mobilized into the intestine in response to microbial threats and or 

tissue damage/stress. During the intestinal damage that accompanies NEC, blood monocytes 

are recruited to the damaged intestine and an acute drop in blood monocyte counts can be 

observed and may be useful as a biomarker for NEC in VLBW infants236. After entering the 

damaged intestine, blood monocytes rapidly differentiate into pro-inflammatory M1-type 

macrophages. These M1 macrophages isolated from human and experimental NEC exhibit 

high-level expression of Smad7 making them refractory to TGF-β signaling, while 

promoting NF-κB-mediated signaling and secretion of pro-inflammatory cytokines 

including IL-1β, IL-6, IL-12, and TNFα237. Macrophage products such as the 

proinflammatory chemokines IL-6, IL-8, and TNF-α have been found to be greatly elevated 

in infants with surgical NEC as compared to other preterm intestinal injury238. Activated M1 

macrophages can further potentiate intestinal damage during NEC by augmenting intestinal 

epithelial cell apoptosis85. Thus, inhibiting the differentiation and/or effector functions of 

M1 macrophages has been considered as an approach to limit the dysregulated inflammatory 

response in the NEC intestine. A recent report has provided evidence that this may be a 

feasible approach by showing that heparin-binding epidermal growth factor-like growth 

factor (HB-EGF) can protect from experimental NEC by preventing M1 and promoting M2 

polarization of macrophages85.

In addition to macrophages, dendritic cells (DCs) are another population of antigen-

presenting cells that are capable of regulating intestinal immune responses239. Intestinal DCs 

are positioned in the muscularis mucosae and lamina propria where they can access bacterial 

antigens and initiate innate and adaptive immune responses240. In the steady-state, intestinal 

DCs promote the induction of regulatory T cells and tolerance in adults241,242, but the 

functions in the preterm infant intestine remain unclear. Current evidence from C. sakazakii-
induced experimental NEC suggests that DC influx into the intestine during disease 

contributes to pathological inflammation. Using this model of NEC, the authors found that 

depletion of DCs in mice protected against C. sakazakii-induced intestinal damage and 

conversely that adoptive transfer of DCs promoted epithelial barrier disruption and the onset 

of NEC243. Altogether, these data suggest that controlling the activation and differentiation 

of intestinal macrophages and dendritic cells may hold potential for NEC therapy.

CD4+ T lymphocytes

Compared to the role of innate immune cells in NEC as described above, there exists 

relatively little evidence examining the role of lymphocytes in this disease process. 

Interestingly, a recent study showed that the intestine in mouse and human NEC contains an 

abundance of CD4+ T cells that are recruited in response to TLR4-mediated induction of the 
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CCR9/CCL25 axis244. CD4+ T cells in the NEC intestine were enriched in Th17 cells, while 

Foxp3-expressing regulatory T cells (Tregs) were diminished, consistent with previously 

published data245. Th17 cells in the NEC tissue appeared to contribute to intestinal damage 

as blocking of IL-17 receptor or STAT3 was capable of ameliorating disease. Additionally, 

oral delivery of retinoic acid was sufficient to skew the polarization of CD4+ T cells away 

from the Th17 lineage and towards Tregs, which resulted in diminished NEC severity. These 

results provide an exciting new avenue for exploring the contribution of effector and 

regulatory T cells in the pathogenesis of NEC.

Conclusion

While it is clear that immune responses are associated with NEC, the precise role of specific 

innate and adaptive cells and factors in mediating protection versus contributing to 

pathogenesis continues to emerge. Rapid innate immune cell recruitment and cytokine 

production in response to barrier threats is a highly evolutionarily conserved process that is 

critical for host protection. However, if the threat is not efficiently and effectively 

neutralized, uncontrolled intestinal damage may ensue. From this standpoint, NEC may be a 

disease initiated, in part, due to suboptimal innate immune responses in response to 

dysbiotic microbiota in the preterm intestine. Following initial tissue damage, activated 

innate and adaptive immune cells may then accumulate in the intestine where they are 

associated with further tissue damage while attempting to contain invading bacteria.
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figure 1. Premature infant gut in the steady state and during NEC
In the steady state, homeostasis is promoted by beneficial bacteria (Bifidobacteria, 
Lactobacillus) and breast milk components (IgA, HMO, EGF, IL-10, lactoferrin, lysozyme, 

TGF-β). In the preterm gut, γδ IEL are among the first intestinal-resident immune cells 

contributing to the maintenance of epithelial integrity via IL-17A and EGF. Natural killer 

(NK) cells also protect against and repair barrier damage. Neutrophils (PMN) may be 

important during initial colonization in the neonatal gut, providing transient barrier 

protection in response to threats from potentially pathogenic bacteria, via IL-22 production. 

Resident macrophages (Mϕ) and dendritic cells (DCs) maintain tolerance toward the 

intestinal microbiota via the production of IL-10, which, in combination with transforming 

growth factor TGF-β, induce regulatory T cells (Treg) cells. During NEC, lack of breast 

milk protective components and dysbiotic flora (e.g. Gammaproteobacter) may allow barrier 

breakdown and bacterial translocation. This leads to innate signaling via TLR-4 (in response 

to PAF and LPS), which in turn causes recruitment of neutrophils and monocytes into the 

intestine, where they, along with resident DCs drive proinflammatory cytokine production, 

including IL-1β, tumor necrosis factor (TNF), IL-8, and IL-12, which can promote 

pathogenic Th1 and Th17 responses.
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Table 1A
Passive Immunity Protecting the GI Tract in the Preterm Infant

Time of Maturation Role in NEC

Placental transfer of IgG Starts at 13 weeks
Mature by term

Preterm infants with reduced IgG transfer

Deficiency may predispose to NEC

Breast milk transfer of sIgA Preterm human milk with higher levels Unclear benefit of oral IgA administration in decreasing risk of 
NEC

B. Additional Breast Milk Components Protecting the GI Tract in the Preterm Infant

Mechanism of Protection Role in NEC

Nutrients:

Oligosaccharides Promote growth of commensal bacteria Oligosaccharide supplementation may 
reduce NEC risk

Caseins Stimulate increased Paneth cell and goblet cell number 
and possibly function

May also reduce bacterial adherence to intestinal epithelia

Triglycerides Stimulate increased Paneth cell and goblet cell number 
and possibly function

May also reduce bacterial adherence to intestinal epithelia

Bioactive proteins:

Lysozyme Antibacterial, synergistic with lactoferrin

Lactoferrin Antibacterial, antifungal, antiviral
Reduces bioavailability of iron to pathogens

Lactoferrin supplementation (+/-
probiotics) may reduce NEC risk

PAF-AH Inactivates PAF (key mediator of NEC)

Immunoregulatory cytokines: IL-10 Anti-inflammatory cytokine important for intestinal 
homeostasis

Genetic defects in IL-10R cause colitis

IL-10 supplementation in animal 
models is protective

Increased IL-10 in human milk 
associated with a decreased risk of 

NEC

TGF-β Involved in regulating inflammation and wound healing Low levels in human milk may predict 
feeding intolerance in growth restricted 

infants

Growth factors:

IGF family Promotes IEC proliferation; reduces IEC apoptosis IGF supplementation reduces NEC in 
animal models

EGF family Promotes IEC proliferation/differentiation
restitution and TJ expression

Reduces IEC autophagy
Increases mucin production

Inhibits TLR-4 signaling
Promotes anti-inflammatory macrophages

Decreased EGF associated with 
increased NEC risk

EGF supplementation reduces NEC in 
animal models

EGF supplementation in humans 
promotes intestinal mucosa trophic 

effects
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Table 2
Physical Barriers Protecting the GI Tract in the Preterm Infant

Physical Barrier Component Time of Maturation Role in NEC

Gastric Acid Mature secretion by 24 weeks Acid suppression associated with an increase risk of 
NEC

Mucus layer (Goblet Cells) Term
Premature infants with immature mucus layer

Deficiency may predispose to NEC
NEC causes reduced number & reduced production 

of mucins and trefoil factor

Epithelial barrier (AJC) Mature structure of AJC at 12 wks gestation (in 
utero)

Premature infants with increased intestinal 
permeability

Mature function at term

Immature barrier function may increase NEC risk
Breast milk and probiotics may reduce NEC risk by 

improving epithelial barrier function

Antimicrobial peptides Paneth cells detectable at 12 wks gestation with 
secretory capability at 13-20 wks

Premature infants with decreased Paneth cell number 
and secretory capability

Deficiency of Paneth cell number and function may 
predispose to NEC

NEC causes upregulated Paneth cell numbers but 
these cells are dysfunctional
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