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Abstract

Extracellular vesicles (EVs), lipid bilayer-enclosed structures that contain a variety of biological 

molecules shed by cells, are increasingly becoming appreciated as a major form of cell-to-cell 

communication. Indeed, EVs have been shown to play important roles in several physiological 

processes, as well as diseases such as cancer. EVs dock on to the surfaces of recipient cells where 

they transmit signals from the cell surface and/or transfer their contents into cells to elicit 

functional responses. EV docking and uptake by cells represent critical, but poorly understood 

processes. Here, we focus on the mechanisms by which EVs dock and transfer their contents to 

cells. Moreover, we highlight how these findings may provide new avenues for therapeutic 

intervention.
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1. Introduction

Cells release extracellular vesicles (EVs), which are lipid-enclosed vesicles ranging from ∼ 
30–1000 nm in diameter. EVs contain a variety of cargo, including mRNA [1-3], microRNA 

[1, 4, 5], long non-coding RNA [6, 7], DNA [7], and proteins [2, 4, 8-13] (Figure 1A). In 

order to elicit functional effects, EVs dock onto recipient (target) cells, at which point the 

EVs can initiate signaling events at the cell surface or are internalized by cells. In either 

case, EVs are capable of promoting phenotypic changes in recipient cells, which are 

dependent on their cargo [1, 3-5, 10, 14, 15].

At least two different types of EVs have been identified: microvesicles (MVs) and 

exosomes. Size is one distinguishing feature between these two classes of EVs. MVs 

typically range in size from 200–1000 nm in diameter, while exosomes are smaller, 

averaging between 30 and 120 nm. MVs and exosomes also differ in how they are formed. 
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Exosome biogenesis involves the redirection of multivesicular bodies (MVBs) within the 

traditional endosomal sorting pathway, from the lysosome where they would typically be 

degraded, to the cell surface. These redirected MVBs fuse with the plasma membrane and 

release their contents (i.e., exosomes) into the extracellular environment [16, 17]. Consistent 

with the idea that exosomes originate from MVBs, it has been shown that interfering with 

the machinery in the endosomal sorting pathway, such as endosomal sorting complexes 

required for transport (ESCRT) proteins, blocks exosome formation and release [16]. In 

contrast, MVs are thought to bud from the plasma membrane through Arf6-[18] and RhoA-

dependent [19] rearrangements of the actin cytoskeleton. Although exosomes and MVs 

appear to be shed via different mechanisms, it is not known whether these two major types 

of EVs are capable of mediating distinct biological outcomes. However, one study found that 

MVs deliver functional plasmid DNA and proteins to recipient cells more efficiently than 

exosomes [20], suggesting that different classes of EVs may be functionally distinct.

It is also worth emphasizing that the field is still debating what properties define exosomes 

versus MVs and how to best isolate each class of EVs. Moreover, it is becoming increasingly 

clear that several sub-types of exosomes and MVs likely exist, adding an additional layer of 

complexity to this issue. As a result, many studies claiming to specifically study either 

exosomes or MVs are, instead, isolating a mixture of EVs. This has prompted the EV 

community to adopt new guidelines that include using the term EVs, rather than MVs or 

exosomes, in cases where it is not absolutely clear that a particular class of EVs is being 

isolated and studied. However, for the purposes of this review, we decided to use the 

terminologies (i.e., EVs, MVs, or exosomes) chosen by the authors when describing their 

work.

EVs participate in a variety of physiological processes, including pregnancy [21], stem cell 

differentiation [22], inflammation [23, 24], and blood coagulation [23, 24]. For instance, 

MVs play a role in implantation, one of the earliest and most important stages of pregnancy 

where a blastocyst-stage embryo attaches to the maternal uterine lining and migrates into the 

tissue. Although generally thought to be directed by maternal signals, it now appears that the 

embryo also contributes to implantation. Specifically, it was shown that embryonic stem 

cells (ESCs) located within the inner cell mass of the blastocyst generate MVs that interact 

with the surrounding layer of trophoblasts. The ESC-derived MVs docked onto trophoblasts 

and stimulated signaling events that promoted trophoblast migration, an essential step for 

implantation. These effects were mediated by interactions between laminin and fibronectin 

extracellular matrix (ECM) proteins located on the surfaces of ESC-derived MVs, and 

integrins and laminin receptors expressed along the plasma membranes of trophoblasts [21], 

suggesting that the docking of MVs onto trophoblasts is critical for MV-promoted 

implantation. Consistent with this idea, when blastocyst-stage embryos were incubated with 

MVs isolated from ESC cultures, and then surgically introduced into the uterus of pseudo-

pregnant mouse, the rates of implantation significantly increased, underscoring the 

importance of MVs in this process [21].

In addition to their roles in normal biology, EVs are also involved in diseases, such as viral 

infection [25, 26], prion and amyloid diseases [27, 28], and cancer [29, 30]. In the context of 

cancer, EVs have been extensively studied and shown to promote a wide range of processes 
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that underlie cancer progression, including inflammatory responses [5], angiogenesis [2, 

31-33], metastasis [34, 35], cell migration [36], proliferation [10, 37, 38], and immune 

suppression [39, 40] (Figure 1A). One study demonstrating the potential effects of EVs on 

cancer progression showed that EVs from cancer cells can affect normal cells that are 

adjacent to tumors. MVs derived from the highly aggressive MDAMB231 breast cancer cell 

line promoted the proliferation, survival, and anchorage-independent growth of 

immortalized fibroblasts and normal mammary epithelial cells [10], major cell types found 

in the breast tumor microenvironment. These results suggest that cancer-derived MVs can 

cause normal (i.e., non-cancerous) cell types to acquire some properties of cancer/

transformed cells. These effects were shown to be dependent on a cross-linked form of 

fibronectin present on the surface of MDAMB231-derived MVs. The cross-linked 

fibronectin engaged integrins expressed on the recipient fibroblasts and mammary epithelial 

cells and stimulated signaling events that promoted their growth under anchorage-free 

conditions [10].

Although the EV field is still young, a great deal has been learned regarding MV and 

exosome biogenesis, the cargo that they contain, and the biological effects that they promote. 

However, the mechanisms that mediate the docking of EVs to recipient (target) cells and EV 

cargo internalization by cells are still not well understood [41]. Here, we highlight the 

current knowledge on these important processes.

2. EV Targeting and Docking on Cells

EVs derived from different sources have been reported to interact preferentially with specific 

cell types. For example, exosomes from oligodendroglial precursor cells or mature 

oligodendrocytes were internalized by microglia but not by astrocytes, neurons, or other 

oligodendrocytes [42]. Similarly, bone marrow dendritic cell (DC) exosomes were 

preferentially internalized by splenic conventional DCs, rather than by plasmacytoid DCs, B 

lymphocytes, macrophages, or splenic T cells [4]. Interestingly, the interaction and uptake of 

EVs by recipient cells may be dependent on the specific properties of the recipient cells. For 

example, epithelial cells and astrocytes were unable to internalize EVs from transformed 

cells [43]. However, when the same cell types were transformed through ectopic expression 

of oncogenic forms of Ras or c-Src, they efficiently internalized the EVs [43]. Thus, the 

induction of cellular transformation may cause some cell types to change in ways that make 

them more prone to EV uptake.

In cases where EVs are capable of influencing the functions of multiple types of cells, the 

mechanisms by which the EVs bind to and are internalized by recipient cells varies between 

different cell types [44, 45]. One such case involves MVs isolated from microglia cells. 

When these MVs attached to other microglia, they moved along the surface of the cell 

toward its nucleus prior to being internalized. However, when microglia-derived MVs 

attached to astrocytes, they remained stationary and were not internalized [45]. Similarly, 

leukemia-derived exosomes were internalized by phagocytic cells, but primarily attached to 

and remained on the surfaces of non-phagocytic cells [44]. Thus, the mechanisms that 

regulate the targeting of EVs to specific cell lineages, and/or the fates of EVs once they 

attach to cells, can determine the biological effects that EVs have on recipient cells.
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The preferential interactions between EVs and certain cell types have also been observed in 
vivo (Figure 1B), through the accumulation of specific EVs in distinct organs. When EVs 

isolated from human embryonic kidney (HEK) 293T cells and DCs were injected into the 

blood stream of mice, they primarily localized to the liver and the spleen [3, 46, 47], 

whereas EVs from human mesenchymal stem cells (known to aid in tissue recovery 

following injury) accumulated in the liver, spleen, and sites of acute kidney injury (Figure 

1B), where they facilitated injury recovery [48, 49]. Similarly, melanoma-derived exosomes 

accumulated in the lungs, bone, liver, and spleen and increased the frequency of metastasis 

at these sites [38]. The accumulation of EVs at sites of injury or metastasis suggests that the 

specific targeting of these vesicles likely contributes heavily to their functional effects.

Overall, the preferential interactions of EVs with recipient cells, and their selective 

accumulation in specific organs seems to indicate that EVs are targeted to certain cell 

lineages. Much of this specificity can be explained by protein surface receptors and adhesion 

molecules (i.e., tetraspanins, integrins, proteoglycans, and lectins) that are enriched in EVs 

(Figure 2A). Integrins, ECM proteins, lectins, proteoglycans, or glycolipids on EVs allow 

them to dock with cells expressing appropriate receptors on their surfaces [41]. Here, we 

describe the surface receptors, adhesion molecules, and ECM proteins that mediate EV-cell 

binding.

2.1 Tetraspanins, ECM Proteins, and Integrins

Tetraspanins are small transmembrane proteins that mediate cell adhesion, migration, and 

signaling [50]. Certain tetraspanins, e.g., CD63 and CD81, are routinely found in exosomes 

[51, 52] and, thus, are frequently used as exosomal markers. The expression of other 

members of the tetraspanin family in exosomes may help target the exosomes to certain cell 

types [53, 54] by recruiting additional adhesion proteins into the exosomes [55]. For 

instance, vascular cell adhesion molecule 1 (VCAM-1) and integrin α4 were recruited into 

pancreatic adenocarcinoma-derived exosomes via associations with tetraspanin 8. The 

enrichment of VCAM-1 and integrin α4 in the exosomes enhanced the docking and uptake 

of the exosomes by endothelial cells [55].

Integrins are transmembrane proteins that are receptors for ECM proteins, including laminin 

and fibronectin. They often interact with tetraspanins and appear to mediate many cellular 

outcomes [50, 56]. Moreover, ECM-integrin interactions also play major roles in EV binding 

and uptake by cells [10, 21, 36, 49, 57, 58] (Figure 2A). Thus, inhibiting fibronectin on the 

surfaces of MDAMB231-derived MVs from binding or activating α5β1 integrins on 

recipient fibroblasts, by treating the cells with the RGD peptide (a peptide that blocks 

fibronectin-integrin interactions), inhibited the MVs from inducing the anchorage-

independent growth of fibroblasts [10]. Similarly, the increase in trophoblast cell migration 

caused by ESC-derived MVs was reduced by treating trophoblasts with the RGD and 

YIGSR peptides, which blocked cellular integrins from binding to fibronectin and laminin 

associated with the MV surface [21]. In addition, the docking and uptake of exosomes by 

recipient cells are also dependent on exosomal ECM proteins and cellular ECM protein 

receptors (e.g., β1, αv, β3, and αL integrins and intercellular adhesion molecule 1 

[ICAM-1]) [47].

French et al. Page 4

Semin Cell Dev Biol. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Integrins on the surfaces of recipient cells also play a role in targeting exosomes to specific 

cell types in vivo. Exosomes with ICAM-1 on their surfaces bind to T cells and lymph node 

DCs expressing integrin β2 [12, 58, 59]. Similarly, pancreatic ductal adenocarcinoma 

exosomes preferentially bind F4/80+ (adhesion G protein-coupled receptor E1), CD11b+ 

(integrin αM) Kupffer cells found in the liver (Figure 1B), possibly via exosomal ICAM, 

which is a CD11b ligand [60], and promote liver metastases [61].

The findings described above collectively suggest that adhesion proteins, such as 

tetraspanins and ECM proteins (e.g., fibronectin and laminin), found along the surfaces of 

EVs can interact with their corresponding receptors (e.g., integrins) on recipient cells and 

promote EV-cell docking. However, there have also been suggestions that some EVs contain 

integrins that mediate the docking of EVs onto certain cell types [57, 62, 63]. This has been 

demonstrated in the context of cancer metastasis. It is well-established that certain types of 

cancer cells preferentially colonize secondary sites, a process called the “seed and the soil” 

hypothesis [64]. For example, the 4175-LuT breast cancer and BxPC-3 pancreatic cancer 

cell lines metastasize to the lung and liver, respectively, when introduced as xenografts into 

nude mice. Interestingly, when exosomes derived from these cancer cells were injected into 

the blood stream of mice, they too accumulated in the lung or liver [57]. This organ-tropic 

effect was dependent on the expression of specific integrins on the exosome surface [57]. 

Exosomes from the lung-tropic 4175-LuT breast cancer cells contained α6β4 and α6β1 

integrins, accumulated in regions of the lung that were rich in laminin (a ligand for these 

integrins), and promoted lung metastases (Figure 1B) [57]. The authors showed that 

knocking down integrin β4 in the exosomes or pre-incubating the exosomes with the HYD-1 

peptide, which blocks interactions between laminin and its receptors (i.e., integrins), reduced 

the accumulation of the exosomes in the lung [57]. Importantly, blocking the accumulation 

of 4175-LuT breast cancer-derived exosomes in the lung (via an integrin β4 knockdown) led 

to a reduction in metastasis [57].

Exosomes from the liver-tropic BxPC-3 pancreatic cancer cell line contained integrin αvβ5 

and preferentially accumulated in regions of the liver that were rich in fibronectin (an 

integrin αvβ5 ligand) (Figure 1B). Moreover, exosomes from the liver-tropic Pan02 

pancreatic cancer cells also contained integrins αvβ5, accumulated in the liver, and promoted 

liver metastases. Accumulation of exosomes in the liver was reduced by knocking down 

integrin β5 in the BxPC-3-derived exosomes, or by treating the BxPC-3- or Pan02-derived 

exosomes with the RGD peptide, which blocks fibronectin-integrin interactions. 

Furthermore, the ability of Pan02-derived exosomes to promote liver metastases was 

ameliorated by treating the exosomes with the RGD peptide [57]. Overall, these data suggest 

that EV localization in vivo is determined by adhesion molecules, such as integrins, and 

metastasis can be reduced by blocking integrins responsible for EV localization.

2.2 Proteoglycans and Lectins

Emerging evidence suggests that proteoglycans, cell surface proteins with carbohydrate 

modifications, and lectins are enriched in EVs and likely contribute to their ability to attach 

to recipient cells [65-68]. Cell surface proteoglycans may play a role in exosome docking, 

given that proteoglycan-deficient recipient cells internalize exosomes less efficiently than 
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cells expressing proteoglycans [69]. Accordingly, lectins, such as galectins 1, 3, and 5, and 

E-selectin that recognize and bind to proteoglycans or glycolipids [65], are found in EVs 

[58, 70-72]. Furthermore, it appears that exosomal galectin-5 may mediate exosome uptake 

by binding to cell surface proteoglycans, since treating exosomes with excess asialofetuin (a 

proteoglycan that is a galectin-5 ligand) reduced reticulocyte exosome uptake by 

macrophages [72].

It has also been demonstrated that proteoglycan receptors (e.g., lectins) along the plasma 

membranes of cells and proteoglycans on exosome surfaces [49, 73] help mediate exosome 

docking. Blocking cellular heparan sulfate proteoglycan (HSPG) receptors decreased 

exosome uptake [74, 75]. Similarly, treating exosomes with excess galectin-5 reduced 

reticulocyte exosome uptake by macrophages, suggesting that galectin-5 in recipient cells 

may bind with proteoglycans on exosomes [72]. Furthermore, blocking the proteoglycan 

CD44 in EVs reduced their uptake by recipient cells [49]. However, there are also examples 

showing that HSPGs (such as syndecan and glypican) in exosomes are not required for 

uptake [69], suggesting that proteoglycan-mediated EV uptake may be cell-type dependent.

In addition to facilitating EV-cell interactions in vitro, proteoglycans such as CD44v4-v7 (a 

CD44 isoform [76]) in exosomes and cell surface lectins (e.g., CD169) influence EV 

distribution in vivo [15, 77]. The localization of pancreatic carcinoma exosomes to lymph 

node stroma cells and lung fibroblasts (Figure 1B) was impaired when CD44v4-v7 was 

knocked down in the exosomes [15]. Similarly, exosomes derived from primary B cells 

localize to CD169+ cells, and CD169 null mice have an altered exosome distribution [77], 

suggesting that exosomal proteoglycans and cell surface lectins may target exosomes to 

specific cells.

3. Mechanisms of EV-Cell Interactions and Uptake

Once an EV attaches to the cell surface it has two possible fates. In some cases, proteins on 

the EV bind to and activate receptors expressed on the recipient cell without being 

internalized [78-81] (Figure 2B). In other instances, the EV contents are transferred to the 

recipient cell via direct fusion with the plasma membrane or endocytosis (Figure 2B). Both 

EV-mediated signaling from the cell surface, and the transfer of EV contents to cells, can 

elicit functional effects. Herein, we describe the mechanisms that cells use to internalize 

EVs.

3.1 EV Internalization via Membrane Fusion and Endocytosis

There are two mechanisms by which EVs can be internalized by cells: direct membrane 

fusion [4, 13, 82] or endocytosis [4, 47, 83, 84] (Figure 2B). The most commonly studied 

mechanism of EV uptake is endocytosis, an active process where cells engulf particles or 

molecules [85]. Several pieces of evidence suggest that exosomes are internalized via an 

active endocytic process, as opposed to passive membrane fusion. These include the reduced 

uptake of exosomes by cells incubated at 4°C [4, 47, 83, 84], the detection of exosomes 

enclosed in double membrane structures in cells following their internalization [83, 84], and 

the colocalization of exosomes with various endosomal and lysosomal markers [5, 42, 44, 

82-84, 86-88]. It should be noted that MVs are similarly internalized by cells [20].
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3.1.1 Clathrin-Dependent Endocytosis, Phagocytosis, and Macropinocytosis—
EV uptake can be reduced by disrupting actin dynamics [4, 44, 47, 72, 86, 88], suggesting 

that endocytic mechanisms requiring cytoskeletal remodeling, including clathrin-dependent 

endocytosis, phagocytosis, and macropinocytosis [89], are responsible for EV uptake (Figure 

2B). Clathrin-dependent endocytosis begins when accessory proteins recruited to the plasma 

membrane induce membrane curvature. The membrane invagination is then coated with 

clathrin to create a clathrin-coated pit, which is released from the plasma membrane via 

membrane scission by dynamin [90]. EV endocytosis is at least partially dependent on 

clathrin-mediated endocytosis because expression of dominant-negative forms of clathrin in 

cells, or treating recipient cells with clathrin inhibitors (e.g., chlorpromazine or pitstop-2), 

reduced exosome uptake [44, 67, 86].

Phagocytosis, the actin-dependent, receptor-mediated ingestion of large particles by cells, is 

also used to internalize EVs. This process begins when a cell recognizes an EV and 

rearranges its cytoskeleton to create a cup-shaped extension that surrounds the vesicle [91, 

92]. The tips of the cup fuse with each other and membrane scission occurs to create an 

endosome (Figure 2B). Several lines of evidence support the idea that exosomes are 

internalized via phagocytosis. Exosomes colocalized with phagocytic markers, such as 

lysosomal-associated membrane protein 1 (LAMP-1), but not with transferrin, a clathrin-

coated pit marker [44]. In addition, several proteins known to be involved in phagocytosis, 

such as T cell immunoglobulin and mucin domain containing (TIM4), are necessary for 

exosome uptake [44, 47, 57, 91]. More specifically, TIM4 is a phagocytic receptor that 

recognizes phosphatidylserine (PS), a phospholipid that is abundant in EVs. Blocking TIM4 

in macrophages reduced the uptake of leukemia cell-derived exosomes, which suggests a 

possible role for PS in exosome internalization [8, 9, 13, 45, 47, 62, 93].

Macropinocytosis also contributes to EV endocytosis [83, 94-96] and may be used in 

conjunction with other endocytic mechanisms [42, 44]. Macropinocytosis occurs when 

cytoskeletal rearrangements cause membrane ruffles, which extend into lamellipodia that 

fold back on themselves and fuse with the plasma membrane [95] (Figure 2B). Inhibiting 

macropinocytosis by disrupting the functions of dynamin, Na+/H+ exchange, or Rac1 

function reduced exosome uptake [42], whereas activating signaling pathways known to 

enhance macropinocytosis (e.g., via epidermal growth factor or stromal cell-derived factor 

1α) promoted exosome uptake [96], suggesting that exosomes are internalized via 

macropinocytosis.

3.1.2 Lipid Rafts and Caveolins—EVs may also be endocytosed at distinct regions 

along the plasma membrane known as lipid rafts [86], which are required for the formation 

of caveolae (small cave-like invaginations in the plasma membrane) [85, 89] (Figure 2B). 

Lipid rafts appear to be involved in exosome internalization because exosomes colocalized 

with lipid raft markers on recipient cells [83, 97], and disrupting lipid rafts by depleting cells 

of cholesterol reduced EV uptake by cells [67, 83, 97]. Lipid raft-mediated endocytosis of 

EVs has been observed, both in the presence and absence of caveolins, which are proteins 

that aid in caveolae formation [67, 83, 94]. Caveolin-1 knockdowns in recipient cells 

significantly reduced exosome uptake, suggesting that caveolins mediate exosome 

internalization [94]. However, in other systems, exosomes did not colocalize with caveolin-1 

French et al. Page 7

Semin Cell Dev Biol. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in recipient cells, even though lipid raft disruption reduced exosome internalization [67]. 

These results suggest that exosome endocytosis may occur via lipid raft-dependent pathways 

that sometimes require caveolin proteins.

Collectively, these studies demonstrate that the mechanisms of EV uptake are extremely 

varied and, depending on the cell type, rely on a variety of internalization mechanisms [44, 

45, 67, 83, 94]. Regardless of their route of uptake, EVs are capable of stimulating signaling 

pathways that cause changes in the recipient cells, either by activating surface receptors or 

through the delivery of cargo. Once inside the cell, cargo, such as transcripts, signaling 

proteins, and transcription factors, can elicit a variety of functional effects, which in the 

context of cancer, promote cancer progression.

4. Conclusions and Future Directions

In this review, we highlighted some of the mechanisms that regulate EV targeting and 

uptake. In many cases, the specific proteins, proteoglycans, and lipids that are responsible 

for mediating these events have not yet been identified. It has been demonstrated that 

integrins help target EVs to certain organs in vivo and that tetraspanins, proteoglycans (e.g., 

HSPGs), and lectins may also be involved in cell recognition and targeting. Furthermore, 

little is known about the differences in the mechanisms responsible for exosome versus MV 

targeting and uptake. To date, most of the work regarding EV uptake has been performed 

using exosomes, and further study is needed to determine if targeting and internalization 

mechanisms differ between the two EV classes, especially due to emerging evidence that 

diverse classes of EVs exist and may differ in function [20].

A better understanding of how EVs are targeted to recipient cells and the mechanisms of 

uptake is critical to understand EV function in multiple areas of biology and for the 

development of therapeutics that target EVs, or treatments that take advantage of EVs as 

vehicles for delivering therapeutic reagents [98, 99]. It has been shown that the intrinsic 

distribution patterns of EVs in vivo can be altered so that EVs target certain cells, which 

raises exciting therapeutic possibilities. For instance, exosomes engineered to express the 

GE11 peptide (an epidermal growth factor receptor [EGFR] ligand) on their surfaces 

preferentially bound to EGFR-expressing breast cancer cells and successfully delivered 

microRNA to recipient cells [98]. This selective exosome targeting demonstrates that EV-

cell interactions are specific and EVs can be targeted to certain recipient cells for use in 

therapeutic applications.

Although this review primarily focused on EV targeting, docking, and uptake in cancer, 

these processes have broad implications in other fields of biology. For example, EV 

targeting, docking, and uptake during development must be tightly controlled for EVs to 

properly function. MVs released by ESCs promote the migration of trophoblasts and 

enhance blastocyst implantation in the uterus during development [21]. In this case, the 

selective uptake of EVs may be critical for the EVs to function properly and implantation to 

occur without deleterious side effects. If targeting and uptake are not specific, the EVs 

released by ESCs may lead to aberrant growth, improper development, and miscarriage. It is 

not known if ESC-derived EVs are selectively internalized by certain cell types. However, 
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ESC-derived MVs localized to the trophectoderm (the outer layer of trophoblasts) in the 

blastocyst and laminin- and fibronectin-integrin interactions appear to be important for the 

docking of ESC-derived MVs to trophoblasts [21]. In other systems, it has been 

demonstrated that integrins are important in determining the selective docking and uptake of 

EVs by recipient cells [12, 57, 59, 61], suggesting that integrins may play a role in the 

specificity of ESC MV-recipient cell interactions during development. Thus, the recruitment, 

docking, and uptake of EVs are fundamental to their functions and will require a better 

understanding in order to take advantage of their significant potential as therapeutic targets 

and diagnostic markers.
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Figure 1. 
(A) EVs generated by cancer cells contain a variety of cargo (i.e., protein, RNA, and DNA) 

that can be transferred to other cells. This causes the phenotypes of recipient cells to change 

(denoted by the color change) in ways that promote cancer progression. (B) EVs derived 

from bone marrow or different types of cancer cells accumulate in specific organs in animal 

models. For example, EVs generated by bone marrow cells accumulate in the kidney where 

they promote injury recovery (grey arrow and EVs). However, cancer-derived EVs appear to 

promote metastasis in a variety of organs. Specifically, EVs from melanoma cells 

preferentially accumulate in the bone, liver, spleen, and lung (green arrows and EVs), EVs 

from breast cancer cells accumulate in the liver and lungs (pink arrows and EVs), and EVs 

from pancreatic cancer cells accumulate in the liver, lung, and lymph nodes (blue arrows and 

EVs).
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Figure 2. 
(A) EVs bind to the surfaces of recipient cells using various lipids and adhesion proteins, 

including tetraspanins, integrins, ECM proteins, and proteoglycans. (B) EVs interact with, 

and are internalized by, recipient cells via cell surface binding, membrane fusion, 

phagocytosis, macropinocytosis, as well as through clathrin-, caveolin-, and lipid raft-

mediated endocytosis.
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