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Background and aims: The effects of glucocorticoids on fuel metabolism are complex. Acute

glucocorticoid excess promotes lipolysis but chronic glucocorticoid excess causes visceral fat

accumulation. We hypothesized that interactions between cortisol and insulin and adrenaline

account for these conflicting results. We tested the effect of cortisol on lipolysis and glucose

production with and without insulin and adrenaline in humans both in vivo and in vitro.

Materials and methods: A total of 20 healthy men were randomized to low and high insulin

groups (both n = 10). Subjects attended on 3 occasions and received low (c. 150 nM), medium

(c. 400 nM) or high (c. 1400 nM) cortisol infusion in a randomized crossover design. Deuter-

ated glucose and glycerol were infused intravenously along with a pancreatic clamp (somato-

statin with replacement of glucagon, insulin and growth hormone) and adrenaline.

Subcutaneous adipose tissue was obtained for analysis. In parallel, the effect of cortisol on

lipolysis was tested in paired primary cultures of human subcutaneous and visceral adipocytes.

Results: In vivo, high cortisol increased lipolysis only in the presence of high insulin and/or

adrenaline but did not alter glucose kinetics. High cortisol increased adipose mRNA levels of

ATGL, HSL and CGI-58 and suppressed G0S2. In vitro, high cortisol increased lipolysis in the

presence of insulin in subcutaneous, but not visceral, adipocytes.

Conclusions: The acute lipolytic effects of cortisol require supraphysiological concentrations,

are dependent on insulin and adrenaline and are observed only in subcutaneous adipose tissue.

The resistance of visceral adipose tissue to cortisol’s lipolytic effects may contribute to the cen-

tral fat accumulation observed with chronic glucocorticoid excess.
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1 | INTRODUCTION

Glucocorticoids are critical regulators of energy balance; however,

their complex effects on fuel metabolism are highly context-depend-

ent, are not linear in their dose response and are influenced by fac-

tors such as the diurnal rhythm.1 One area exemplifying this lack of

certainty is the effects of glucocorticoids on adipose tissue.2 The pre-

vailing belief is that, in times of acute stress, high cortisol concentra-

tions promote lipolysis to provide adequate energy substrate for

utilization by the body. However, chronically elevated cortisol con-

centrations, most commonly resulting from iatrogenic glucocorticoid

administration to treat inflammatory diseases or, alternatively,

because of ACTH- or cortisol-secreting tumours, leads to weight gain

and, in particular, accumulation of visceral adipose tissue.3 The rea-

sons for these 2 apparently conflicting observations are unclear. Sev-

eral studies have examined the effects of glucocorticoids on lipolysis;

however, results have been inconsistent. For example, in vitro studies

in adipocytes have shown lipolytic rates to be increased,4 unchanged5
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or decreased6 by glucocorticoids. These discrepancies may be attribu-

ted to several factors, including the dose and duration of glucocorti-

coid treatment, the effect of other hormones in the media and the

species being studied.

Results from in vivo studies testing the effect of glucocorticoids

on lipolysis have been more consistent, particularly when levels of

other counter-regulatory hormones have been clamped by infusing

somatostatin and replacing insulin, growth hormone and glucagon

(the pancreatic clamp technique), showing that cortisol acutely

increases whole body lipolysis.7–9 However, these studies achieved

cortisol concentrations between 850 and 1500 nM which are not

reflective of those observed physiologically in the absence of acute

stress. Two studies have examined the effect of physiological cortisol

concentrations on in vivo lipolysis and had conflicting results in the

fasted state;1,10 however, neither study used a pancreatic clamp to

control counter-regulatory hormones. Therefore, it is unclear whether

changes in cortisol concentrations within the physiological range alter

whole body lipolysis. It is also unclear how glucocorticoids enhance

lipolysis in humans, as no in vivo study has examined the effect of

glucocorticoids on the lipolytic pathway (Figure S1, Supporting

Information).

Over and above prevailing glucocorticoid concentrations, a further

critical confounder is the effect of other hormones regulating lipolysis,

notably insulin and adrenaline.5,6 In vivo, the effect of interactions

between cortisol and either adrenaline11 or insulin12 has been examined

only once in humans, although systemic rates of lipolysis were not

measured as the appropriate tracers were not infused. We hypothe-

sized that the effects of glucocorticoids on lipolysis in humans are indi-

rect and dependent on the prevailing insulin and/or adrenaline

concentrations, with glucocorticoids augmenting the pro-lipolytic

effects of adrenaline and antagonizing the suppressive effects of insulin.

In addition, we hypothesized that these interactions may account for

the apparently contradictory effects of acute (a state of high adrenaline

and low insulin) and chronic (a state of high insulin and low adrenaline)

glucocorticoid excess and that the effects may differ between subcuta-

neous and visceral depots. To test this, we performed a randomized,

double-blinded, crossover study to determine the effects of glucocorti-

coids on whole body lipolysis in the presence of both low and high insu-

lin and adrenaline, respectively. Furthermore, we collected adipose

tissue biopsies in vivo to determine how glucocorticoids alter lipolysis

and tested in vitro whether glucocorticoids have differential effects on

lipolysis in subcutaneous and visceral adipocytes.

2 | MATERIALS AND METHODS

2.1 | In vivo protocol

A total of 20 healthy men were recruited to a randomized, double-

blind, placebo-controlled crossover study with the following inclusion

criteria: age, 18 to 75 years; body mass index, 20 to 25 kg/m2;

absence of chronic medical conditions; absence of regular medica-

tions; no previous glucocorticoid use in the past year; alcohol intake

≤21 units per week; weight change of <5% over the past 6 months;

normal screening blood tests (renal, liver and thyroid function, fasting

glucose, full blood count). Local ethical approval was obtained, as was

written informed consent from each participant.

Subjects attended the Edinburgh Clinical Research Facility after

overnight fast on 3 occasions, each separated by 3 weeks, and were

instructed to avoid alcohol and exercise for 48 hours prior to each

assessment. Volunteers were randomized to low, medium or high glu-

cocorticoid (GC) phases (Figure S2, Supporting Information). The

night prior to each assessment (11 PM) subjects received orally the

11β-hydroxylase inhibitor metyrapone (metopirone) 1 g, along with

either placebo (low GC phase), hydrocortisone 10 mg (medium GC)

or hydrocortisone 20 mg (high GC). At 7 AM the following morning

subjects received orally 1 g of metyrapone along with either placebo

(low GC), hydrocortisone 5 mg (medium GC) or hydrocortisone

10 mg (high GC). A further 1 g of metyrapone was received orally at

11 AM to maintain inhibition of endogenous cortisol synthesis

throughout the protocol. The 3 GC phases aimed to achieve trough

and peak cortisol concentrations observed during normal diurnal

rhythm (low and medium GC, respectively) and peak cortisol concen-

trations during stress (high GC).

At each visit, measurements were performed of height, weight,

blood pressure, body fat by bioimpedance (using an Omron BF-302

analyser) and core body temperature using a tympanic thermometer.

Three cannulae were inserted (1 in a vein in each ante-cubital fossa

for infusions and 1 retrograde in a dorsal hand vein for arterialised

sampling). Subjects placed their hand in a box heated to 60�C for

5 minutes prior to each arterialized sample collection. At t = 0 min-

utes, intravenous infusions of 6,6-[2H]2-glucose (at 0.22 μmol/kg/min

following a 17.6 μmol/kg bolus) and 1,1,2,3,3-[2H]5-glycerol

(at 0.11 μmol/kg/min following a 1.6 μmol/kg bolus) were com-

menced for 6.5 hours (Figure S2, Supporting Information). A “pancre-

atic clamp” was commenced at t = 0 minutes, comprising intravenous

somatostatin (60 ng/kg/min), glucagon (0.5 ng/kg/min) and growth

hormone (2 ng/kg/min). At their first visit, subjects were further ran-

domized to receive either low or high insulin replacement (both

groups n = 10) at a rate of 0.06 mU/kg/min or 0.2 mU/kg/min (aim-

ing to suppress lipolysis by c. 50%),13 respectively, and subjects

remained in this group for all 3 study visits. At t = 0 minutes, subjects

commenced infusion with 0.9% saline (low GC) or hydrocortisone

(medium GC at 0.025 mg/kg/h following a 0.04 mg/kg bolus; high

GC at 0.12 mg/kg/h following a 0.18 mg/kg bolus) in random order.

At t + 20 minutes, an intravenous infusion of 20% dextrose was com-

menced and the rate was adjusted every 10 minutes to maintain an

arterialized glucose concentration between 7.5 and 8.0 mmol/L.

Steady state measurements were taken between t + 180 and t + 240

minutes; following this a subcutaneous abdominal adipose tissue

biopsy was obtained by needle aspiration.14 At t + 285 minutes, an

adrenaline infusion was commenced at 0.15 nmol/kg/min for 60 min-

utes. Blood samples were obtained at regular intervals (Figure 1).

Samples were stored at −80�C until analysis.

2.2 | In vitro protocol

Paired samples of subcutaneous and visceral adipose tissue were

obtained from patients undergoing elective abdominal surgery at the

Royal Infirmary of Edinburgh (subject characteristics detailed in
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Table S1, Supporting Information). Adipose tissue from subcutaneous

and visceral depots was digested, and the stromal vascular fraction

was isolated and differentiated as previously described.15 In brief, fol-

lowing removal of connective tissue and blood vessels, adipose tissue

was digested in collagenase type 1 (615 units/g tissue) for 90 min-

utes at 37�C. Following plating and overnight incubation in DMEM/

F12 medium containing 33 μM biotin, 17 μM pantothenate and 10%

foetal bovine serum, cells were differentiated for 3 days using serum-

free medium plus 1 nM triiodothyronine, 10 μg/mL transferrin,

66 nM insulin, 500 μM isobutylmethylxanthine, 1 μM dexamethasone

and 10 μM rosiglitazone. From day 4 onwards, cells were maintained

in differentiation medium, but without isobutylmethylxanthine, dexa-

methasone or rosiglitazone.

On day 16, cells were incubated with either 0, 100 or 1000 nM

cortisol for 24 hours in the presence or absence of either vehicle,

100 pM insulin or 10 μM adrenaline. Following incubation, cells were

used to measure mRNA levels of key genes in the lipolytic pathway

or the medium was removed to measure the appearance of glycerol

and cells were lysed and stored at −80�C for quantification of total

protein.

2.3 | Laboratory analyses

2.3.1 | Biochemical measurements

Serum lipids were measured on an Olympus Diagnostics analyser

(County Clare, Ireland) using an enzymatic colorimetric method. Serum

insulin, growth hormone, plasma glucagon and cortisol were measured

by RIA kits (MP Biomedicals, Santa Ana, California). Serum non-

esterified fatty acids (NEFAs) were measured using a colorimetric assay

(Wako Diagnostics, Mountain View, California) and plasma adrenaline

by ELISA (Rocky Mountain Diagnostics, Colorado Springs, Colorado).

Endogenous and tracer glucose and glycerol concentrations

in vivo were measured by GC-MS as previously described.16 Glycerol

in cell medium was measured in duplicate using a colorimetric kit

(Sigma, Poole, UK). Protein in cell lysates was measured in duplicate

using the DC protein assay (Bio-Rad, Hercules, California) and glyc-

erol appearance corrected for total protein.

FIGURE 1 Hormone and metabolite

concentrations during infusions. Data are
given as mean � SEM for n = 10 for low
glucocorticoid (GC) (squares), medium GC
(circles) and high GC (triangles) in low
insulin (dotted lines, open shapes) and high
insulin (solid lines, filled shapes) groups. A,
Plasma cortisol was different between all
3 GC phases (P < .001). B, Serum insulin
was increased in the high insulin group
(P < .01) but unchanged by GC phase. C,
Glucose; D, growth hormone; E,
adrenaline; F, glucagon were unchanged by
GC phase or between insulin groups. ADR,
adrenaline infusion
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2.3.2 | Quantitative real time PCR measurements

qPCR in whole adipose tissue and cultured adipocytes was performed

as previously described.17 Primer sequences and probe numbers are

described in Table S2, Supporting Information. Transcript levels are

presented as the ratio of the abundance of the gene of interest: mean

of abundance of control genes encoding cyclophilin A and 18S.

2.4 | Kinetic analysis

Kinetic analysis for steady state (ss) measurements was performed

using the mean of 5 samples obtained from t + 180 to t + 240 min-

utes. Steele’s steady state equation18 was used to measure the rate

of appearance (Ra) of glycerol as shown in Equation 1, where d5-

Glycerol TTRss is the tracer/tracee ratio (eg, d5-Glycerol/Glycerol)

during steady state:

RaGlycerolss =
d5-Glycerol infusion rate

d5-Glycerol TTRss
ð1Þ

The rate of disposal (Rd) of glucose was similarly calculated using

Equation 2 while Ra glucosess was calculated by subtracting the mean

of the glucose infusion rate (GIRss) during steady state from Rd

glucosess:

RdGlucosess =
d2-Glucose infusion rate

d2-GlucoseTTRss
ð2Þ

RaGlucosess = RdGlucosess− GIRss ð3Þ

Kinetic analysis following commencement of the adrenaline infu-

sion was performed using Steele’s modified non-steady state equa-

tions.18 Ra glycerol and Rd glycerol were calculated as follows, where

pV is volume of distribution:

RdGlycerolt2 =RaGlycerolt2−pV×
Glycerolt2½ �− Glycerolt1½ �

t2− t1
ð5Þ

Non-steady state values for Ra and Rd Glucose were calculated

as above, substituting glucose for glycerol, with the addition that the

GIR was subtracted from the total Ra glucose to determine the

endogenous glucose production as in Equation 3. The effective vol-

ume of distribution (pV) used for glycerol was 230 mL/kg.19,20 For

glucose, different values were tested for the pV which comprised

40, 100 and 150 mL/kg.19 The results were not significantly altered

by any of these pV values, probably because d2-glucose enrichment

was not significantly altered by adrenaline infusion. The results pre-

sented for glucose kinetics are those using 100 mL/kg as the pV.

2.5 | Statistical analysis

Data are presented as mean � SEM. SPSS version 19 was used for

all analyses. Comparisons between phases (ie, effect of glucocorti-

coids during steady state) were tested by 2-way repeated measures

ANOVA with post-hoc testing performed using Fisher’s least squares

differences (LSD) test with the effect of insulin as an independent

variable. Comparisons over time (ie, effect of adrenaline infusion)

were tested by 2-way repeated measures ANOVA with post-hoc LSD

testing, with effects of insulin and glucocorticoids as independent

variables. P < .05 was considered significant.

3 | RESULTS

3.1 | Regulation of lipolysis by glucocorticoids
in vivo

Subject characteristics are shown in Table 1. Subjects in the low and

high insulin groups were of similar age, weight and blood pressure

and had similar biochemical measurements.

3.1.1 | Baseline measurements at study visits

Cortisol concentrations were different between GC phases (all

P < .01) (Figure 1A). Fasting insulin, glucose, growth hormone, gluca-

gon and adrenaline (Figure 1), NEFAs and glycerol (data not shown)

were similar between insulin groups and unaltered by GC phase.

3.1.2 | Steady state measurements

Cortisol concentrations remained different between phases (all

P < .001) and were similar between high and low insulin groups

(Figure 1A). Insulin concentrations were increased in the high insulin

group (P < .01) (Figure 1B). Glucose, growth hormone, glucagon and

adrenaline concentrations were similar between GC phases and insu-

lin groups (Figure 1C-F). Concentrations of these hormones and glu-

cose remained stable during steady state. High GC tended to

increase systolic blood pressure (P = .06, Table 1).

3.1.2.1 | Effects of glucocorticoids on lipolysis and glucose

kinetics

Ra glycerol and NEFA concentrations were suppressed by high insulin

(Figure 2A,B). The high GC phase increased Ra glycerol and NEFAs

only in the high insulin group (Figure 2A,B).

The high insulin group required more intravenous glucose to

maintain glucose concentrations over the 345-minute protocol

(Table 1). In the low insulin group, the medium and high GC phases

reduced the required glucose infusion rate (Table 1). Endogenous glu-

cose production (EGP) and Rd glucose were unchanged by GC phase

in either insulin group (Figure 2C,D).

3.1.3 | Measurements during adrenaline infusion

Adrenaline concentrations achieved during the infusion were similar

to those observed during exercise21 (Figure 1E). Adrenaline increased

RaGlycerolt2 =
d5-Glycerol infusion rate−pV ×

Glycerolt1½ �+ Glycerolt2½ �
2

×
d5-GlycerolTTRt2−d5-GlycerolTTRt1

t2− t1
d5-GlycerolTTRt1 +d5-GlycerolTTRt2

2

ð4Þ
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heart rate and systolic blood pressure and decreased diastolic blood

pressure (Table 1). The high GC phase increased heart rate during the

adrenaline infusion in both insulin groups (Table 1).

3.1.3.1 | Effects of glucocorticoids on lipolysis and glucose

kinetics

Adrenaline increased Ra glycerol and NEFAs (all phases P < .001)

(Figure 2A,B). High GC increased Ra glycerol and NEFAs in the high

insulin group (Figure 2A,B). In contrast, high GC did not increase

Ra glycerol in the low insulin group, although NEFAs were

increased (Figure 2A,B). GC phase did not alter Rd glycerol (data

not shown).

Adrenaline increased glucose concentrations only in the high

insulin group (P < .05) (Figure 1C) and decreased Rd glucose in both

insulin groups (P < .01) (Figure 2D). GC phase did not alter EGP or Rd

glucose in either insulin group (Figure 2C,D).

3.1.4 | Glucocorticoids increase expression of key genes
in the lipolytic pathway

Adipose tissue was analysed in low (n = 10) and high (n = 9) insulin

groups. Adipose tissue from one subject in the high insulin group was

not obtained because of technical difficulties with the biopsy proce-

dure. The high GC phase increased mRNA levels of key lipolytic

genes adipose triglyceride lipase (ATGL), hormone sensitive lipase

(HSL) and comparative gene identification-58 (CGI-58) and decreased

G0/G1 switch 2 (G0S2) (Figure 3A,B). In addition, high GC decreased

transcript levels of the glucocorticoid (GRα) and mineralocorticoid

receptor (MR). Despite the GC phase not increasing lipolysis in the

low insulin group, GC similarly regulated the lipolytic pathway in both

insulin groups (Figure 3A,B). Perilipin 1, G0S2 and lipoprotein lipase

were increased by high insulin (Figure 3B).

3.2 | Regulation of lipolysis by glucocorticoids
in vitro

Cortisol did not increase glycerol appearance (a measure of lipolysis)

during incubations without insulin or adrenaline in subcutaneous or

visceral differentiated pre-adipocytes in agreement with in vivo data

(Figure 4). Insulin suppressed and adrenaline increased glycerol

appearance in both subcutaneous and visceral adipocytes. In the

presence of insulin, cortisol increased glycerol appearance in subcuta-

neous but not visceral adipocytes (Figure 4). In the presence of

adrenaline, cortisol suppressed glycerol appearance in visceral

adipocytes.

As in vivo, cortisol increased mRNA levels of ATGL, HSL and

CGI-58 and suppressed G0S2, GRα and MR in subcutaneous adipo-

cytes (Figure 3C). Similar results were observed in visceral adipocytes;

however, cortisol did not alter HSL (Figure 3D). In contrast with in vivo

data, cortisol increased mRNA levels of perilipin-1, LPL, PEDF and

PDE3B and suppressed MGL.

4 | DISCUSSION

This work shows that glucocorticoids are dependent on insulin and/or

adrenaline in order to increase whole body lipolysis in vivo. In the pres-

ence of low insulin levels (c. 16 mU/L), even circulating cortisol con-

centrations of c. 1400 nM did not increase Ra glycerol or NEFA

concentrations. Conversely, in slightly higher insulin concentrations

(c. 22 mU/L) designed to suppress lipolysis by 50%, high cortisol con-

centrations increased Ra glycerol by 20% to 25%, showing that corti-

sol antagonizes the effect of insulin. In addition, high cortisol

augmented the pro-lipolytic effects of adrenaline in the high insulin

group. However, high GC did not enhance Ra glycerol in the low

TABLE 1 Anthropometric and fasting biochemical measurements

Low insulin (n = 10) High insulin (n = 10)

Low GC Medium GC High GC Low GC Medium GC High GC

Age (years) 36.9 � 4.7 37.0 � 4.7 36.9 � 4.7 29.9 � 5.2 30.0 � 5.2 29.9 � 5.2

Weight (kg) 74.6 � 2.1 75.3 � 2.0 75.1 � 2.3 76.6 � 2.8 76.9 � 2.9 76.7 � 2.7

BMI (kg/m2) 23.2 � 0.5 23.5 � 0.5 23.4 � 0.6 24.0 � 0.4 24.1 � 0.5 24.1 � 0.5

Fat mass (kg) 13.6 � 0.8 14.1 � 1.0 14.1 � 0.9 12.7 � 1.2 13.4 � 1.3 13.0 � 1.3

Temperature (�C) 36.6 � 0.2 36.6 � 0.1 36.5 � 0.2 36.6 � 0.1 36.7 � 0.1 36.7 � 0.1

Cholesterol (mmol/L) 3.9 � 0.2 4.3 � 0.1 4.1 � 0.2 4.2 � 0.3 4.2 � 0.3 4.3 � 0.2

Triglycerides (mmol/L) 0.9 � 0.1 0.9 � 0.1 0.9 � 0.1 1.0 � 0.1 1.0 � 0.2 0.8 � 0.1

NEFAs (μmol/L) 286 � 37 288 � 31 341 � 38 317 � 40 292 � 53 254 � 42

Heart rate (bpm) (SS) 61.0 � 2.9 62.7 � 2.8 59.7 � 2.1 59.4 � 2.8 59.2 � 2.3 61.4 � 2.0

Heart rate (bpm) (ADR) 66.4 � 2.3 69.6 � 3.0 76.1 � 1.9*# 67.5 � 2.3 68.7 � 3.2 75.7 � 2.7**##

Systolic BP (mm Hg) (SS) 120.8 � 2.1 122.1 � 2.0 123.4 � 2.4 119.1 � 2.7 120.5 � 2.2 124.4 � 2.5

Systolic BP (mm Hg) (ADR) 126.4 � 2.7 127.3 � 2.9 131.3 � 3.6 127.6 � 3.2 131.1 � 2.7 130.7 � 5.2

Diastolic BP (mm Hg)(SS) 72.1 � 2.5 74.2 � 2.2 73.4 � 1.9 68.8 � 1.9 69.4 � 1.9 69.8 � 1.4

Diastolic BP (mm Hg) (ADR) 69.7 � 2.2 67.3 � 2.5 65.7 � 2.1 63.0 � 1.7 65.3 � 2.0 61.6 � 2.5

Total glucose infused (g) 21.4 � 2.8 12.7 � 1.9* 14.9 � 2.3* 62.5 � 6.5 54.5 � 7.6 53.8 � 6.8

Data are given as mean � SEM. Steady state (SS) data are the mean values obtained from t + 180 to t + 240 minutes of the infusion. Adrenaline (ADR)
data are the mean values obtained from t + 285 to t + 345 minutes. Adrenaline increased heart rate and systolic BP and decreased diastolic BP
(all P < .01). Total glucose infused during the protocol was increased in the high insulin group (P < .001). NEFAs = non-esterified fatty acids. *P < .05,
**P < .01 vs low GC; #P < .05, ##P < .01 vs medium GC.
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insulin group during adrenaline infusion, but did increase circulating

NEFAs. Therefore, our study provides the first in vivo evidence that

glucocorticoids have permissive effects on lipolysis in humans.

Although our data might appear to contrast with some previous

work,7–9 in one of those studies replacement glucagon was not

infused, while we infused a lower insulin dose than the other 2 studies

and, as we have shown, a “threshold” insulin dose is required to medi-

ate the lipolytic effects of cortisol. In addition, unlike the other studies,

we used metyrapone to control cortisol levels during all phases and

performed longer treatment with hydrocortisone. However, metyra-

pone does not alter lipolysis independently of its effects on cortisol,10

while cortisol accumulates slowly in adipose tissue, meaning that a

longer duration would be more likely to identify effects on lipolysis.22

Although previous studies have tested how glucocorticoids regu-

late the lipolytic pathway in rodents (by increasing ATGL and HSL),4,23

this had not been tested in vivo in humans. Glucocorticoids act pre-

dominantly by altering transcription of target genes and we found that

cortisol increased transcription of the key lipases ATGL (and the co-

factor CGI-58) and HSL and suppressed the negative lipolytic regula-

tor G0S2. Interestingly, this regulation was similar in both insulin

groups, despite cortisol not enhancing lipolysis during low insulin. This

shows that glucocorticoids “prime” the pathway, to enhance lipolysis

in response to adrenaline or to antagonize the effects of insulin. Addi-

tional genes outside the classic lipolytic pathway have been implicated

in the lipolytic effects of glucocorticoids, such as phosphodiesterase

3b,4 pigment epithelium derived factor24 and angiopoietin-like 4;25

however, in our study, cortisol did not alter mRNA levels of these

genes in vivo, while in vitro PDE3b levels were in fact increased, sug-

gesting that glucocorticoids do not antagonize the effect of insulin via

this pathway in humans. There are additional mechanisms through

which glucocorticoids might promote or inhibit the effects of adrenal-

ine and insulin which we did not explore; for example, glucocorticoids

increase the number of pro-lipolytic β-receptors on the adipocyte

membrane,26,27 decrease the number of anti-lipolytic α2-receptors28

and increase cAMP levels in rodent adipocytes.4 However, glucocorti-

coids enhance basal lipolysis in rodents,4,23 which we did not observe

FIGURE 2 Effect of glucocorticoids on

lipolysis and glucose kinetics in vivo. Data
are given as mean � SEM for n = 10 for
low insulin (comprising low glucocorticoid
[GC] phase [white columns], medium GC
[grey columns] and high GC [black
columns]) and high insulin (low GC [striped

columns], medium GC [checked columns]
and high GC [bricked columns]) groups. A,
High GC increased the rate of appearance
of glycerol in the high insulin group at
steady state (t + 180-240 minutes) and
during adrenaline infusion (t + 285-
345 minutes). B, High GC increased NEFA
concentrations in the high insulin group
during steady state and in both insulin
groups during adrenaline infusion. High
insulin suppressed the rate of appearance
of glycerol and NEFAs (both P < .001). GC
phase did not alter either C, endogenous
glucose production or D, glucose disposal.
Glucose disposal was increased in the high
insulin group during steady state (P < .01)
but not during adrenaline infusion.
Adrenaline decreased glucose disposal in
both groups (P < .01). *P < .05 vs low GC,
#P < .05 vs medium GC
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in humans, highlighting species-specific differences in the glucocorti-

coid regulation of lipolysis. Interestingly, high insulin increased mRNA

levels of perilipin 1, G0S229 and lipoprotein lipase, which should all

reduce lipolysis and/or promote lipogenesis, in agreement with the

known effects of insulin.

Subcutaneous and visceral adipocytes arise from different cell

lineages,30 and we tested whether glucocorticoids have depot-

specific effects in paired subcutaneous and visceral adipocytes.

Importantly, insulin suppressed and adrenaline stimulated glycerol

release similarly in both cell types. In agreement with in vivo data,

cortisol increased lipolysis only in the presence of insulin in the sub-

cutaneous adipocytes and did not increase lipolysis in the presence

of adrenaline without insulin. However, cortisol failed to enhance

lipolysis in the visceral adipocytes even with insulin and decreased

lipolysis in the presence of adrenaline. Although visceral adipose tis-

sue accounts for only a small proportion (c. 6%) of whole body

lipolysis in lean individuals,31 this may explain why chronic glucocorti-

coid excess causes accumulation of visceral adipose tissue. Although

GRα and MR transcript levels were similar between depots, cortisol

failed to increase HSL levels in visceral adipocytes, which could be

responsible, in part, for these depot-specific differences, as catechola-

mines and insulin both mediate their effects on lipolysis by phosphor-

ylating HSL. Although we tested only the acute effects of cortisol on

lipolysis, chronic glucocorticoid excess causes hyperinsulinaemia,

which would suppress lipolysis and promote lipogenesis. The high GC

phase only partially antagonized the insulin-mediated suppression of

lipolysis; thus, cortisol-induced hyperinsulinaemia may offset this

effect, which may explain why chronic GC excess does not necessar-

ily increase whole-body lipolysis.32,33

It is of note that only supraphysiological cortisol concentrations

increased lipolysis while cortisol levels similar to physiological early

morning cortisol concentrations (c. 400 nM) did not increase whole-

FIGURE 3 Glucocorticoid regulation of

adipose mRNA levels in vivo and in vitro. A,
B, Data are given as mean � SEM for low
glucocorticoid (GC) (white columns),
medium GC (grey columns) and high GC
(black columns) for A, low insulin (n = 10)
and B, high insulin (n = 9) groups. Medium
or high GC increased mRNA levels of
ATGL, HSL and CGI-58 and suppressed
G0S2. High insulin increased perilipin-1,
G0S2 and LpL mRNA levels. C,D, Data are
given as mean � SEM for C, subcutaneous
and D, visceral adipocytes (both n=11)
cultured for 24 hours in 0 nM (white
columns), 100 nM (grey columns) or
1000 nM cortisol (black columns). While
in vitro regulation of transcripts by cortisol
was similar to in vivo data, cortisol also
increased perilipin-1, LpL, PEDF, PDE3b
and decreased MGL levels in vitro. HSL
was increased by cortisol only in the

subcutaneous adipocytes. *P < .05,
**P < .01 vs low GC/0 nM; #P < .05,
##P < .01 vs medium GC/100 nM.
$P < .05 vs low insulin group

STIMSON ET AL. 889



body lipolysis compared with low cortisol (c.150 nM). This suggests

that acute diurnal variation in cortisol concentrations may not sub-

stantially alter lipolysis during normal physiology, although the physi-

ological response to “clamped” cortisol levels may differ from

ultradian rhythm.34 In addition, we clamped several other hormones

to prevent confounding effects, and the physiological rise in these

hormones may be critical for the glucocorticoid-dependent diurnal

variation in lipolysis.10 In addition, it is possible that cortisol concen-

trations less than 150 nM (eg, in Addison’s disease) would have

reduced lipolysis further, although in vitro 0 nM cortisol did not

reduce lipolysis compared with 100 nM. Another unexpected finding

was the absence of effect of even high cortisol concentrations on

glucose uptake or production, highlighting the fact that the known

effects of glucocorticoids to raise blood glucose concentrations are

also permissive and are probably mediated through effects on other

tissues such as the pancreas. However, the glucose infusion rate was

reduced on low GC compared with the other phases in the low-

insulin group, and it is possible that, with greater numbers, we would

have found a reduction in endogenous glucose production. Further-

more, cortisol may have enhanced glucose uptake and/or suppressed

glucose disposal if we had infused larger doses of insulin. This proto-

col, however, was designed to suppress lipolysis by 50% and not to

substantially alter glucose kinetics.

To conclude, the acute lipolytic effects of glucocorticoids are

dependent on insulin and adrenaline and are observed in subcutane-

ous, but not visceral, adipose tissue solely during supraphysiological

cortisol concentrations. These effects are mediated, at least in part,

by enhanced transcription of ATGL, HSL and CGI-58 and by suppres-

sion of G0S2. These findings highlight how the permissive lipolytic

effects of glucocorticoids are probably mediated and indicate the

importance of hormonal interactions in regulating energy balance.
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