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Abstract

Background: Both Taxotere and Capecitabine have shown anti-cancer activity against various
cancers including prostate cancer. In combination, Taxotere plus Capecitabine has demonstrated
higher anti-cancer activity in advanced breast cancers. However, the molecular mechanisms of
action of Taxotere and Capecitabine have not been fully elucidated in prostate cancer.

Methods: The total RNA from PC3 and LNCaP prostate cells untreated and treated with 2 nM
Taxotere, |10 uM Furtulon (active metabolite of Capecitabine), or | nM Taxotere plus 50 uM
Furtulon for 6, 36, and 72 hours, was subjected to Affymetrix Human Genome UI33A Array
analysis. Real-time PCR and Western Blot analysis were conducted to confirm microarray data.

Results: Taxotere and Furtulon down-regulated some genes critical for cell proliferation, cell cycle
progression, transcription factor, cell signaling, and oncogenesis, and up-regulated some genes
related to the induction of apoptosis, cell cycle arrest, and differentiation in both cell lines.
Taxotere and Furtulon also up-regulated some genes responsible for chemotherapeutic resistance,
suggesting the induction of cancer cell resistance to these agents.

Conclusions: Taxotere and Furtulon caused the alternation of a large number of genes, many of
which may contribute to the molecular mechanisms by which Taxotere and Furtulon inhibit the
growth of prostate cancer cells. This information could be utilized for further mechanistic research
and for devising optimized therapeutic strategies against prostate cancer.

Background

Prostate cancer is the most common cancer and the sec-
ond leading cause of cancer related deaths in men in the
United States with an estimated 230,110 new cases and
29,500 deaths in 2004 [1]. Initial treatment for prostate
cancer is usually androgen-ablative therapy, radiotherapy
or radical prostatectomy and the patients respond to

androgen-ablative therapy in the beginning of treatment.
However, many patients eventually fail this therapy and
die of recurrent androgen-independent prostate cancer
and metastasis [2]. Up to 30% of men undergoing radical
prostatectomy will also relapse, often as a result of
micrometastatic cancer present at the time of surgery [3].
The efficacy of cytotoxic chemotherapy for treatment of
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hormone-refractory prostate cancer has been tested in
clinical trials. In general, response rates of <10% were
observed in single-agent studies [2]. Thus, there is a tre-
mendous need for the development of mechanism-based
targeted strategies for treatment of prostate cancer.

Taxotere, a member of taxane family, is semi-synthesized
from an inactive taxoid precursor extracted from the nee-
dles of the European yew, Taxus baccata. Its known basic
mechanism of action is that it binds to tubulin and
deranges the equilibrium between microtubule assembly
and disassembly during mitosis [4]. Stabilization of
microtubules by Taxotere impairs mitosis and exerts an
anticancer effect in tumors [4]. Taxotere has shown clini-
cal activity in wide spectrum of solid tumors including
breast, lung, ovarian, prostate cancers, etc [5,6]. In meta-
static breast, lung, and ovarian cancer, randomized trials
have shown that Taxotere-containing therapies are supe-
rior to or as effective as established standard chemothera-
peutic regimens and are often associated with an
improved safety profile [6]. Clinical trials have also found
that weekly Taxotere in patients with metastatic hormone-
refractory prostate cancer is associated with improve-
ments in clinical benefit response and quality of life [7,8].
Thus, Taxotere is currently considered to be among the
most important anticancer drugs in cancer chemotherapy.
In addition to its effects on microtubules, Taxotere also
induces apoptosis with down-regulation of bcly; and bcl-
2, and upregulation of p21WAF1 and p53 [9,10]. We have
previously reported that Taxotere down-regulates some
genes for cell proliferation, mitotic spindle formation,
transcription factors, and oncogenesis, and up-regulates
some genes related to induction of apoptosis and cell
cycle arrest in prostate cancer cells, suggesting the pleio-
tropic effects of Taxotere on prostate cancer cells [11].

Capecitabine is an orally administered systemic prodrug
of 5'-deoxy-5-fluorouridine (5-DFUR or Furtulon) which
is converted to 5-fluorourasil (5-FU) [12]. Capecitabine is
readily absorbed from the gastrointestinal tract. In human
and animals, carboxylesterase hydrolyzes much of
Capecitabine to 5'-deoxy-5-flurocytidine (5-DFCR). Cyti-
dine deaminase, an enzyme found in most tissues includ-
ing tumors, subsequently converts 5-DFCR to 5-DFUR.
The enzyme, thymidine phosphorylase (dThdPase), then
hydrolyzes 5-DFUR to the active drug 5-FU both in vivo
and in vitro. After being converted to 5-FU, Capecitabine
inhibits essential cellular biosynthetic processes and is
incorporated into DNA to inhibit normal bioprocess
function of the cell [13]. Capecitabine has shown anti-
tumor activity in various cancers including prostate cancer
[14-16]. 5-FU-based chemotherapy improves overall and
disease-free survival of patients with cancer. However,
response rates for 5-FU-based chemotherapy are low and
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a large number of tumors eventually becomes resistant to
5-FU [13,17].

Clinical trials showed that chemotherapeutic combina-
tion with Taxotere and Capecitabine resulted in improved
objective response rate and overall survival without a sig-
nificant increase in the treatment related adverse effects in
metastatic breast cancer and advanced non-small cell lung
carcinoma [18,19]. However, the molecular mecha-
nism(s) of action of Taxotere and Capecitabine have not
been fully elucidated. In this study, we utilized high-
throughput gene chip, which contains 22,215 known
genes, to determine the alternation of gene expression
profiles of hormone insensitive (PC3) and sensitive
(LNCaP) prostate cancer cells exposed to Taxotere and
Furtulon. The purpose of this study was: 1) to identify
novel genes that have key roles in cancer cell killing and
resistance induced by Taxotere and/or Furtulon; 2) to test
whether similar genes are altered by Taxotere and Furtu-
lon; 3) to test whether combination therapy alters genes
that may reflect better treatment outcome or may provide
information whether combination therapy could be
antagonistic; 4) finally to provide molecular information
for further mechanistic investigation and future clinical
application.

Methods

Cell culture and growth inhibition

PC3 (ATCC, Manassas, VA) and LNCaP (ATCC) human
prostate cancer cells were cultured in RPMI-1640 media
(Invitrogen, Carlsbad, CA) supplemented with 10% fetal
bovine serum and 1% penicillin and streptomycin in a 5%
CO,atmosphere at 37°C. Taxotere (Aventis Pharmaceuti-
cals, Bridgewater, NJ) was dissolved in DMSO to make 4
puM stock solution. Furtulon (Roche, Palo Alto, CA) was
dissolved in PBS to make 100 mM stock solution. For
growth inhibition, PC3 and LNCaP cells were treated with
Taxotere (1, 2, and 4 nM), Furtulon (50, 100, and 200
puM), or 1 nM Taxotere plus 50 uM Furtulon for one to
three days. Control PC3 and LNCaP cells received 0.01%
DMSO or 0.1% PBS for same time points. After treatment,
PC3 and LNCaP cells were incubated with MTT (0.5 mg/
ml, Sigma, St. Louis, MO) at 37°C for two hours and then
with isopropyl alcohol at room temperature for one hour.
The spectrophotometric absorbance of the samples was
determined by using ULTRA Multifunctional Microplate
Reader (TECAN, Durham, NC) at 595 nm. The concentra-
tions of Taxotere and Furtulon used for our in vitro studies
are easily achievable in humans, suggesting that our
experimental results are relevant for human applications.
The experiment was repeated three times and a t test was
performed to verify the significance of cell growth inhibi-
tion after treatment.
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Microarray analysis for gene expression profiles

PC3 and LNCaP cells were treated with 2 nM Taxotere,
110 uM Furtulon, or 1 nM Taxotere plus 50 uM Furtulon
for 6, 36, and 72 h. Total RNA from each sample was iso-
lated by Trizol (Invitrogen, Carlsbad, CA) and purified by
RNeasy Mini Kit and RNase-free DNase Set (QIAGEN,
Valencia, CA) according to the manufacturer's protocols.
cDNA for each sample was synthesized by Superscript
cDNA Synthesis Kit (Invitrogen, Carlsbad, CA) using the
T7-(dT),, primer instead of the oligo(dT) provided in the
kit. Then, the biotin-labeled cRNA was transcripted in vitro
from cDNA by using BioArray HighYield RNA Transcript
Labeling Kit (ENZO Biochem, New York, NY), and puri-
fied by RNeasy Mini Kit. The purified cRNA was frag-
mented by incubation in fragmentation buffer (40 mM
Tris-acetate pH 8.1, 100 mM KOAc, 30 mM MgOAc) at
95°C for 35 min and chilled on ice. The fragmented
labeled cRNA was applied to Human Genome U133A
Array (Affymetrix, Santa Clara, CA), which contains
22,215 human gene probes, and hybridized to the probes
in the array. After washing and staining, the arrays were
scanned. Two independent experiments were performed
to verify the reproducibility of results.

Microarray data normalization and analysis

The gene expression levels of samples were normalized
and analyzed by using Microarray Suite, MicroDB™, and
Data Mining Tool software (Affymetrix, Santa Clara, CA).
The absolute call (present, marginal, absent) and average
difference of 22,215 gene expressions in a sample, and the
absolute call difference, fold change, average difference of
gene expressions between two or several samples were
normalized and identified using these software. Statistical
analysis of the mean expression average difference of
genes, which show >2 fold change, was performed using a
t test between treated and untreated samples. Clustering
and annotation of the gene expression were analyzed by
using Cluster and TreeView [20], Onto-Express [21], and
GenMAPP [22]. Genes that were not annotated or not eas-
ily classified were excluded from the functional clustering
analysis.

Real-time RT-PCR analysis for gene expression

To verify the alterations of gene expression at the mRNA
level, which appeared on the microarray, we chose repre-
sentative genes (Table 1) with varying expression profiles
for real-time RT-PCR analysis. Two micrograms of total
RNA from each sample were subjected to reverse tran-
scription using the Superscript first strand cDNA synthesis
kit (Invitrogen, Carlsbad, CA) according to the manufac-
turer's protocol. Real-time PCR reactions were then car-
ried out in a total of 25 pL reaction mixture (2 pl of cDNA,
12.5 pl of 2X SYBR Green PCR Master Mix, 1.5 ul of each
5 uM forward and reverse primers, and 7.5 ul of H,0) in
SmartCycler II (Cepheid, Sunnyvale, CA). The PCR pro-
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Table I: The primers used for real-time RT-PCR analysis

Genes Primer Sequence PCR Product
ATF5 ctc ctc ctt ctc cac ctc aa 103 bp
gce gac ttg ttc tgg tct ct
Cyclin A2 aat cag ttt ctt acc caa tac 127 bp
ctg atg gca aat act tga

Fas/Apo-1 caa aag tgt taa tgc cca agt 187 bp
gca gtc tgg ttc atc cc

FOXMI gce aca ctt age gag acc ¢ 189 bp
atc aca agc att tcc gag aca

GADDA45 cge ctg tga gtg agt gc 154 bp
Ctt atc cat cct ttc ggt ctt

IGFBP2 atg ggc gag ggc act t 189 bp
cag ctc Ctt cat acc cga ctt

uPA ggg agc aga gac act aac gac t 108 bp
Cctc aca gecc cac aca aca ag

Ki-67 ccg gge tec atc atc t 148 bp
ctc cag acg cca aaa taa gac

p2 | WAFI ctg gag act ctc agg gtc gaa 98 bp
gga tta ggg ctt cct ctt gga

p27KIPI cge teg cca gte cat t 187 bp
aca aaa ccg aac aaa aca aag

PIR cac tag ccc tec atc ctc tac I51 bp
ggg tct gec aat gct tct

MMPI gct ttc cte cac tge tge t 146 bp
aac ttg cct ccc atc att ctt

STKé tca gcg ggt ctt gtg t 162 bp
Ctc ttt tgg gtg tta ttc agt

Survivin cca ctg ccc cac tga gaa ¢ 118 bp
acc gga cga atg ctt ttt atg

TRIPI3 tct gge agt gga caa gea gtt 136 bp
tgg gag acg gct gtg tgg

GAPDH ctg cac cac caa ctg ctt ag 222 bp
ttc agc tca ggg atg acc tt

B-actin cca cac tgt gec cat cta cg 99 bp

agg atc ttc atg agg tag tca gtc ag

gram was initiated by 10 min at 95°C before 40 thermal
cycles, each of 15 sat 95°C and 1 min at 60°C. Data were
analyzed according to the comparative Ct method and
were normalized by actin expression in each sample.
Melting curves for each PCR reaction were generated to
ensure the purity of the amplification product.

Western blot analysis

We also conducted Western Blot analysis to verify the
alterations of genes at the level of translation for selected
genes with varying expression profiles. The PC3 and
LNCaP cells were treated with 1 and 2 nM Taxotere or 50
and 110 uM Furtulon for 24, 48, and 72 hours. After treat-
ment, the cells were lysed in 62.5 mM Tris-HCI and 2%
SDS, and protein concentration was measured using BCA
protein assay (PIERCE, Rockford, IL). The proteins were
subjected to 10% or 14% SDS-PAGE, and electrophoreti-
cally transferred to nitrocellulose membrane. The mem-
branes were incubated with anti-cathepsin C (1:200,
Santa Cruz, Santa Cruz, CA), anti-p16 (1:200, Santa Cruz,
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Santa Cruz, CA), anti-IKKa (1:100, Santa Cruz, Santa
Cruz, CA), anti-p21WAF1 (1:500, Upstate, Lake Placid, NY),
anti-Bax (1:10000, Trevigen, Gaithersburg, MD), anti-sur-
vivin (1:200, Alpha Diagnostic, San Antonio, TX), anti-
CDC2 (1:200, Santa Cruz, Santa Cruz, CA), anti-cyclin A
(1:250, NeoMarkers, Union City, CA), anti-cyclin B

(1:200, Santa Cruz, Santa Cruz, CA), anti-cyclin E (1:250,
NeoMarkers), and anti-B-actin (1:10000, Sigma, MO) pri-
mary antibodies, and subsequently incubated with sec-
ondary antibody conjugated with fluorescence dye. The
signal was then detected and quantified by using Odyssey
infrared imaging system (LI-COR, Lincoln, NE).
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Table 2: Fold change of genes in PC3 cells exposed to combination treatment or mono-treatment with Taxotere or Furtulon

Gene Taxotere Furtulon Taxotere+Furtulon

6h 36h 72h 6h 36h 72h 6h 36h 72h

Cell cycle and apoptosis

NM_001237.1 cyclin A2 (CCNA2) NC -l.I 20 -1 -1.7 3.0 -II -1.4 -2.5
BE407516 cyclin Bl -l.bo-1 23 NC =30 -6 -l -3.0 -5.3
NM_001761.1 cyclin F (CCNF) -3 13 25 -15 25 26 -16 -16 -2.5
NM_014303.1 pescadillo homolog | NC -15 23 13 -19 -26 -lI 2.1 -3.5
NM_003132.1 spermidine synthase (SRM) NC -15 25 -1 -13 25 LI -1.1 -2.3
NM_000389.1 cyclin-dependent kinase inhibitor |A (p21, Cipl) 1.7 1.0 26 19 26 35 NC 1.7 35
NM_003914.1 cyclin Al (CCNAI) 13 23 28 NC I5 25 NC NC 2.0
L49506.1 cyclin G2 221 20 26 -28 23 23 NC 37 2.5
NM_004354.1 cyclin G2 (CCNG2) -9 30 32 NC 25 23 1.0 4.6 35
AL535380 B-cell translocation gene |, anti-proliferative .1 1.7 35 NC |14 28 -15 1.6 2.6
NM_006472.1 upregulated by 1,25-dihydroxyvitamin D-3 (VDUPI) 1.3 21 -2 1.0 21 23 1.0 23 NC
NM_015675.1 growth arrest and DNA-damage-inducible, beta (GADD45B) 12 25 6.5 1.6 1.5 2.6 1.0 NC 35
AF087853.1 growth arrest and DNA damage inducible protein beta NC 20 46 13 12 23 NC NC 32
AF078077.1 growth arrest and DNA-damage-inducible protein GADD45beta 1.5 20 53 LI 1.2 2.1 NC 1.4 2.8
Transcription and translation

NM_007111.1 transcription factor Dp-| (TFDPI) NC -16 -32 -13 -l.I -20 NC -1l -2.0
NM_012068.2 activating transcription factor 5 (ATF5) NC -2 35 NC -5 -21 -13 -l -2.6
NM_012251.1 transcription factor A, mitochondrial (TFAM) 1.3 -15 25 NC -l1.6 -20 -II -2.0 -3.7
AF220509.1 transcription associated factor TAFII3 1L NC -23 -32 -13 -1.3 -23 NC -1.2 -5.7
AA393940 eukaryotic translation initiation factor 5A -3 -15 30 -l6 -20 -35 -II -1.1 -2.0
NM_001674.1 activating transcription factor 3 (ATF3) 14 19 149 15 21 35 .1 2.6 4.9
Oncogenesis and other

NM_001511.1 GROI oncogene (GROI) 2 -5 30 1.7 12 -20 NC NC -4.0
NM_002090.1 GRO3 oncogene (GRO3) 28 -30 -40 25 -l4 -5 NC -28 -139
NM_005754.1 Ras-GTPase-activating protein SH3-domain-binding protein NC -1.7 -28 NC -20 -25 NC -26 -4.6
NM_000026.1 adenylosuccinate lyase (ADSL) NC -13 -25 NC -14 -26 NC -l6 -3.0
M80261.1 apurinic endonuclease (APE) -l.o-14 30 -1 -9 26 NC -21 -3.7
D13413.1 tumor-associated 120 kDa nuclear protein p120 -l.r20 32 -1.7 -1.7 25 23 -l -3.0
Al743685 methionine aminopeptidase; elF-2-associated p67 NC -26 -20 15 ~-15 -32 NC -2.3 -2.8
NM_002634.2 prohibitin (PHB) NC -14 -30 NC -19 -201 NC -I5 -2.6
NM_002546.1 osteoprotegerin 15 -13 30 12 -201 -30 NC -28 -5.3
AF003934.1 prostate differentiation factor mRNA -1.5 43 260 -1.7 49 160 NC 4.3 12.1
NM_000177.1 gelsolin (amyloidosis, Finnish type) (GSN) NC IS5 28 NC 20 35 NC 1.9 23
Invasion and metastasis

NM_003254.1 tissue inhibitor of metalloproteinase | (TIMPI) NC 20 25 NC 26 37 NC 2.6 37
NM_003255.2 tissue inhibitor of metalloproteina(TIMP2) NC 1.6 25 NC 23 35 NC 1.6 35
NM_002638.1 protease inhibitor 3 (PI3) 12 20 20 LI 37 57 1.0 3.0 4.6
NM_005562.1 laminin, gamma 2 (nicein (100 kD) 13 15 20 LI 25 37 NC 23 37
NM_001908.1 cathepsin B (CTSB) NC .7 30 NC 17 28 1.1 1.3 25
NM_002658.1 plasminogen activator, urokinase (PLAU) NC 23 35 NC 28 23 1.0 2.1 1.9
NM_000930.1 plasminogen activator, tissue (PLAT) I 25 46 NC 57 98 NC 32 4.9
NM_002421.2 matrix metalloproteinase | (MMPI) NC 14 43 NC 49 184 NC 5.7 13.0
NM_004994.1 matrix metalloproteinase 9 (MMP9) 1.1 1.7 20 1.0 19 20 NC 2.5 2.1
NM_000435.1 Notch homolog 3 (NOTCH3) NC 20 26 -2 23 32 NC 35 35
Resistance to chemotherapeutic agents

NM_000499.2 cytochrome P450, subfamily | (CYPIAI) l4 30 40 NC 35 53 1.2 9.2 10.6
NM_006697.1 cisplatin resistance associated (CRA) 1.0 1.7 20 -1.3 20 26 NC NC 2.6
NM_005980.1 S100 calcium-binding protein P (S100P) -2 49 243 1.1 106 279 NC 6.5 19.7
NM_002961.2 S100 calcium-binding protein A4 (SI00A4) 30 37 53 10 57 113 28 6.5 10.6
NM_020672.1 S100-type calcium binding protein Al4 (LOC57402) NC 5 20 NC 2lI 2.6 .1 1.6 2.1
NM_001894.1 casein kinase I, epsilon (CSNKIE) NC |7 32 NC 20 2.6 .1 1.7 32
NM_000700.1 annexin Al (ANXALI) NC 19 23 NC 20 23 NC 1.6 2.1

The genes in this list showed a >2 fold change in expression in at least one time point in both mono and combination treatment.
NC: No change; Negative value: Decrease; Positive value: Increase.
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Table 3: Fold change of genes in LNCaP cells exposed to combination treatment or mono-treatment with Taxotere or Furtulon

Gene

Cell cycle and apoptosis

NM_001786.1 cell division cycle 2 (CDC2)

D88357.1 mRNA for CDC2 delta T

NM_001237.1 cyclin A2 (CCNA2)

NM_004702.1 cyclin E2 (CCNE2)

AF112857.1 cyclin E2 splice variant | mRNA

NM_001761.1 cyclin F (CCNF)

AB012305.1 cyclin-dependent kinase 2

U30872.1 mitosin mRNA

NM_000389.1 cyclin-dependent kinase inhibitor 1A (p21, Cipl)
NM_006763.1 BTG family, member 2 (BTG2)

NM_006472.1 upregulated by 1,25-dihydroxyvitamin D-3 (VDUPI)
NM_001924.2 growth arrest and DNA-damage-inducible, alpha
BCO003637.1 Similar to DNA-damage-inducible transcript 3
NM_014454.1 p53 regulated PA26 nuclear protein (PA26)
NM_004701.2 cyclin B2 (CCNB2)

NM_001255.1 CDC20 (cell division cycle 20)

NM_021873.1 cell division cycle 25B (CDC25B)

NM_001827.1 CDC28 protein kinase 2 (CKS2)

NM_001168.1 survivin (BIRC5)

Transcription, translation, oncogenesis, angiogenesis, other
NM_021953.1 forkhead box M| (FOXMI)

NM_000465.1 BRCAI associated RING domain | (BARDI)
NM_003368.1 ubiquitin specific protease | (USPI)
NM_006716.1 activator of S phase kinase (ASK)

NM_003246.1 thrombospondin | (THBSI)

NM_001147.1 angiopoietin 2 (ANGPT2)

AF187858.1 angiopoietin-2 isoform-|

NM_000435.1 Notch (Drosophila) homolog 3 (NOTCH3)
NM_001674.1 activating transcription factor 3 (ATF3)
NM_003158.1 serinethreonine kinase 6 (STK6)

NM_003600.! serinethreonine kinase 15 (STK15)

AF162704.1 androgen receptor mRNA

Resistance to chemotherapeutic agents

NM_000693.1 aldehyde dehydrogenase |A3 (ALDHIA3)
NM_005980.1 S100 calcium-binding protein P (S100P)

Taxotere Furtulon Taxotere+Furtulon

6h 36h 72h 6h 36h 72h 6h 36 h 72 h

-2 75 -2 -1l 28  -1.6  NC -4.0 -14.9
-1 -6 -149 NC -28 -16 -l -4.3 -13.0
-2 57 -12.1 NC NC -2 -1l -8.6 -13.9

l6 -53 -32 NC -23 -L.7 -17 -4.9 -8.0
2 35 -32 NC -20 -l6 -4 -7.0 -8.6

-5 25 37 -1 -1 20 -14 -2.3 -2.8
-7 35 53 20 -2 -21 NC -2.8 -3.5
-12 46 -61 NC -21 -3 NC -3.2 -7.0
1.3 98 8.6 1.0 20 2.0 1.0 8.0 7.5
1.5 6l 6.5 1.1 1.7 2.1 1.4 53 37
1.0 35 35 1.0 1.5 2.6 1.0 23 3.0
4 75 75 NC 19 2.6 1.1 7.0 7.5
1.0 26 2.6 1.1 2.1 25 NC 2.6 2.8
I.1 4.0 3.0 .1 |.4 2.6 I.1 3.7 37
-1.1 -8 -139 NC 13 -1.3 -1 -4.9 -19.7
-9 905 -147 NC 16 -19 -6 -13 -157
-l <16 25 NC NC -4 -1 -2.3 -3.25
-1l 46 -65 NC 16 -16 -12 -3.5 -57
-l 279 294 NC NC  -1.6 NC -6.9 -181
-2 -139 422 -1 -12 20 NC -2.8 -45.3
-3 -9 20 NC -1 201 -12 -2.6 -4.9
NC -26 -16 NC -20 -14 NC -2.0 -1.9
-l2 -65 -53 -12 -13 20 -lI -4.6 -11.3
NC -20 35 -19 -14 -26 -IlI -1.6 -4.6

35 35 8.0 1.7 53 80 -05 49 2.8
NC 26 43 NC IS5 35 NC 2.0 2.0

1.3 30 28 1.0 23 2.1 NC 2.1 3.0
NC |5 25 NC 17 2.5 NC 2.6 4.3
-7 -11.3 98 LI 12 -7 -13 -8.6 -26
-2 37 -86 NC NC -l6 -I3 -4 -6.1
NC I3 -6 12 1.3 2.0 -1 -1.6 -2
NC 40 32 1.0 1.1 2.1 1.2 49 43

10 57 4.0 1.5 26 30 NC 2.6 2.6

The genes in this list showed a >2 fold change in expression in at least one time point in both mono and combination treatment.

NC: No change; Negative value: Decrease; Positive value: Increase.

Results

Cell growth inhibition

MTT assay showed that the treatment of PC3 and LNCaP
prostate cancer cells with Taxotere, Furtulon, or lower
concentration of Taxotere plus Furtulon resulted in dose
and time-dependent inhibition of cell proliferation (Fig-
ure 1), demonstrating the inhibitory effect of Taxotere and
Furtulon on the growth of PC3 and LNCaP prostate cancer
cells.

Regulation of mMRNA expression by Taxotere and Furtulon
treatment

Microarray analysis showed that the alterations of gene
expression were occurred as early as 6 hours of Taxotere
and/or Furtulon treatment, and were more evident with
longer treatment (Table 2 and 3).

Clustering analysis based on gene function showed down-
regulation of some genes for cell proliferation and cell
cycle progression (cyclin A, cyclin F, CDC2, CDK2, etc),
transcription factors (transcription factor A, ATF5,
TAF1131L, FOXM1, etc), and oncogenesis (GRO onco-
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Table 4: Comparison of difference in gene expression between combination treatment and mono-treatment in PC3 cells

Gene

Taxotere+Furtulon

6 h 36h 72h

Decrease in combination treatment, No change or increase in mono-treatment.

NM_001261.1 cyclin-dependent kinase 9 (CDC2-related kinase) (CDK9)

NM_016507.1 CDC2-related protein kinase 7 (CrkRS)
AF080157.1 IkB kinase-a (IKK-alpha)

U62296.1 transcription factor NF-YC

BC005003.1 nuclear transcription factor Y, gamma
BCO001771.1 transcription factor IIF

Al434345 activating transcription factor |

BCO001173.1 eukaryotic translation initiation factor 3
U78525.1 eukaryotic translation initiation factor (elF3)
NM_001814.1 cathepsin C (CTSC)

NM_003377.1 vascular endothelial growth factor B (VEGFB)
AF035620.1 BRCA I -associated protein 2 (BRAP2)
AF035620.1 BRCAI-associated protein 2 (BRAP2)
NM_005346.2 heat shock 70 kD protein |B (HSPAIB)
BC000478.1 heat shock 70 kD protein 9B

NM_014278.1 heat shock protein (hsp| 10 family) (APG-1I)
BC002526.1 Similar to heat shock protein, 110 kDa

-1.3 -1.2 -2.3
NC -1.6 -2.3
NC -2.0 -1.6
-1.1 -1.7 -2.3
-1.1 -2.0 -2.1
NC -1.6 -2.3
NC -2.5 -2.6
NC -1.3 -2.0
NC -1.4 -2.0
NC -1.3 -2.0

-2.1 NC NC
-2.3 NC NC

-2.3 -2.0 -1.4
-1.1 2.1 -1.1
NC -1.7 -2.3
-1.2 -1.3 -2.0
-1.1 -1.4 2.1

Increase in combination treatment, No change or decrease in mono-treatment.

NM_000077.1 cyclin-dependent kinase inhibitor 2A (p16, inhibits CDK4)
NM_001262.1 cyclin-dependent kinase inhibitor 2C (p|8, inhibits CDK4)

J03202.1 laminin B2 chain mMRNA

BG 164365 microtubule-associated protein 1B
NM_000594.1 tumor necrosis factor, member 2
NM_001065.1 tumor necrosis factor, member |A
BCO000125.1 Similar to transforming growth factor, beta |
NM_005649.1 transcription factor |7 (TCF17)

NM_005923.2 mitogen-activated protein kinase kinase kinase 5 (MAP3K5)
NM_005204.1 mitogen-activated protein kinase kinase kinase 8 (MAP3K8)

NM_000785.1 cytochrome P450, subfamily XXVIIB
NM_002960.1 S100 calcium-binding protein A3 (SI100A3)
NM_002962.1 S100 calcium-binding protein A5

NC 1.7 2.1
NC 2.1 2.0
NC 1.3 2.0
NC 23 20

NC 25 1.6
NC 2.0 1.9
-1.2 1.9 2.1
NC 1.1 23
NC 1.6 2.1
NC 23 4.3
NC 2.1 1.5

NC 2.5 25
NC 8.6 10.6

NC: No change; Negative value: Decrease; Positive value: Increase.

The genes in this list showed a >2 fold change in expression in at least one time point in combination treatment.

gene, BRCA1 associated RING domain, tumor-associated
nuclear protein p120, etc) in Taxotere and/or Furtulon
treated prostate cancer cells (Table 2 and 3). In contrast,
Taxotere and/or Furtulon up-regulated some genes that
are related to the induction of apoptosis (GADDA45A,
GADD45B, etc), cell cycle arrest (p21¢P1, VDUP1, BTG,
etc), and tumor suppression (Table 2 and 3).

Combination treatment with Taxotere and Furtulon also
altered expression of some genes (CDC27, CDK9, p18,
IKKa, etc) that showed no change in mono-treatment
(Table 4 and 5), suggesting the synergic effects of combi-
nation treatment on some genes.

Taxotere and Furtulon also up-regulated some genes (S-
100P, ALDH1A3, casein kinase, annexin, etc) responsible

for chemotherapeutic resistance, suggesting the induction
of cancer cell resistance to these agents (Table 2 and 3).
Taxotere and Furtulon also showed differential effects on
PC3 cells with alteration of metastasis-related genes and
on LNCaP cells with down-regulation of survivin, cyclin B
& E, CDC2, CDC25, and specifically AR by Furtulon,
suggesting their effects mediated by both AR-independent
and dependent pathways (Table 2 and 3).

Target verification by real-time RT-PCR and western blot
To verify the alterations of gene expression at the mRNA
level, which appeared on the microarray, we chose repre-
sentative genes with varying expression profiles for real-
time RT-PCR and Western Blot analysis. The results of
real-time RT-PCR for these selected genes were in direct
agreement with the microarray data (Figure 2). The same
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Table 5: Comparison of difference in gene expression between combination treatment and mono-treatment in LNCaP cells

Gene

Taxotere+Furtulon

6h 36h 72h

Decrease in combination treatment, No change or increase in mono-treatment.

NM_001256.1 cell division cycle 27 (CDC27)

NM_001963.2 epidermal growth factor (beta-urogastrone) (EGF)
NM_004113.2 fibroblast growth factor 12B (FGFI2B)

U13022 negative regulator of programmed cell death ICH-IS (Ich-1)
AF249273.1 Bcl-2-associated transcription factor short form mRNA
NM_001071.1 thymidylate synthetase (TYMS)

AF005068.1 breast and ovarian cancer susceptibility protein (BRCAI)
NM_012068.2 activating transcription factor 5 (ATF5)
NM_021809.1 TGF(beta)-induced transcription factor 2 (TGIF2)
NM_001412.1 eukaryotic translation initiation factor 1A (EIFIA)
NM_002758.1 mitogen-activated protein kinase kinase 6 (MAP2K6)

NC  -1.6 -2.0
NC  -35 -1.9
NC 43 -1.2
NC  -23 -2.0
NC  -1.7 -2.3
NC -14 -2.6
NC 46 -17.
NC  -20 -2.8
NC -1.6 -2.1
NC  -12 23
NC  -1.7 -2.1

Increase in combination treatment, No change or decrease in mono-treatment.

NM_006034.1 p53-induced protein (PIG11)
NM_000227.1 laminin, alpha 3

NM_000094.1 collagen, type VII, alpha | (COL7AI)
NM_016437.1 tubulin, gamma 2 (TUBG2)

NM_000853.1 glutathione S-transferase theta | (GSTTI)

NC 6.1 7.5
NC 1.7 2.0
NC |.4 6.5
NC 1.4 2.1
NC 2.0 2.1

NC: No change; Negative value: Decrease; Positive value: Increase.

The genes in this list showed a >2 fold change in expression in at least one time point in combination treatment.

alternations of gene expression were observed by real-
time RT-PCR analysis, although the fold change in the
expression level was not exactly same between these two
different analytical methods. The results of Western Blot
analysis were also in direct agreement with the microarray
and real-time RT-PCR data (Figure 3 and our earlier report
[11]). These results support the findings obtained from
microarray experiments.

Discussion

It has been known that Taxotere binds to microtubules
while Capecitabine is incorporated into DNA, inhibiting
the bioprocess in cancer cells [4,13]. However, the precise
molecular mechanisms for inhibiting cancer cell growth
by Taxotere and/or Capecitabine have not been fully elu-
cidated. From gene expression profiles of Taxotere and/or
Capecitabine treated prostate cancer cells, we found that
these chemotherapeutic agents caused alterations in the
expression of many genes related to the control of cell pro-
liferation, apoptosis, transcription, translation, cell
signaling, oncogenesis, and angiogenesis (Figure 4),
although the cellular target of Taxotere or Capecitabine
appears to be different.

It has been well known that CDCs regulate the molecules
related to the cell cycle initiation and progression and that
cyclins associate with cyclin-dependent protein kinases

(CDKs) and CDCs to control the process of cell cycle
[23,24]. The CDK inhibitors including p2 1WAF1, p16INK4A,
and p18INK4C have been demonstrated to arrest the cell
cycle and inhibit the growth of cancer cells [23,24]. Our
results showed that Cyclins (cyclin A2, cyclin E2, cyclin F,
cyclin B1), CDK2, CDC2, and other cell growth promo-
tion genes (pescadillo, spermidine synthase, mitotin) [25-
27] were down-regulated in Taxotere and/or Furtulon
treated prostate cancer cells, while CDK inhibitor p2 1WAF1
and other growth inhibitor genes (BTG2, VDUP1, anti-
proliferative B-cell translocation gene 1) [28,29] were up-
regulated, suggesting that Taxotere and/or Furtulon inhib-
ited the growth of prostate cancer cells through the arrest
of cell cycle and the inhibition of cell proliferation (Figure
4). The down-regulation of CDC27, CDK9, EGF, and
FGF12B, and up-regulation of p16!NK4A and p18INK4Cwere
also observed in combination treatment but not in mono-
treatment, suggesting the synergic effect of combination
treatment. These observations are novel in Taxotere and/
or Furtulon treated prostate cancer cells.

Induction of apoptosis by chemotherapeutic agents also
leads to the inhibition of cancer cell growth. It has been
reported that Taxotere is able to induce apoptosis by cas-
pase-3 dependent or independent cell death mechanism
[30]. Capecitabine may induce apoptosis through Fas/
FasL or Bax/Bcl-2 pathway [31,32]. From gene expression
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Real-time RT-PCR showing the altered expression of specific genes in Taxotere and Furtulon treated PC3 and LNCaP cells. (C:

control; T+F: Taxotere and Furtulon combination treatment.)

profile, we found that Taxotere and/or Furtulon increased
level of growth arrest and DNA-damage-inducible alpha
(GADD45A), GADD45B, p53 regulated PA26 nuclear
protein (PA26), and p53-induced protein 11 (PIG11), all
of which are related to the induction of apoptotic proc-
esses. GADD45A and GADD45B have been known to pro-
mote apoptosis and regulate G2/M arrest [33]. PA26 is a
target of the p53 tumor suppressor and a member of the
GADD family with the properties of inducing apoptosis

[34]. PIG11 as a downstream target of p53 is also involved
in the apoptotic processes [35]. The combination treat-
ment also showed down-regulation of negative regulator
of programmed cell death ICH-1S and Bcl-2-associated
transcription factor, which was not occurred in mono-
treatment. The induction of apoptosis mediated by
GADD45A, GADDA45B, PA25, and PIG11 could be
another molecular mechanism by which Taxotere and/or
Furtulon inhibit the growth of prostate cancer cells.
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Figure 3

Western Blot analysis showing the altered expression of spe-
cific genes in Taxotere and Furtulon treated PC-3 or LNCaP
cells. (C: control; T: Taxotere treatment; F: Furtulon treat-
ment; T+F: Taxotere and Furtulon combination treatment.)

We also found that Taxotere and/or Furtulon inhibited
the expression of transcription factors (FOXM1, ATFS5,
TFAM, TAFII31L), translation factors (EIF1A, EIF5A),
oncogene (GRO1, GRO3, BRCAl-associated protein,
tumor-associated nuclear protein p120), and heat shock
protein, and up-regulated the genes for differentiation
(prostate differentiation factor). These results are novel,
and suggest the beneficial effects of Taxotere and/or
Furtulon on the inhibition of cancer cell growth and
oncogenesis.

It is important to note that Taxotere and/or Furtulon also
up-regulated the expression of some genes which are
known to induce cell resistance to chemotherapeutic
agents and to favor cell survival. Among these genes, cal-
cium-binding protein S100P has been found to be highly
expressed in cells which develop acquired resistance to
anti-tumor agents [36]. The overexpression of aldehyde
dehydrogenase 1 (ALDH1) has also been detected solely
in classical multidrug resistance cancer cells [37,38]. It has
been reported that Annexin-I, casein kinase 1, and cispla-

http://www.biomedcentral.com/1471-2407/5/7

tin-resistance associated protein expressions modulate
drug resistance in tumor cells [39,40]. The up-regulation
of these molecules by Taxotere and/or Furtulon could
induce cell resistance to chemotherapeutic agents. Also,
Taxotere and/or Furtulon were found to up-regulate the
expression of Notch 3, angiopoietin, activating transcrip-
tion factor 3, which could favor cell survival [41-43]. Fur-
ther in depth mechanistic studies are needed to address
these issues. The investigation on overcoming these
unbeneficial effects with other agents must be devised,
which is ongoing in our laboratory.

Taxotere showed no effect on AR expression while Furtu-
lon down-regulated AR expression in LNCaP cells, sug-
gesting that the combination could be superior in AR-
positive cells. The genes altered by Taxotere and/or Furtu-
lon with respect to the control of cell growth, apoptosis,
transcription, oncogenesis, and metastasis in androgen
insensitive PC3 cells are different from that in androgen
sensitive LNCaP cells, suggesting that the effects of
Taxotere and Furtulon may be mediated by both AR-
dependent and independent signaling pathways. We
observed up-regulation of tissue inhibitor of metallopro-
teinase 1 (TIMP1), TIMP2, and protease inhibitor 3 in
Taxotere and/or Furtulon treated PC3 cells, suggesting
that Taxotere and/or Furtulon may exert anti-metastatic
effect. However, we also observed increase in the expres-
sion of MMP1, MMP9, cathepsin B, uPA, and tPA in Tax-
otere and Furtulon treated PC3 cells, therefore, more
experimental studies are needed to reveal the overall effect
of Taxotere and Furtulon on metastatic processes. These
results were not observed in androgen sensitive LNCaP
cells, suggesting difference in effects that could be medi-
ated through different cell signal transduction pathways.

Conclusions

In conclusion, Taxotere and/or Furtulon directly and indi-
rectly caused changes in the expression of many genes that
are critically involved in the control of cell proliferation,
apoptosis, transcription, translation, oncogenesis,
angiogenesis, metastasis, and drug resistance (Figure 4).
These findings could provide molecular information for
further investigation on the mechanisms by which Taxo-
tere and Furtulon exerts their pleiotropic effects on pros-
tate cancer cells. These results could also be important in
devising mechanism-based targeted therapeutic strategies
for prostate cancer, especially in devising combination
therapy for drug resistant prostate cancers. However, fur-
ther in-depth investigations are needed in order to estab-
lish cause and effect relationships between these altered
genes and therapeutic response in prostate cancer cells.
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GenMAPP software integrated with cDNA microarray data. A: PC3 cells. B: LNCaP cells. (positive value: increase in fold
change; negative value: decrease in fold change; A: PC3 cells; B: LNCaP cells)
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