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Diffusion MRI has been proposed as a non-invasive technique for axonal diameter mapping. How-

ever, accurate estimation of small diameters requires strong gradients, which is a challenge for

the transition of the technique from preclinical to clinical MRI scanners, since these have weaker

gradients. In this work, we develop a framework to estimate the lower bound for accurate diam-

eter estimation, which we refer to as the resolution limit. We analyse only the contribution from

the intra-axonal space and assume that axons can be represented by impermeable cylinders. To

address the growing interest in using techniques for diffusion encoding that go beyond the con-

ventional single diffusion encoding (SDE) sequence, we present a generalised analysis capable of

predicting the resolution limit regardless of the gradient waveform. Using this framework, wave-

forms were optimised to minimise the resolution limit. The results show that, for parallel cylinders,

the SDE experiment is optimal in terms of yielding the lowest possible resolution limit. In the

presence of orientation dispersion, diffusion encoding sequences with square-wave oscillating

gradients were optimal. The resolution limit for standard clinical MRI scanners (maximum gradi-

ent strength 60–80 mT/m) was found to be between 4 and 8 μm, depending on the noise levels and

the level of orientation dispersion. For scanners with a maximum gradient strength of 300 mT/m,

the limit was reduced to between 2 and 5 μm.
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1 INTRODUCTION

Axons in the white matter serve as the backbone of the brain network.

The information transmission through this network is determined by

the conduction velocity along the axons and the axon density, which

both depend on the axon diameter.1–3 Non-invasive methods to deter-

mine the axon diameter and the axon density are thus important for

mapping the network of the brain.

Abbreviations used: DDE, double diffusion encoding; dMRI, diffusion MRI; FWHM, full width at half-maximum; GPD, Gaussian phase distribution; IVIM, intra-voxel incoherent motion; OGSE,
oscillating gradient spin echo; SDE, single diffusion encoding; SNR, signal-to-noise ratio; QTE, q-trajectory encoding.

Most axons have diameters between 0.2 and 20 μm.4 Large axons

facilitate rapid communication, e.g. for processing of sensorimotor

stimuli, and are found in structures such as the corticospinal tract and

the midbody of the corpus callosum. However, large axons occupy much

space, yielding low axon density, and demand much energy per bit of

information transmitted.5 Smaller axons, with a diameter of 0.7 μm,

minimise the energy cost per bit.5 Not surprisingly, smaller axons are

the most prevalent in the brain and fewer than 1% of its axons are larger
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than 3 μm.6 In the optic nerve, most axons have diameters below 2 μm,

with a peak of 0.7 μm.5

Diffusion magnetic resonance imaging (dMRI) may enable

model-based estimation of compartment sizes and densities.7,8 For

example, Assaf et al. investigated fixed nerves and demonstrated

that the average displacement of water molecules due to diffusion

is limited to approximately 2 μm in the direction perpendicular to a

coherent nerve fiber structure.9 By modelling the axons as cylinders

and extra-axonal water as undergoing Gaussian diffusion, the full axon

diameter distribution has been recovered from dMRI data.10,11

Techniques for axon diameter mapping have been developed in

systems capable of producing magnetic field gradients of up to

1500 mT/m,10 but human MRI scanners feature gradients with much

lower amplitudes. Conventional clinical systems can deliver gradients

of up to 80 mT/m, and custom systems such as the Connectom system

can reach as high as 300 mT/m.12 The gradient amplitude is important,

because it defines the so-called resolution limit in diffusion MRI.13,14

The emergence of this limit is obvious in q-space diffusion MRI, where

sizes are obtained from the width of the so-called ensemble average

propagator.9,15,16 This propagator is obtained by means of an inverse

Fourier transform of the signal-versus-q curve.15 However, limited gra-

dient performance leads to limited support in terms of high q-values,

and thus the resulting propagator is convolved with a low-pass ker-

nel with a width defined by the inverse of the gradient amplitude.14 As

the true size goes towards zero, the size estimated from the width of

the estimated propagator remains at the width of the kernel. Weaker

gradients result in a wider kernel, and thereby a poorer resolution in

terms of a higher value of the resolution limit. The gradient ampli-

tude can thus be compared with the wavelength of light in optical

microscopy, which defines the resolution in terms of the Abbe diffrac-

tion limit.17,18 Coincidentally, this limit prevents accurate quantifica-

tion of axon diameters below approximately 0.4 μm with conventional

light microscopy.19

The resolution limit is important, not only in q-space dMRI but also

for model-based recovery of the axon diameter.8 Approaches such as

CHARMED, AxCaliber, and ActiveAx estimate the axon diameter by

solving an inverse problem in which axons are modelled as straight

cylinders.10,20,21 Specificity to the axon diameter is assumed to be

obtained from the signal attenuation of intra-axonal water; however,

the sensitivity of the MR signal to small cylinder diameters is low,

because a small change in the diameter produces a negligible change in

the measured signal. Hence, small cylinder diameters are challenging

to estimate accurately (for example, see Figure 1a–d of Dyrby et al.22).

In other words, cylinders with a diameter below the resolution limit

are indistinguishable from virtual cylinders with a diameter of zero.

Preliminary results assuming parallel cylinders indicated that the res-

olution limit is approximately 6 μm for gradient amplitudes of 60 mT/m

and 3 μm for amplitudes of 300 mT/m.23 More realistic cases includ-

ing orientation dispersion may result in even lower sensitivity to the

diameter24 and cause further complications for solving the inverse

problem and interpreting its solution.25–27

Most diameter mapping studies have employed the Stejskal–Tanner

experiment,28 here referred to as the single diffusion encod-

ing (SDE) experiment following the nomenclature in Shemesh

et al.29 Diffusion-encoding techniques that go beyond SDE have

recently been proposed as potential solutions to reduce the res-

olution limit. Such techniques have generally been adapted from

the fields of porous materials research, and include the double

diffusion encoding (DDE) sequence,30–34 oscillating diffusion encod-

ing (ODE), also known as oscillating gradient spin echo (OGSE) or

modulated-gradient NMR,24,35–39 and non-pulsed and non-parametric

gradient waveforms,40,41 which we refer to as q-trajectory encoding

(QTE).42 In combination with improved gradient hardware for clini-

cal MRI,43 gradient waveforms beyond SDE may enable non-invasive

recovery of the axon diameter.

In this work, we introduce an analytical framework to predict the

resolution limit for any gradient waveform. Prior approaches in this

direction were fully numerical, and confined to the SDE and ODE

sequences.24 We analyse three cases: the first where axons are par-

allel, the second where there is full axonal orientation dispersion, and

the third where there is partial alignment. We limit our investigation to

estimation of the diameter from intra-axonal water diffusion, assuming

axons can be modelled by impermeable and straight cylinders. Provided

this assumption holds, which can be debated,27 our results can be used

directly in the analysis of measurements on intra-axonal metabolites.44

For water measurements, contributions from extra-axonal components

must be incorporated in the analysis. Such components are often

assumed to exhibit Gaussian diffusion,20,21 which may not be con-

gruent with the physics of extracellular diffusion.45 Accounting for

time-dependent diffusion outside axons is likely needed for accurate

mapping of axonal characteristics,46,47 but investigating its impact on

the resolution limit was beyond the scope of the present study. Our

analysis nevertheless contributes with a lower bound on the resolution

limit of the intra-axonal component.

2 THEORY

We express the attenuation of the signal due to diffusion perpendicular

to the main axis of a cylinder as S(b|d), where b refers to the diffusion

encoding strength (b-value) and d to the cylinder diameter. We will use

this notation to derive the resolution limit (dmin), which we define as

the diameter where the signal attenuation is indistinguishable from the

case where the diameter goes towards zero,

S(b | dmin) ≈ S(b | d → 0). (1)

We will derive the value of dmin for three cases: parallel cylinders, ran-

domly ordered cylinders, and finally for any level of orientation disper-

sion. We assume all cylinders to be equal in size. We limit the analysis

to one-dimensional (1D) waveforms, like those applied in SDE and ODE,

but the analysis is applicable also to 1D aspects of multi-dimensional

diffusion encoding, such as DDE or QTE. For all waveforms, note that

g(t) must fulfil the condition

∫ g(t) dt = 0 (2)

in order to form an echo at the centre of k-space. Here and through-

out the analysis, we will assume g(t) to describe the effective gradient

waveform after effects of RF pulses have been accounted for.

2.1 Defining the resolution limit

To define the resolution limit, we begin by defining the difference in sig-

nal (ΔS) between cylinders with a diameter approaching zero and those

with a diameter corresponding to the resolution limit,
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ΔS(dmin) = S(b | d → 0) − S(b | dmin) (3)

We formally define the resolution limit as a hypothesis test of whether

the observed ΔS is statistically higher than zero. Assuming that, due

to noise, ΔS is normally distributed,48 we phrase the test in terms of a

requirement on the z-score z(ΔS) ⩾ z𝛼 , where z𝛼 is the z-threshold for

significance level 𝛼 and

z(ΔS) = ΔS
𝜎

√
n (4)

and 𝜎 is the standard deviation of the signal due to noise, defined from

the signal-to-noise ratio (SNR) and the signal amplitude at b = 0 (S0)

according to SNR = S0∕𝜎. Moreover, n is the number of signal averages.

Deriving d from a model fitted to data acquired with multiple values

of b would improve precision and be similar to increasing n, although it

would be less efficient than sampling with just b = 0 and bmax.49

Altogether, this yields a requirement for the normalised signal at the

resolution limit:

ΔS(dmin)
S0

⩾ 𝜎 (5)

and

𝜎 =
z𝛼

SNR
√

n
(6)

If the attenuation ΔS∕S0 is less than 𝜎, it will be indistinguishable from

zero, i.e. the attenuation would be identical to that from a cylinder

with a diameter of zero. In other words, the diameter would be below

the resolution limit. When fitting models to measurements in systems

with structures having sizes below the resolution limit, the diameter

should not be a free model parameter. Exploiting the resolution limit

thus allows for model simplifications, such as using ‘stick’ diffusion ten-

sors with zero radial diffusivity and non-zero axial diffusivity to model

diffusion inside thin axons.26,50

In this study, we set z𝛼 to 1.64 for a one-sided test at the 5% signif-

icance level. For a SNR of 50 (𝜎 = S0∕SNR) and n = 10, we obtain

𝜎 ≈ 1%. For completeness, note that 𝜎 ≈ 5% for SNR = 30 and n = 1.

Throughout this work, we will use the level 𝜎 = 1% as a reference. This

is a reasonable lower limit for in vivo measurements on a clinical MRI

system. Although smaller effects are detectable in principle, in practice

they may be difficult to separate from effects not accounted for in the

model, for example residual eddy currents,51 or effects that may be dif-

ficult to model accurately for non-SDE waveforms, such as intra-voxel

incoherent motion (IVIM).52 In other words, effects smaller than 1%

may be statistically significant but practically irrelevant.

In order to derive the resolution limit, we consider the attenuation

for diffusion encoded in a direction perpendicular to a cylinder, given by

S(b | d)∕S0 = exp (−bD⟂(d) ) ≈ 1 − bD⟂(d) (7)

where D⟂ is the apparent radial diffusivity, which depends on d as well

as on the timing of the gradient waveform used for the diffusion encod-

ing. The approximation of the exponential is valid where the attenua-

tion factor bD⟂ is small, which is true per definition at the resolution

limit. Since D⟂(d → 0) = 0, the expression for ΔS in Equation 3 is

reduced to

ΔS∕S0 = b D⟂(dmin) (8)

2.2 Parallel cylinders

We begin by deriving the resolution limit for parallel cylinders, first for

the SDE sequence and then for the case of arbitrary gradient wave-

forms.

2.2.1 Single diffusion encoding sequence

Three parameters define an SDE experiment: the duration and

leading-edge separation of the gradient pulses (𝛿 and Δ, respectively),

and the gradient amplitude (g). How should these three parameters be

selected in order to minimise dmin? The question is equivalent to max-

imising ΔS ≈ bD(𝛿,Δ|d), where D(·) depends on the timing variables 𝛿

and Δ,

b = 𝛾2𝛿2g2

(
Δ − 1

3
𝛿

)
(9)

and 𝛾 is the gyromagnetic ratio. Since b, and thus ΔS, increases mono-

tonically with g, the gradient should assume its maximal value in order

to minimise dmin. In order to select the timing parameters that min-

imise dmin, we express D⟂ using the Gaussian phase distribution (GPD)

approximation,53,54 according to

D⟂ ≈ 2k2(𝛼, 𝛽)
𝛽 − 1

3
𝛼

D0 (10)

where k(𝛼, 𝛽) is defined in the Appendix, D0 is the free diffusivity of the

intra-cylinder water, and

𝛼 =
4𝛿D0

d2
and 𝛽 =

4ΔD0

d2
(11)

From Equations 8, 9, and 10, we obtain

ΔS ∝ 𝛼2k2(𝛼, 𝛽) (12)

According to numerical computations, this expression is maximised

when 𝛿 = Δ, or expressed in unitless variables when 𝛼 = 𝛽 . More-

over, close to the resolution limit, where d is small, 𝛼 ≫ 1. Under these

conditions, we can approximate D⟂ as55,56

D⟂ ≈ 7
48

D0

𝛼

(
𝛽 − 1

3
𝛼

) (13)

Hence

d ≈
(

768
7

ΔS
S0

D0

𝛾2𝛿g2

)1∕4

(14)

This expression can be used to estimate cylinder diameters, assuming

intra-axonal-specific data are acquired, and with prior knowledge of D0.

Potential errors in the assumed value of D0 are not critical, since errors

of up to 50 % in D0 give at most 10–15% errors in d. The expression

in Equation 14 also gives the resolution limit for parallel cylinders and

SDE, according to

d(SDE)
min

=
(

768
7

𝜎D0

𝛾2𝛿g2

)1∕4

(15)

For D0 = 2 μm2∕ms, g = 80 mT/m, and 𝛿 = 40 ms, we obtain dmin =
3.3 μm for the high-SNR case where 𝜎 = 1% and dmin = 4.9 μm when

𝜎 = 5%. Since D0 decreases with temperature, investigations of cold

fixed tissue may be beneficial to reduce the resolution limit.

2.2.2 Spectral domain analysis of restricted diffusion

In the previous section, we derived the resolution limit for the SDE

sequence. However, gradient waveforms other than SDE may offer
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improved sensitivity to small cylinders. In order to investigate arbitrary

gradient waveforms, we analyse the diffusion process in the spectral

domain,57 where the effect of diffusion encoding on the normalised

signal (S∕S0) is given by

S∕S0 ≈ exp

(
− 1

2π ∫ |q(𝜔)|2D(𝜔) d𝜔

)
(16)

where D(𝜔) is the diffusion spectrum and q(𝜔) is the Fourier transform

of q(t), defined by

q(𝜔) = ∫ q(t) exp(−i𝜔t) dt and q(t) = 𝛾 ∫ g(t′) dt′ (17)

For completeness, we note that

b = ∫ |q(t)|2 dt = 1
2π ∫ |q(𝜔)|2 d𝜔 = ∫ |q(f)|2 df (18)

where f is the frequency measured in Hertz (2𝜋f = 𝜔). For convenience,

we will use both 𝜔 and f. The relation in Equation 18 is also known as

Parseval’s identity. For free diffusion, D(𝜔) = D0, and thus Equation 16

evaluates to S = exp(−bD0).
For restricted diffusion in a cylinder, as well as for diffusion between

parallel plates or in spherical geometries, the diffusion encoding spec-

trum D(𝜔) can be described by a sum of Lorenzian functions57:

D(𝜔) = D0 −
∑

i

Ci

1 + (𝜔∕bi)2
(19)

where Ci and bi are coefficients that depend on the geometry and are

defined for a cylinder geometry in the Appendix. The Appendix also

shows the derivation of this specific form of Equation 19 from the

expression in Equation (36) of Stepisnik.57

For low frequencies, D(𝜔) can be approximated by a second-order

polynomial47,57,58

D(𝜔) ≈ k D−1
0 𝜔2 d4, (20)

where k = 7∕1536. This approximation yields reasonably accurate

signal predictions as long as the diffusion encoding spectrum has negli-

gible power for frequencies above a cut-off frequency f0. The difference

between the true spectrum and the approximation is less than 20% as

long as D(f0) < 1

5
D0, which can also be seen in Figure 1. This inequality

can be used to define f0 according to

1
5

D0 = k D−1 d4(2πf0)2 → f0 ≈ D0∕d2 (21)

For D0 = 2 μm2∕ms and d = 2μm, we obtain f0 ≈ 500 Hz. For reference,

note that the maximal frequency of a sine or cosine wave that utilises

the maximal gradient amplitude is given by fmax = (2π)−1smax∕gmax,

which equates to approximately 400 Hz for a high-performance clinical

scanner with smax = 200 mT/m/ms and gmax = 80 mT/m. As a conse-

quence, the approximation in Equation 20 can be used in Equation 16 to

predict the signal with reasonable accuracy for many of the waveforms

that are useful in practice.

2.2.3 Resolution limit for parallel axons and general
waveforms

A key result of the present analysis concerns the implications of

the low-frequency approximation for the resolution limit. Following

Equations 7, 16, and 20, we obtain

bD⟂(d) = kD−1
0 d4 ∫

1
2π

||| q(𝜔) 𝜔 |||2
d𝜔 (22)

FIGURE 1 Diffusion and encoding spectra, shown by black lines and
blue areas. The dashed line shows the low-frequency approximation.
The spectra were generated for d = 3μm and D0 = 2 μm2∕ms, and
were normalised by the bulk diffusivity (D0). Insets show gradient
waveforms (g) generated for an SDE experiment with 𝛿 = 10 ms and
Δ = 15 ms in panel A, with a sine wave with f = 150 Hz in panel B, and
a cosine wave (f = 150 Hz) in panel C. The b-values for these
waveforms were 0.5, 0.05, and 0.017 ms/μm2

An important feature of this relation is that it separates the effects

of the geometry (d4) from the diffusion encoding (the integral part).

By utilising Parseval’s identity and Equation 22, we can simplify the

integral further:
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∫
1

2π
||| q(𝜔) 𝜔 |||2

d𝜔 = ∫ ||q′(t)||2 dt = 𝛾2 ∫ g2(t) dt (23)

We use this result to define an important entity:

bV𝜔 ≡ 𝛾2 ∫ g2(t) dt (24)

where

V𝜔 =
∫ g2(t) dt

∫ q2(t) dt
(25)

since

b = 𝛾2 ∫ q2(t) dt (26)

We refer to the entity V𝜔 as the ‘spectral encoding variance’, since it is

defined from the second moment of q(𝜔). The unit of V𝜔 is 1/s2.

The product bV𝜔 captures all features of the gradient waveforms

required to predict the signal attenuation perpendicular to the cylin-

der. The b-value captures the attenuation and V𝜔 the time-dependence,

since we can approximate D⟂ for an arbitrary gradient waveform by

D⟂(d) ≈ kD−1
0 d4 V𝜔 (27)

The signal attenuation is thus approximated by

S∕S0 ≈ exp
(
−bV𝜔kD−1

0
d4
)

(28)

The expression above can be shown to be equivalent to Equation (119)

of Grebenkov,59 which was derived for diffusion in the motional nar-

rowing regime. Previous work on the motional narrowing regime in

the context of spin relaxation has found similar equations relating the

square of the gradient field, the compartment size to fourth order,

and the inverse of the bulk diffusion coefficient.60,61 In that context,

motional narrowing occurs when spins diffuse rapidly through an inho-

mogeneous field. In our context, the motional narrowing regime occurs

when the gradient varies slowly compared with the time it takes to

traverse the confinement. Formally, this can be expressed as the case

where the gradient waveform contains no energy above f0. At this

cut-off frequency, the root-mean-square displacement due to diffusion

is of the order of the compartment size (
√

2D∕f0 ≈ d). This approach

to the motional narrowing regime is an extension to that described by

Hurlimann et al.,62 who analysed three different temporal regimes of

the constant gradient experiment.

To obtain another key result, we extend the expression in Equation 24

according to

bV𝜔 = 𝛾2g2
maxT𝜂 (29)

where T is the duration of the gradient waveform and 𝜂 is a

time-invariant factor that depends on the waveform as

𝜂 = 1
T ∫

T

0

g2(t)
g2

max

dt (30)

For SDE, T = 𝛿 + Δ, and by assuming negligible ramp times we obtain

𝜂 = 2𝛿
Δ + 𝛿

(31)

and

V𝜔 = 2

𝛿

(
Δ − 1

3
𝛿

) (32)

Note the similarity of the expression for V𝜔 and the denominator in

Equation 13. Combining Equations 13 and 32 gives Equation 27, which

shows that the same solution is obtained for both time-domain and

frequency-domain approaches in the SDE case.

To evaluate the resolution limit in the case of parallel cylinders and

arbitrary gradient waveforms, we use Equations 8 and 27 to define

ΔS∕S0 = kD−1
0 d4bV𝜔 (33)

Together with the definition of the resolution limit in Equation 5, we

obtain a general expression for the resolution limit in the case of paral-

lell cylinders (par):

d(par)
min

=
(
𝜎

k
D0

bV𝜔

)1∕4

(34)

In order to examine how to optimise the gradient waveform to minimise

dmin, we first note that k, D0, and 𝛾 are independent of the gradient wave-

form. Moreover, note that 𝜎 ∝ exp(T∕T2), since the SNR is reduced as

more T2 relaxation takes place for long encoding gradients (the echo

time, TE, is given by T+T0, where T0 is the time required for imaging gra-

dients and RF pulses). Utilising Equation 29, we now obtain a simplified

expression,

d(par)
min

∝
(

exp(T∕T2)
T

)1∕4

𝜂−1∕4 g−1∕2 (35)

This equation yields two important results. First, the resolution limit is

minimised if T = T2, since this value of T minimises exp(T∕T2)∕T. The

optimal duration of the diffusion encoding is thus equal to the value of

T2 (approximately 80 ms for white matter at B0 = 3T). Second, 𝜂 should

be maximised for optimal resolution. Note that 𝜂 obtains its maximal

value of unity if and only if the gradients are at full amplitude during

the whole period of T (Equation 30), while still fulfilling Equation 2. This

can be obtained with SDE if 𝛿 = Δ (see Equation 31). We have thus

reproduced the result behind Equation 15. A square gradient wave-

form would be equally as good as SDE, but constraints such as limited

slew rates reduce the value of 𝜂 proportional to the time required for

slewing, which is greater for gradients with multiple pulses. Hence, this

result shows that SDE yields a value of dmin lower than what is possi-

ble with DDE and ODE, due to the effects of limited slew rates. DDE

with short mixing times increases 𝜂, and it is thus not surprising that

short rather than long mixing time DDE experiments are preferred for

size estimations.63 Waveforms with multiple oscillations may result in

encoding spectra with power at frequencies above f0 (Equation 21). In

that case, the low-frequency assumption would not hold, but the result-

ing signal attenuation would be lower than predicted, yielding a poorer

resolution (higher dmin).

2.3 Orientation dispersion

Most, if not all, regions of the brain feature axonal bundles with dif-

ferent orientations.64–66 We therefore proceed to analyse the resolu-

tion limit in the case of full orientation dispersion (cylinders oriented

along all directions with equal probability). In this scenario, the signal

is reduced due to increased attenuation from diffusion weighting along

the fibers, which gives67–69
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S(b)∕S0 = exp(−bD⟂)h(A) (36)

where

h(A) =
√
π∕4 erf(A)∕A (37)

and

A2 = b(D|| − D⟂) (38)

Assuming D⟂ ≈ 0 close to the resolution limit, h(A) becomes indepen-

dent of d.

The resolution limit for dispersed cylinders d(disp)
min

is now given by

rearranging Equation 5 so that

ΔS∕S0 = bD⟂(d) h(A) (39)

and thus

d(disp)
min

= d(par)
min

h(A)−1∕4 (40)

Since h(A) ⩽ 1, this shows that the resolution is worse in the dispersed

case (d(disp)
min

⩾ d(par)
min

).

2.3.1 Optimisation for unlimited slew rate

To gain some intuition on how to choose an optimal waveform for

obtaining the best resolution in the case with complete orientation

dispersion, consider a waveform composed of m identical pulsed gradi-

ent pairs, i.e. a square wave. For now, we assume that the slew rate is

infinite. The total b-value is then given by b = mb0, where

b0 = 2
3
𝛾2g2𝛿3 (41)

and 𝛿 = T∕2m, assuming that Δ = 𝛿 for each pulsed gradient pair. For a

train of diffusion encoding pulses, we obtain70

b = 1
12

𝛾2g2T3m−2 (42)

For completeness, we note that, for an SDE experiment with maximal

duration of the gradients, we have m = 1, 𝛿 = Δ = T∕2, and thus

b = 2

3
𝛾2g2𝛿3 as expected.

In order to maximise ΔS, and thus minimize dmin, it is sufficient to

consider the terms affected by the gradient waveform,

ΔS∕S0 ∝ bV𝜔 h(A) (43)

Note that, for a perfect square wave with 𝜂 = 1, we get

bV𝜔 = 𝛾2g2T (44)

Hence, the term bV𝜔 is here independent of the number of oscillations.

Maximisation of ΔS is thus done by maximising h(A) for a fixed value of

T. Curiously, h(A) is at its maximum when b = 0, which we obtain when

m → ∞. To understand this result, we first note that the resolution limit

is in part determined by the SNR, which in turn is reduced by high b due

to partial alignment of the dispersed cylinders and the encoding direc-

tion. Increasing m has no effect on the radial attenuation component,

but decreases b, which is beneficial for the SNR and thus reduces the

resolution limit. In practice, however, 𝜂 → 0 when m → ∞, due to lim-

ited slew rates. An optimal waveform will thus need to balance the two

objectives of maximising 𝜂 while minimising b.

2.3.2 Intermediate orientation dispersion

In the intermediate case, where the level of orientation dispersion is

somewhere between full coherence and full dispersion, we found it

challenging to derive an analytical expression for ΔS that is also illu-

minating. The most straightforward way we found was to extend h(A),
assuming D⟂ ≈ 0, so that

h(A,Cd) ≈ (1 − h(A)) exp (−2ACd) + h(A) (45)

where A is defined in Equation 38 and Cd is the orientation dispersion

factor, defined in the interval from zero to unity, which represents full

coherence and full dispersion, respectively. This factor is defined by

Cd = 1
𝜅 + 1

(46)

where 𝜅 is the orientation dispersion factor in the Watson

distribution.26 In analogy with the derivation for the complete orien-

tation dispersion case in Equation 40, we thus describe the resolution

limit in the intermediate (int) case by

d(int)
min

= d(par)
min

h(A,Cd)−1∕4 (47)

Since h(A,0) = 1 for orientation coherence, the expression agrees with

Equation 34. With full dispersion and high b-values, h(A,1) ≈ h(A),
which agrees with Equation 40. For low b-values, for example due to

oscillating gradients, A → 0 and thus h(A,0) → 0, so that d(int)
min

→ d(par)
min

.

This result is in agreement with the previous notion that, with disper-

sion, oscillating gradients are preferred, since the attenuation resulting

from axial diffusion is thus minimised.

3 METHODS

We first verified the calculations of D⟂(d) for SDE, DDE, and ODE

by using analytical expressions and Monte Carlo random-walk simu-

lations. We also verified the calculations of dmin using numerical cal-

culations for both parallel and fully dispersed cylinders. Second, we

optimised gradient waveforms in order to minimise dmin. Finally, we

investigated the capability to recover cylinder diameters using numer-

ical simulations, and tested whether the theoretically predicted values

of dmin agreed with the simulation results.

3.1 Model verification

We suggest that the frequency-domain approximation in Equation 20

can be used to calculate D⟂ from d for any gradient waveform, as long

as the condition in Equation 21 is fulfilled. We tested this assertion by

comparing D⟂ calculated from Equation 20 with values predicted for

SDE by Equation 10 using the GPD approximation. These verifications

were performed for D0 = 2 μm2∕ms, and d in the range 0–10μm. Note

that we have previously compared the GPD approximation with results

from Monte Carlo simulations in cylinders.71

For a wide range of waveforms including both SDE and DDE, we

compared the value of D⟂ predicted from the frequency-domain

approximation in Equation 20 with the value obtained from Monte

Carlo simulations, using an approach described previously.71 In short,

random walkers (n = 5 × 104) were placed on a grid within a circle

with reflective boundaries and a diameter of d. The step size was set to
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Δx = 0.08μm, and accordingly Δt = Δx2∕2D0 = 1.6μs. The phase 𝜙i

accumulated by particle i from a gradient waveform, assumed to have

been applied along x, is theoretically given by

𝜙i = 𝛾 ∫ gx(t) · rx(t) dt (48)

where gx(t) is the gradient and rx(t) is the position of the particle. In the

simulations, 𝜙i was obtained according to

𝜙i = 𝛾

m∑
i=1

g(i · Δt) · rx Δt (49)

where m = T∕Δt is the number of time steps. The MR signal was given

by S = |⟨exp(i𝜙)⟩|, where ⟨·⟩ refers to ensemble averaging and | · | yields

the magnitude of a complex signal. For moderate attenuations, i.e. for

low values of b, the normalised signal can be approximated according

to54

S∕S0 ≈ exp

(
−1

2
⟨𝜙2⟩) (50)

and thus

D⟂ =
⟨𝜙2⟩

2b
(51)

The values of D⟂ obtained by simulations were compared with the

theoretical predictions for different gradient waveforms.

In addition, we computed values of dmin using numerical calculations

described by Drobnjak et al.,24 and compared the results with our ana-

lytical results. Numerical calculations employed the matrix formalism

implemented in the MISST software package,72 and were used to pre-

dict the diffusion-weighted signal for a range of gradients gmax ∈ {60,

80, 150, and 300} mT/m, SNR∈ {10, 20, and 50}, and diameters sampled

finely in the range d ∈ [0,10]μm. We then used the same approach as

in Drobnjak et al.24 to calculate ΔS(d) = S(d) − S(d → 0) and numer-

ically find the smallest d = dmin for which Equation 5 is satisfied. We

performed calculations for each of the combinations of gmax and SNR,

and for both the SDE case (m = 1) and a square wave with m = 2, 3, and

4 identical pulsed gradient pairs. Infinite slew rates were assumed in all

cases.

3.2 Optimising gradient waveforms

Gradient waveforms were optimised in order to maximiseΔS in the case

of parallel cylinders and in the presence of full orientation dispersion.

For this purpose, we expressed the gradient waveform in terms of a

cosine series,

g(t) =
∑

n

cn cos(2πnt∕T) (52)

We chose the cosine basis, since this yielded lower b-values than the

corresponding sine basis waveforms, and thus a lower value of the

resolution limit in the dispersed case. The coefficients cn were opti-

mised in order to maximise ΔS, after which the resolution limit was

calculated. However, before ΔS was calculated, we convolved the gra-

dient waveform with a Gaussian kernel with a standard deviation

computed to ensure slew rates below 200 mT/m/ms (see Appendix).

This procedure ensured that the resulting waveform can be played

out on a clinical scanner. In these optimisations, we assumed T =
80 ms and hardware parameters corresponding to high-end clinical

MRI scanners and the Connectome scanner, i.e. gmax = 80 mT/m and

gmax = 300 mT/m, respectively. We noted that the optimisations tended

to yield square-wave functions. We therefore also explicitly generated

square waveforms with different frequencies.

To determine the resolution limit for an optimised waveform, the

optimisation procedure was repeated for different values of d until the

value of ΔS∕S0 reached 1%.

3.3 Recovery of the diameter

In order to assess the ability to recover the diameter from protocols

optimised to minimise the resolution limit, we simulated the MR signal

using the Monte Carlo approach described above for an SDE sequence

with 𝛿 = 40 ms and Δ = 40 ms. After that, we added Gaussian noise to

the MR signal (corresponding to SNR=200, i.e.𝜎 = 0.01) and estimated

the diameter from the relationship in Equation 7, with D⟂(d) given by

the frequency-domain approximation in Equation 20. Note that, for the

SDE timing parameters used, the approximation is valid for d < 10μm,

since the spectrum of the waveform contains negligible energy above

20 Hz. In the estimation, we assumed prior knowledge of the correct

value of D0 of 2 μm2∕ms. The procedure of generating noise and esti-

mating the diameter was repeated 3000 times for diameters between

0 and 10μm.

4 RESULTS

4.1 Model verification

Figure 2 shows values of D⟂(d) for diameters between 0 and 10 μm.

For the SDE case (panel A), the low-frequency approximation in

Equation 20 agreed well with both the analytical GPD-based approxi-

mation in Equation 10 and the Monte Carlo simulations. For the gradi-

ent waveform composed of a f = 80 Hz sine wave (panel B), however,

the approximation and the Monte Carlo simulations agreed only for

d ⩽ 5μm. The discrepancy for higher diameters was expected, accord-

ing to the limit specified in Equation 21, which shows that the approx-

imation should be valid for d ⩽ 5 μm, when f = 80 Hz and D0 =
2 μm2∕ms.

Figure 3 shows the effect on the signal difference (ΔS) resulting from

varying the frequency of a square-wave oscillating gradient waveform,

for cylinders where d = 3.6μm. As the frequency increases, the b-value

decreases whereas D⟂ increases. The net effect, however, is that ΔS

is reduced for higher frequencies, illustrating that waveforms other

than SDE lead to worse performance in terms of obtaining a minimal

resolution limit for parallel cylinders. In the presence of orientation dis-

persion, however, the signal difference was maximised at a frequency

of approximately 100 Hz. Note that here we assumed a slew rate of

200 mT/m/ms.

Figure 4 shows a comparison of the resolution limit computed by

our theoretical approach (Equations 34 and 40), and from the numer-

ical approach described by Drobnjak et al.24 Investigations were per-

formed under varying gmax and SNR, assuming infinite slew rates. Panel

A shows that numerical and analytical results were in excellent agree-

ment for all gradient strengths and all SNR levels, for parallel cylin-

ders. Panel B shows the results for fully dispersed cylinders. Here, the
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FIGURE 2 Low-frequency approximation versus Monte Carlo results.
The plots show the apparent radial diffusivity (D) predicted from the
low-frequency approximation (blue solid line), results from the Monte
Carlo simulations (circles), and corresponding gradient waveforms
(g(t)) and b-values (inset). For the SDE case, the diffusivity predicted by
the GPD approximation is also shown. The dashed line and the grey
area show the mean and the 95% interval of the estimated
diffusivities, assuming SNR = 1000. For small diameters (d), the
low-frequency approximation is in good agreement with the Monte
Carlo simulations, whereas they start to diverge for larger diameters.
In panel C, where the gradient waveform was a sine wave with
f = 80 Hz, the approximation agreed with the Monte Carlo simulations
for d < 5μm, as expected from Equation 21

FIGURE 3 Impact of frequency on attenuation. The left panel shows
ΔS, which is the signal difference between systems where d = 3.6μm
and d = 0, for square-wave oscillating gradients with varying
frequency. Results are shown for both parallel and dispersed fibers. The
two panels to the right shows the gradient waveforms that maximised
ΔS for the parallel case (top) and the dispersed case (bottom)

resolution limits depend on the number of oscillations m. Numerical

and analytical results were well aligned except at low SNR levels, where

our analytical approach underestimated the resolution limit. The dis-

crepancies decreased at higher SNR, and for SNR=50 the match was

excellent.

4.2 Optimisation

Figure 5 shows gradient waveforms optimised to minimise dmin. In

the case of parallel cylinders, the optimisation resulted in SDE wave-

forms, regardless of gmax. This is not surprising, since SDE maximises 𝜂

(Equation 30). In the case of fully dispersed cylinders, the optimal wave-

forms comprised a train of square pulses. For the case with stronger

gradients, the waveforms became triangular, due to limitations in the

available slew rate.

Table 1 shows the resolution limit in the cases of parallel and dis-

persed cylinders. The resolution limit was 20% higher in the presence

of orientation dispersion for the 80 mT/m gradient system. For the

300 mT/m system, the corresponding number was 40%. For complete-

ness, we also investigated the resolution limit for a preclinical system

with 1000 mT/m gradients (slew rate 5000 T/m/s and T = 30 ms), and

found it to be of the order of 1 μm.

In the intermediate case between coherence and full dispersion, the

resolution limit depends on the specific level of orientation dispersion.

For the level of dispersion recorded for the corpus callosum (FWHM =
34◦ , see Leergaard et al.73), we find dmin ≈ 2 μm for the 300 mT/m sys-

tem, which is approximately 15–20% higher than the case for parallel

fibres. In other words, even for an orientation dispersion as small as the

one in the corpus callosum, otherwise known for its high orientation

coherence, the resolution is degraded.

At 7T, the SNR is higher while the T2 relaxation time is shorter

(approximately 50 ms), thus requiring the use of shorter gradient

pulses. Whether there is a benefit at 7T compared with 3T depends on

the gradient system. If 80 mT/m is available at both 3T and 7T, the higher

field strength has an advantage (Table 1).
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FIGURE 4 Resolution limit (dmin) compared between analytical and numerical approaches. Panel A shows results for parallel cylinders under
varying SNR levels, maximal gradient amplitudes (gmax), and for a varying number of square-wave oscillations (m) assuming infinite slew rates. The
two approaches show excellent agreement. Panel B shows the corresponding result for the case with complete orientation dispersion. Resolution
limits were higher than for the parallel case, as expected. The analytical approach underestimates the resolution limit for low SNR values, but the
two approaches show good agreement for higher SNR levels. In all cases, the x-axis was scaled according to g−1∕2

max

FIGURE 5 Waveforms optimised for best possible resolution. In the
case of parallel cylinders, the optimisation resulted in SDE waveforms.
For the dispersed case, waveforms included multiple gradient pulses.
With a 80 mT/m system, a square-wave oscillating waveform emerged.
For the 300 mT/m system, the limited slew rate prevented the
emergence of a square wave, and thus a triangular wave appeared
instead

4.3 Recovery

The ability to recover cylinder diameters from a simple experiment with

two b-values (0 and bmax) was assessed by numerical simulations. As

shown in Figure 6 for a SDE-like experiment in a system with paral-

lell cylinders, diameters were correctly recovered above the resolution

limit at dmin = 3.3 μm. However, below this limit, cylinders of different

sizes were indistinguishable.

5 DISCUSSION

In this work, we assessed the minimal cylinder diameter that can be

recovered from diffusion MRI of water within the cylinders. We label

this diameter ‘the resolution limit’, in analogy with optical microscopy,

TABLE 1 Resolution limits (dmin) for waveforms optimised so that
ΔS = 1%, with a waveform amplitude of gmax and a duration of
T = 80 ms at field strength B0 = 3T and T = 50 ms at B0 = 7T. The unit
of the encoding strength b is ms/μm2

gmax B0 d(par)
min

b d(disp)
min

b

80 mT/m 3T 3.3 μm 20 3.4 μm 0.1

300 mT/m 3T 1.7 μm 260 2.6 μm 1.4

60 mT/m 7T 3.5 μm 2.4 3.7 μm 0.1

80 mT/m 7T 3.0 μm 4.5 3.2 μm 0.1

FIGURE 6 Recovery of cylinder diameters (d). Red lines show the 80%
confidence interval. The resolution limit is shown as the blue vertical
line, at dmin = 3.3 μm. The data represent a case with parallel cylinders
and SDE encoding with 𝛿 = Δ = 40 ms

where the diffraction limit defines the best optical resolution of the

microscope. The theory presented herein allows the resolution limit

to be assessed for arbitrary gradient waveforms, and also shows how

to optimise the gradient waveform in order to minimise the resolution

limit. In the very simple case of parallel cylinders, we demonstrated that

the SDE experiment is preferred over any other waveform, which is in
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agreement with the findings of Drobnjak et al.,24 who used numerical

simulations to compare SDE with ODE. Other studies have reported

DDE to be beneficial for size estimation,34,63 which stands in appar-

ent contrast to our findings. However, those studies compare an opti-

mised DDE with a suboptimal SDE, in the sense that the values of 𝜂

(Equation 30) were not maximised for SDE and DDE separately (with

T as the longest time common to the two sequences). Although DDE

sequences are not intrinsically beneficial for size estimation, DDE has

other unique applications, for example to study diffusion diffraction,74

water exchange,75–79 and intra-voxel incoherent flow of blood.52 DDE is

also useful for estimation of microscopic anisotropy,80,81 although this

is also possible with QTE, which may be experimentally advantageous

compared with DDE.42,82–84

The theory developed herein can be used to define three spatiotem-

poral regimes of the diffusion encoding. In the first regime, the diffusion

is completely restricted and d < dmin. In the second regime, the dif-

fusion is partly restricted and dmin < d <
√

D0∕f0, where f0 is the

maximal relevant frequency component of the encoding spectrum. In

the third regime, the diffusion is weakly restricted and d >
√

D0∕f0.

The motional narrowing regime encompasses both the first and second

regimes, whereas the third regime is a mixture of the motional nar-

rowing and the free diffusion regimes described by Hurlimann et al.62

These regimes can be applied to simplify modelling of restricted dif-

fusion. In the first regime, we can assume D⟂ = 0, and in the second,

D⟂ can be reliably calculated using only V𝜔 based on the low-frequency

approximation. In the third regime, knowledge of the full encoding

spectrum is required to predict D⟂, and thereby specific details such as

the number of oscillations of the waveform become relevant.

According to our analysis, the analytically computed resolution limit

is in perfect agreement with numerical results in the completely and

partly restricted regimes (Figure 4). However, in the weakly restricted

regime, the low-frequency assumption does not hold. As a result,

the analytically calculated resolution limit is underestimated, espe-

cially at a large number of oscillations. Nevertheless, even for these

scenarios, the curves from the analytical and numerical approaches

synchronously follow the same trend, determined by bV𝜔 (Figure 4).

Note that, in clinical scanners, gradient waveforms have little encod-

ing power above 100 Hz, which yields d = 4–5μm as the boundary

between the partially and weakly restricted regimes.

The present analysis concerns diffusion in cylinders, and can be used

to analyse axon diameter estimation by methods that model axons

as straight cylinders.8,20,21 Our analysis suggests that gradient ampli-

tudes in currently available clinical systems are insufficient to quan-

tify the axon diameter accurately. This result is in agreement with

Sepehrband et al.,85 who showed that the axon diameter estimated

by such models depends on gmax up to 1350 mT/m, which indicates

that diameters probed by weaker gradients reflect the available ampli-

tude rather than the underlying diameters. Moreover, in most of the

white matter, axons do not run in straight and parallel courses, but

rather in tortuous and non-parallel configurations.27,64 Even in a struc-

ture such as the corpus callosum, where axons are unusually coherent,

there is substantial orientation dispersion.65,66 In the presence of ori-

entation dispersion, higher b-values reduce the effective SNR, since

the intra-axonal water signal is attenuated proportional to the rela-

tive alignment of the axon to the direction of the diffusion encoding.

Reducing the b-value thus improves SNR, but if this is done by just

reducing g, the resolution gets worse. A key result of the present study

offers an alternative. Close to the resolution limit, the most important

determinant of the signal attenuation is the integral of the squared gra-

dient (bV𝜔). This entity can be kept constant, while b and V𝜔 can be

varied independently by the use of square-wave oscillating gradients. In

order to improve the SNR and thus improve the resolution, waveforms

should, in the presence of dispersion, use more oscillations and hence

lower b-values than for the parallel case. This finding is in agreement

with the results of Drobnjak et al.24 We also see that, with orientation

dispersion, the relative benefit of using strong gradients to achieve high

b-values diminishes (Table 1).

We wish to highlight three limitations concerning the extrapolation

of the present theoretical results to practical estimation of axon diam-

eters in white matter. First, we investigate a simplified case where

there is only intra-axonal water. However, we believe the resolution

limits reported herein to be applicable also to multi-component sys-

tems, at least as lower limits, since adding complexity such as par-

tial volume effects to the model will only make it more difficult to

estimate the diameter accurately, not easier. The second limitation

concerns the relationship between the axon diameter and the struc-

ture of the extra-cellular space,47 which we neglected in the present

analysis by considering the intra-axonal component only. Including the

extra-cellular space in the model may, however, contribute with infor-

mation on structural dimensions on its own.47,86 Due to its weaker

frequency dependence (|𝜔| versus 𝜔2), the resolution limit for esti-

mating structural dimensions of the extracellular versus intra-axonal

space may differ, and, for low frequencies, effects of time-dependent

diffusion in the extra-cellular space may dominate over those in the

intra-axonal space. Third and finally, the present analysis neglects

exchange between water environments. However, exchange can proba-

bly be safely neglected, since our previous results have shown exchange

times in white matter that are of the order of seconds or longer,78 which

is much longer than the time-scales during which effects of restricted

diffusion can be observed.

Finally, note that the diffraction limit in optical microscopy, intro-

duced in 1873, was recently broken.87 It took 135 years. Perhaps break-

ing the resolution limit in diffusion MRI can be done a little faster?
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77. Lasič S, Nilsson M, Lätt J, Ståhlberg F, Topgaard D. Apparent exchange
rate mapping with diffusion MRI. Magn Reson Med. 2011;66:356–365.

78. Nilsson M, Lätt J, Westen D, et al. Noninvasive mapping of water diffu-
sional exchange in the human brain using filter-exchange imaging. Magn
Reson Med. 2013;69:1572–1580.

79. Schilling F, Ros S, Hu DE, et al. MRI measurements of
reporter-mediated increases in transmembrane water exchange
enable detection of a gene reporter. Nat Biotechnol. 2016. doi:
10.1038/nbt.3714.

80. Özarslan E, Basser PJ. Microscopic anisotropy revealed by NMR double
pulsed field gradient experiments with arbitrary timing parameters. J
Chem Phys. 2008;128:154511.

81. Jespersen SN, Lundell H, CK Sønderby, Dyrby TB. Orientation-
ally invariant metrics of apparent compartment eccentricity from
double pulsed field gradient diffusion experiments. NMR Biomed.
2013;26:1647–1662.
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83. Szczepankiewicz F, Lasiċ S, Westen D, et al. Quantification of micro-
scopic diffusion anisotropy disentangles effects of orientation disper-
sion from microstructure: Applications in healthy volunteers and in
brain tumors. Neuroimage. 2015;104:241–252.

84. Szczepankiewicz F, Westen D, Englund E, et al. The link between dif-
fusion MRI and tumor heterogeneity: Mapping cell eccentricity and
density by diffusional variance decomposition (DIVIDE). NeuroImage.
2016;142:522–532.

85. Sepehrband F, Alexander DC, Kurniawan ND, Reutens DC, Yang Z.
Towards higher sensitivity and stability of axon diameter estimation
with diffusion-weighted MRI. NMR Biomed. 2016;29:293–308.

86. Fieremans E, Burcaw LM, Lee HH, Lemberskiy G, Veraart J, Novikov DS.
In vivo observation and biophysical interpretation of time-dependent
diffusion in human white matter. NeuroImage. 2016;129:414–427.

87. Zhang X, Liu Z. Superlenses to overcome the diffraction limit. Nat Mater.
2008;7:435–441.

How to cite this article: Nilsson M, Lasič S, Drobnjak I,
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APPENDIX

Gaussian phase dispersion (SDE case)

We can utilize the GPD approximation to express k(𝛼, 𝛽) as in Equation

7 of Nilsson et al.,8

k2(𝛼, 𝛽) = 1
𝛼2

∞∑
m=1

[
2𝛼am − 2 + 2 exp(−𝛼am)

+ exp(−𝛽am) · (2 − exp(𝛼am)

− exp(−𝛼am))] ∕
[
a3

m(am − 1)
]

(A1)

with am defined by J′(
√

am) = 0, so that
√

am are the roots of the

derivative of the Bessel function of the first kind and order.

Slew rate

The maximal frequency content of a gradient waveform is limited by

the maximal slew rate smax. We can express the effective gradient g(t) in

terms of a convolution between an ideal gradient ĝ(t) and a kernel K(t)
that depends on the slew rate, according to

g(t) = ĝ(t) ∗ K(t) → |q(f)|2 = |q̂(f)|2 · |K(f)|2 (A2)

The width of the kernel K(f) will thus determine the maximal frequency

content of q(f). The lower the slew rate, the wider K(t) becomes and the

narrower the support in K(f). The slew performance of the gradient sys-

tem thus limits the maximal frequencies that can occur with reasonable

energy in q(f). For simplicity, we express K with a Gaussian:

𝜎K(t) =
2
5

gmax

smax
and 𝜎K(f) =

5
4π

smax

gmax
(A3)

where 𝜎K(t) and 𝜎K(f) refer to standard deviations in the time and fre-

quency domains, respectively. Hence, |K(f)|2 is approximately zero for

|f| >
√

8𝜎K(f), which for gmax = 80 mT/m and smax = 200 mT/m/ms

equates to 1500 Hz.

Diffusion encoding spectra

For planar, cylindrical and spherical geometries, the

frequency-dependent apparent diffusion coefficient is the weighted

sum of negative Lorentzians:57

D(𝜔) =
∑

i

Bi
aiD0𝜔

2

a2
i

D2
0
+ 𝜔2

(A4)

where, for a cylinder,

ai =
(μi

R

)2

and Bi = 2
(R∕μi)2

μ2
i
− 1

(A5)

Here, μi are the roots to J′(μi) = 0, and J′
1
(·) is the Bessel function of the

first kind and order.57 Let

bi = aiD0 = μ2
i R−2D0 and Ci = biBi = D0

2

μ2
i
− 1

(A6)

so that ∑
i

Ci = D0 (A7)

and

D(𝜔) = D0 −
∑

i

Ci

1 + (𝜔∕bi)2
(A8)

The Lorenzian function above has a Taylor expansion according to

1
1 + x2

≈ 1 − x2 + x4 − … =
∞∑

n=0

(−x2)n (A9)

At this point in time, we are only interested in the first two terms, i.e.

1
1 + (𝜔∕bi)2

≈ 1 − (𝜔∕bi)2 (A10)

Hence,

D(𝜔) ≈ D0 −
∑

k

Ci

(
1 − (𝜔∕bi)2

)
= 𝜔2

∑
i

Ci∕b2
i (A11)

where

Ci∕b2
i = Bi

aiD0
= 2

D0

(R∕μi)4

μ2
i
− 1

= R4

D0
2
(
μ6

i − μ4
i

)−1
(A12)

and ∑
i

1

μ6
i
− μ4

i

= 7∕192 (A13)

according to Equation (33) in Wang et al.55 This derivation results in a

compact low-frequency approximation of the encoding spectrum in a

cylinder,

D(𝜔) ≈ 𝜔2 R4

D0

7
96

(A14)

This result is also found in Eq. D.4 of Burcaw et al.47
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