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Understanding bacterial population genetics is vital for interpret-
ing the response of bacterial populations to selection pressures
such as antibiotic treatment or vaccines targeted at only a subset
of strains. The evolution of transmissible bacteria occurs by mu-
tation and localized recombination and is influenced by epidemi-
ological as well as molecular processes. We demonstrate that the
observed population genetic structure of three important human
pathogens, Streptococcus pneumoniae, Neisseria meningitidis, and
Staphylococcus aureus, can be explained by using a simple evolu-
tionary model that is based on neutral mutational drift, modulated
by recombination, and which incorporates the impact of epidemic
transmission in local populations. The predictions of this neutral
‘‘microepidemic’’ model are found to closely fit observed genetic
relatedness distributions of bacteria sampled from their natural
population, and it provides estimates of the relative rate of
recombination that agree well with empirical estimates. The anal-
ysis suggests the emergence of neutral bacterial population struc-
ture from overlapping microepidemics within clustered host pop-
ulations and provides insight into the nature and size distribution
of these clusters. These findings challenge the assumption that
strains of bacterial pathogens differ markedly in relative fitness.

infinite-alleles model � multilocus sequence typing � recombination

I t is now accepted that bacteria do not conform to the clonal
model of evolution (1). The importance of recombination has

become increasingly clear in recent years, both as a fundamental
process in strain diversification (2) and as a mechanism by which
strains acquire virulence factors or resistance determinants (3).
Homologous recombination in bacteria involves the replacement
of a small segment of the bacterial chromosome (a few kilobases)
with the corresponding region from another isolate (2). The
frequency of these localized recombinational events may be
extremely rare, resulting in species that are highly clonal [e.g.,
Mycobacterium species (4, 5)], or extremely frequent, resulting in
species that are almost completely nonclonal [e.g., Helicobacter
pylori (6)]. Consequently, theoretical approaches developed for
exclusively sexual or asexual organisms are inappropriate, and, at
present, there is no general theory reconciling these variable
properties of bacteria. The problem is further complicated by
serious sampling biases arising as a result of overrepresentation
of disease isolates or antibiotic-resistant isolates in clinical strain
collections (1). This problem is especially acute for some species,
including Streptococcus pneumoniae, Staphylococcus aureus, and
Neisseria meningitidis, which we focus on here and which are
‘‘accidental’’ pathogens in that healthy carriage is common, with
disease a rare outcome. Finally, the host population structure
will influence transmission and needs to be accounted for when
considering bacterial population structure: Spread of directly
transmitted bacteria within a social group is much more likely
than between randomly chosen hosts from the population as a
whole (7, 8).

Methods
We develop a multilocus model of bacterial evolution that
incorporates varying levels of recombination (Fig. 1). To fit the
predictions of the model to empirical data requires representa-

tive samples of the natural population. Here we use four samples
from cross-sectional studies of carriage within a local area (9–12)
in which isolates were characterized by using multilocus se-
quence typing (MLST), a technique in which DNA sequences are
obtained for seven housekeeping loci and the different se-
quences at each locus are assigned as different alleles (13). The
samples are described in more detail in Table 3, which is
published as supporting information on the PNAS web site.

Results
A null model for evolutionary change is the neutral infinite-
alleles model (IAM) (14), in which mutation and drift are the
primary determinants of gene frequencies. We extend the IAM
model to include variation at multiple loci and varying levels of
localized recombination (Fig. 1). To compare the predictions of
our evolutionary model with observed population genetic struc-
ture, we initially use the distribution of pairwise allelic mis-
matches: i.e., the proportion of pairs of isolates that differ at
zero, one, two, or more of the seven sequenced loci (Fig. 2, filled
bars). This distribution has been used previously to detect
linkage between loci and to infer the degree of clonality within
different species (1, 15), because the expected allelic mismatch
distribution can easily be computed in the limit of complete
linkage equilibrium (16). Interestingly, this distribution is re-
markably similar for the two samples of S. pneumoniae from
infants at different locations (Fig. 2 A), despite marked differ-
ences in the strains composing each sample [only 17% are
present in both samples, and those that are have markedly
different frequencies in each (Fig. 3A)]. We derive an analytical
expression for this distribution in our model (see Appendix); the
best fit is shown in Fig. 2 as a dotted line.

This model, which has only two parameters, namely, the rate
at which new alleles enter the population � and the rate at which
they are shuffled by recombination �, superficially fits this
distribution quite well for all three species. Simulations show,
however, that the model consistently differs significantly at the
leftmost bar (Fig. 2, open circles), corresponding to an under-
estimate of the frequency of pairs of isolates that are identical at
all loci. The model also is inconsistent with other features of the
data. Specifically, it overestimates the number of different strains
in the sample (Table 2), does not reproduce the ‘‘nearest
neighbor’’ distribution (Fig. 3B and Fig. 5, which is published as
supporting information on the PNAS web site) and does not
match the genotypic clustering as assessed by EBURST (17) (Table
2 and Table 4, which is published as supporting information on
the PNAS web site). The purely neutral model can therefore be
rejected. The deviation from the basic model is largely due to an
excess of identical pairs of isolates in the natural populations. We
initially account for this excess by introducing an empirical
parameter, he, equivalent to the magnitude of this deviation (see
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Appendix for formulas). In all four carriage samples, he is positive
(Table 2) and significantly improved the fit to the data (solid
lines in Fig. 2). We then explored possible mechanisms by which
the excess of identical strains measured by he could be generated.
The most obvious source is sampling bias (e.g., overrepresenta-
tion of isolates associated with disease or antibiotic resistance),
which is unlikely because the populations studied in this work
were specifically designed to minimize this type of bias by
cross-sectional sampling of the natural carried population.

Another potential source of this excess is an inflation of the
frequencies of certain strains through selective advantage. How-
ever, simulations of populations under selection result in nega-
tive estimates of the parameter he (Fig. 4A). This counterintuitive
result does not indicate that selection reduces the proportion of
identical pairs of isolates. Rather, selection alters the whole
allelic mismatch distribution. Instead of only changing the
leftmost bar, the proportions of strains that differ at multiple loci
are also altered. If we naively fit a neutral (i.e., mis-specified)
model to data generated with selection, these differences across
the mismatch distribution lead to the best fit being a negative
value of he.

A further potential source of deviation from the purely neutral
model is infectious transmission: Two or more isolates may be
identical because they form part of the same short transmission
chain, which is likely in samples taken from a local population.
Such ‘‘microepidemics’’ have been directly observed in families,
daycare centers, and villages (7, 8). We therefore simulated
neutral microepidemic evolution by using maximum likelihood
estimated parameters (Table 1) and incorporating a final step to
simulate epidemic linkage as measured by he (see Appendix). The
consistency of the simulated populations with both the results of
the analytical solution and real data are remarkable (results
shown as filled circles in Figs. 2 and 3). The simulated popula-
tions were also analyzed by using EBURST (17), and the results are

shown compared with real data in Fig. 3 C and D; summary
statistics of EBURST output were found to be strikingly similar to
observed patterns for all three species (Tables 2 and 4).

The final sampling step in the model effectively reconstructs
a local population, consisting of a limited number of sociospatial
clusters, skewed in size, taken from a purely neutral global
population. This relation between local and global populations
arises dynamically, provided microepidemics are indeed re-
stricted in size (Fig. 6, which is published as supporting infor-
mation on the PNAS web site). We thus predict that for an
unbiased global sample, very little epidemic linkage should be
observed (i.e., he � 0); in the absence of such an unbiased
sample, we examined the largest available sample of S. pneu-
moniae, the MLST database of isolates submitted from global
sources (n � 1,856 at the time of study). Although these are not
systematically sampled and, therefore, the results should be

Fig. 1. A neutral multilocus infinite alleles model of bacterial evolution.
Schematic illustrating the model for a population of five individuals. The
bacterial strain infecting each individual is characterized by two integers that
identify the alleles at two loci. At time t, for example, there are two cases of
colonization by bacteria of genotype 3-2. At each generation, each individual
can infect any other (represented by black arrows). Mutations occur during
the transmission step with rate m and are indicated by red asterisks: Each
mutation always generates a new allele. Recombination events, occurring
with rate r and illustrated by blue dotted arrows, result in an allele being
inherited from a random donor. Mutations and recombination events can
affect more than one allele in a single step (not shown) and are not exclusive.
More generally, the model is defined for i loci in a population of size N. The
model is simulated by starting from a single genotype until equilibrium levels
of diversity are reached.

Fig. 2. Model fit to data. The allelic mismatch distributions Fk
7 are shown as

filled bars for S. pneumoniae (A and B), N. meningitidis (C), and Staphylococ-
cus aureus (D). (A) In the case of S. pneumoniae, two samples were included
(Oxford, gray bars; Tampere, Finland, black bars). (B) Weighted mean of the
two samples in A. The predictions of the purely neutral model and the neutral
microepidemic model are shown fitted to samples as dashed and solid lines,
respectively. Maximum likelihood parameter estimates are shown in Table 1.
Parameter estimates obtained by fitting to the two pneumococcal studies
independently were virtually identical to the joint estimate, reflecting the
strong similarity in population structure seen in A. Simulation results are also
shown (open circles for the neutral IAM and solid circles for the neutral
microepidemic model), along with 95% prediction intervals.
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treated with caution, the estimate of he is very close to zero
(0.002). We also predict from this model that if we were to
combine different local samples from a global population, only
the estimate of he would change. Analysis of the combined
pneumococcal data sets supports this view, because neither � nor
� changes; as expected, the estimate of he is reduced (0.0087).
This value is not as low as predicted by complete independence

of the samples (0.0059), but we believe the question of whether
this difference is caused by some epidemiological linkage be-
tween the populations, chance, or other factors can only be
resolved by gathering further samples.

The principal effect of microepidemic population structure at
larger scales is to reduce the effective population size to a
fraction of the number of infected hosts (Fig. 6). More realistic
nonlinear scaling of mean cluster size with census size would
reduce the effective population size still further. The suggestion
that the basic unit of transmission is in some sense larger than
the individual infected host is in accordance with recent devel-
opments in theoretical epidemiology, which have redefined key
parameters such as the basic reproduction number, R0, for
macroepidemics in terms of transmission between closely linked
clusters of individuals rather than between individuals them-
selves (18).

Although methods are available that estimate the bacterial
recombination rate from sequence data, this remains a major
computational challenge (19, 20). Our model can estimate this
quantity with ease from multilocus allelic data (e.g., MLST
data). To test the validity of the estimates, we calculate the ratio
(��� � r�m) and compare it with empirical estimates obtained
by a modification of the method of Feil et al. (21) (Table 1); these
two estimates are essentially independent, because the approach
of Feil et al. examines only the most recent evolutionary changes
(those generating strains with differences at single loci; second
bar from left in Fig. 2), whereas our estimate uses the entire
mismatch distribution but gains most of its information from
distantly related pairs of strains because these are far more
frequent. This concordance offers further support for our un-
derlying model, and we note that this estimate of r�m is robust
to variation in he [unlike previous methods based on the index of
association (1)]. The neutral microepidemic model also esti-
mates the extent of epidemiological clustering in real data (he),
which allows estimation of two new parameters: the number of
clusters, nc, and their mean size, ��. We found quite different
values for these parameters for the three species (Table 1),
suggesting differences in transmission patterns. Interestingly, S.
pneumoniae, which is not typically associated with outbreaks, had
the lowest mean cluster size ( ��). In contrast, N. meningitidis,
which is more associated with community outbreaks, had a larger
mean cluster size.

It is often assumed that strains of bacterial pathogens differ
markedly in fitness, and it is surprising that, after accounting for
microepidemics, the observed population structures fit a neutral
model. We therefore attempted to fit the neutral microepidemic
model to samples generated from a simulation incorporating
selection. Although the fit to the allelic mismatch distribution
was acceptable (Fig. 4B), the model comprehensively failed to
capture other features of these populations (Fig. 4 C–F). Thus,
if selection had played a major role in structuring the bacterial
populations we examined, we would have expected a poor fit to
these metrics. Preliminary analyses of a diverse range of scenar-
ios, including direct selection, balancing selection, population
subdivision, hypermutation, and hyperrecombination, all failed
to generate results consistent with the data. We cannot, however,
exclude the possibility that much more complex models could fit
the data as well as, or better than, that which we propose here.
Nonetheless, we are struck by the success of this simple model,
although we recognize the need to further test it against such
alternative hypotheses.

Discussion
We have developed a model of bacterial evolution and tested it
with samples from three different species. This model is defined
by only three parameters: the population mutation and recom-
bination rates and the degree of epidemic linkage in the sample.
The model successfully captures the observed structure, mea-

Fig. 3. Additional tests of the model. (A) To display differences in content
between the two S. pneumoniae samples, we plotted the frequency of each
genotype (strain) in each sample. (B) The agreement between simulation and
data from the S. pneumoniae sample in Oxford was then examined by using
the nearest neighbor distribution, defined as the proportion of isolates whose
distance to the most similar nonidentical isolate is k � 1. . . 7, shown plotted
as a function of k. Results from the purely neutral model are shown as open
circles, and the neutral microepidemic model results are shown as solid circles.
The same distribution was plotted for the three other samples in Fig. 6.
Differences in fit between the models are slight, reflecting the fact that the
greatest difference is an excess of homozygosity, to which the nearest neigh-
bor analysis is relatively insensitive. We also performed EBURST analysis of the
Oxford data set (C) and a single realization of the neutral microepidemic
model (D) simulated by using parameters from Table 1. Each different strain
is represented by a point, the size of which is the frequency of the strain.
Strains differing at a single locus, which are inferred to be linked by descent,
are joined by lines. A summary of the clustering inferred by EBURST is shown in
Table 2.
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sured by using multiple metrics, of the four samples studied
(Figs. 2, 3, and 6 and Tables 2 and 4). The flexibility of our model
and the ease of computing the key parameters should make it
ideal for further exploring the effect of different epidemic
scenarios on the population genetics of a species and for realistic
parameterized simulations of evolutionary scenarios. We have
also shown that differences in transmission patterns may be
detected by using this approach.

A key finding is that given the well known phenomenon of
microepidemics within host clusters, the population structure of the
three pathogens studied is consistent with neutral drift. The poor fit
of samples generated under selection to the model support our view
that the imprint of selection is not present in our four population
samples, although it would be interesting to explore our ability to

detect selection by using samples where selection should be present,
such as those exposed to a new vaccine or antibiotic. These findings
challenge us to either identify the signature of selection by other
means or to accept that the common assumption that directly
transmitted pathogens must be subject to strong selection is not
supported by the data. This latter conclusion has implications for
modeling and public health.

Appendix
Analytic Expression for the Allelic Mismatch Distribution. Consider
the neutral multilocus IAM with recombination, described in
Fig. 1, and define the allelic mismatch distribution Fk

i (t) as the
probability that any two isolates differ at k of i studied loci at time
t. The aim is to obtain equilibrium expressions by considering

Fig. 4. Analysis of a model with hitch-hiking selection. Selection acts upon a single unobserved locus that entirely determines the fitness of a strain. Variation
occurs at the same population diversification rates, � and �, as the MLST-defining loci. Mutation causes the fitness of an allele to be multiplied by a log-normal
random deviate of mean 1 and standard deviation s, the selection coefficient. We also tested a normal random deviate, and truncated distributions including
only beneficial or harmful mutations. Results were similar in each case. (A) The allelic mismatch distribution obtained for the neutral microepidemic model is
refitted to simulated populations with no clustering, produced with � � 5.7, � � 17.1, and varying values of the selection coefficient. The fit remains good, but
selection results in reduced estimates of � (solid line) and � (dashed line) and negative values of he (diamonds). (B–F) A single sample is drawn from a simulated
population with both selection and clustering, with � � � � 64, N � 2,000, and s � 0.1. The sample of size n � 250 includes nc � 25 epidemic clusters of mean
size �� � 6, and we attempt to refit the neutral microepidemic model to this sample produced with selection. (B) The allelic mismatch distribution fits acceptably,
resulting in estimates � � 6.4, � � 9.6, and he � 0.015. However, the resulting nearest neighbor distribution (C) and the EBURST analyses (D, sample simulated with
selection and clustering; E, sample from best-fit neutral microepidemic model; F, summary statistics) fit poorly.
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first the changes that occur during a single generation. For a
single locus, the distribution is unaffected by recombination, and
thus the classic result of Kimura (14), F0

1 � 1�(1 � �), holds,
where m is the per locus mutation rate, N is the population size,
and � � 2mN. For more loci, consider first the probability F0

i that
a pair of isolates is identical at all loci. We study the model in the
limit where it is vanishingly unlikely that two or more events
could occur simultaneously, although, in fact, the result can be
shown numerically to be valid even away from this limit. In a
generation, there are three events that could affect this: the
isolates could be from an identical progenitor (with probability
1�N), in which case they are always identical; one of the isolates
could mutate (with total probability 2im), in which case they will
fail to be identical; or they could recombine (with total proba-
bility 2ir), where r is the per locus recombination rate. The effect
of recombination is to separate the inheritance at the recombi-
nant locus from the others, thus reducing the pair comparison to
that between the recombinant locus and the i � 1 others. In
summary, the change is

F0
i �t � 1� � �1 � 1�N � 2im � 2ir�F0

i �t�

� 1�N � 2irF0
i�1�t�F0

1�t�, [1]

which results in the equilibrium expression

F0
i �

1 � i�F0
i�1F0

1

1 � i� � i�
, [2]

where we have defined the population recombination rate � �
2rN by analogy with �. For the more general expression Fk

i ,

where k � 0, note that the mismatch will increase to Fk � 1
i if

a mutation occurs at any of the i � k identical loci, but it can
be reached from Fk � 1

i if mutation occurs at any of the i � k �
1 identical loci. In the case of recombination, the possibility
that the recombinant locus may be either concordant or
discordant must be accounted for. The change in a single
generation is thus

Fk
i �t � 1� � �1 � 1�N � 2�i � k�m � 2ir�Fk

i �t�

� 2�i � k � 1�mFk�1
i � 2ir�Fk�1

i�1 �t�F1
1�t�

� Fk
i�1�t�F0

1�t��, [3]

which results in the equilibrium expression

Fk
i �

�i � k � 1��Fk�1
i � i��Fk

i�1F0
1 � Fk�1

i�1 F1
1�

1 � �i � k�� � i�
. [4]

Fitting the Model. The model was fitted by maximizing the
multinomial log-likelihood with respect to the parameters � and
�, which is given by

l��, �� �
n�n � 1�

2 �
k�0

i

F̂k
i ln�F k

i �� , ��� , [5]

where n is the sample size, F̂k
i is the observed allelic mismatch

distribution, and additive constants have been ignored.

Modified Allelic Mismatch Distribution. A modified allelic mismatch
distribution F�k

i is introduced to allow for an excess of identical
pairs of isolates by introducing the empirical parameter he as
follows: F�0

i � he � (1 � he)F0
i and F�k

i � (1 � he)Fk
i for k � 0.

The pure IAM model is recovered by setting he � 0. The
likelihood remains as defined above but is now maximized with
respect to the three parameters �, �, and he. Improvement in fit
was assessed by the likelihood ratio test, allowing for the extra
parameter. Because the multinomial likelihood (Eq. 5) overes-
timates the degrees of freedom in the data, we used the
conservative replacement of n(n � 1)�2 by n in Eq. 5. P values
for the improved fit were 0.03 for Fig. 2B, 	0.001 for Fig. 2C, and
	0.01 for Fig. 2D.

Simulation of Epidemic Linkage in a Local Sample. Initially, we
construct a truly neutral global sample. To constitute a locally
clustered sample of size n, we took nc samples from the global
population in which a single isolate was included � times

Table 1. Parameter estimates

Neutral
model

Neutral microepidemic
model Epidemic clusters Relative recombination rate

Species � � � � he nc �� nrec:nmos:nmut (r�m)pred (r�m)obs

S. pneumoniae 5.0 12.4 5.3 17.3 0.011 22�24 5.0�5.8 44:6:15 2.7 2.1
N. meningitidis 8.2 5.7 10.2 13.6 0.033 9 13.1 13:7:5 1.2 1.1
Staphylococcus aureus 4.6 0.37 5.6 0.98 0.026 7 13.6 2:0:19 0.13 0.11

� and � are, respectively, the maximum likelihood population mutation and recombination rates obtained for the neutral multilocus model. The model fit
is improved significantly by the introduction of the parameter he, which allows for an excess of identical pairs of isolates. nc and �� are the number and mean
size of the clusters inferred from the samples (the two values for S. pneumoniae are for the Tampere, Finland, and Oxford studies, respectively). nrec, nmos and
nmut are the number of pairs of isolates differing at a single locus that are classified as being the result of whole-locus recombination, mosaic recombination (i.e.,
recombination between a donor and recipient that occurs within the allele and produces a new mosaic allele), and point mutation by adapting the empirical
method of Feil et al. (21). Patterns of descent among closely related genotypes were determined by using EBURST (17) to identify ancestral and descendant alleles
among strains differing at a single locus. Recombination was identified if the descendant allele was found in other lineages (EBURST groups) within the sample
(22). Variants differing at a single base pair were assigned as mutations; the remainder were identified as mosaic recombination. (r�m)obs is the resulting empirical
estimate of the relative recombination rate, i.e., (r�m)obs � nrec�(nmos � nmut); (r�m)pred is the value predicted by our model adjusted for homozygous
recombination, i.e., (r�m)pred � F�11���.

Table 2. Summary of EBURST analysis

NStrains NEBURST groups NSingletons

S. pneumoniae
(Oxford study)

100 19 46

Neutral (95% PI) 145 30.1 40.3
(138.0–152.6) (22.5–37.7) (23.5–57.1)

Neutral microepidemic 97 18.5 45.2
(95% PI) (81.4–112.6) (12.8–24.2) (34.1–56.3)

Simulations were conducted by using the pure neutral and neutral micro-
epidemic models to generate populations that were then analyzed by using
EBURST. The numbers of strains, clusters of related genotypes (EBURST groups or
clonal complexes), and genotypes that were distantly related to all others
(singletons) are shown, as well as 95% prediction intervals (PI). Default set-
tings for EBURST were used (17).
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(drawn from a Poisson distribution with mean ��), and we
completed the sample by taking randomly drawn isolates,
included once. This skewed sampling process creates an excess
of identical pairs relative to the underlying neutral population.
The best fit values of the parameters nc and �� are determined
by matching to the number of distinct strains recorded in the
sample, subject to the constraint that he � nc ��2�(n(n � 1)),
where the metaparameter he is determined by fitting the
analytical formula to the allelic mismatch distribution. The
formula he can be derived as follows. First, consider a cluster

of size �. This results in an extra �(� � 1)�2 identical pairs of
isolates. The expected increase in identical pairs of isolates per
cluster is ��2�2, and there are nc such clusters. Thus, the
proportionate increase in the number of identical pairs of the
total n(n � 1)�2 is he � nc ��2�(n(n � 1)).
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