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Fluid-flow-induced flutter of a flag
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We give an explanation for the onset of fluid-flow-induced flutter
in a flag. Our theory accounts for the various physical mechanisms
at work: the finite length and the small but finite bending stiffness
of the flag, the unsteadiness of the flow, the added mass effect,
and vortex shedding from the trailing edge. Our analysis allows us
to predict a critical speed for the onset of flapping as well as the
frequency of flapping. We find that in a particular limit correspond-
ing to a low-density fluid flowing over a soft high-density flag, the
flapping instability is akin to a resonance between the mode of
oscillation of a rigid pivoted airfoil in a flow and a hinged-free
elastic plate vibrating in its lowest mode.

he flutter of a flag in a gentle breeze and the flapping of a

sail in a rough wind are commonplace and familiar obser-
vations of a rich class of problems involving the interaction of
fluids and structures, of wide interest and importance in science
and engineering (1). Folklore attributes this instability to some
combination of (i) the Bénard—-von Karman vortex street that is
shed from the trailing edge of the flag and (ii) the Kelvin—
Helmbholtz problem of the growth of perturbations at an inter-
face between two inviscid fluids of infinite extent moving with
different velocities (2). However, a moment’s reflection makes
one realize that neither of these is correct. The frequency of
vortex shedding from a thin flag (with an audible acoustic
signature) is much higher than that of the observed flapping,
while the lack of a differential velocity profile across the flag and
its finite flexibility and length make it qualitatively different
from the Kelvin—-Helmholtz problem. After the advent of high-
speed flight, these questions were revisited in the context of
aerodynamically induced wing flutter by Theodorsen (3-5).
While this important advance made it possible to predict the
onset of flutter for rigid plates, these analyses are not directly
applicable to the case of a spatially extended elastic system such
as a flapping flag. Recently, experiments on an elastic filament
flapping in a flowing soap film (6) and of paper sheets flapping
in a breeze (ref. 7 and references therein) have been used to
further elucidate aspects of the phenomena such as the inherent
bistability of the flapping and stationary states, and a charac-
terization of the transition curve. In addition, numerical solu-
tions of the inviscid hydrodynamic (Euler) equations using an
integral equation approach (8) and of the viscous (Navier—
Stokes) equations (9) have shown that it is possible to simulate
the flapping instability. However, the physical mechanisms
underlying the instability remain elusive. In this paper, we
remedy this in terms of the following picture: For a given flag,
there is a critical flow velocity above which the fluid pressure can
excite a resonant bending instability, causing it to flutter. In fact,
we show that in the limit of a heavy flag in a fast-moving light
fluid the instability occurs when the frequency associated with
the lowest mode of elastic bending vibrations of the flag becomes
equal to the frequency of aerodynamic oscillations of a hinged
rigid plate immersed in a flow.

Physically, the meaning of this result is as follows: For a heavy
flag in a rapid flow, the added mass effect due to fluid motion
is negligible so that the primary effect of the fluid is an inertial
pressure forcing on the plate. For a plate of length L weakly tilted
at an angle 6, the excess fluid pressure on it scales as pU?6, where
pr is the fluid density and U is the fluid velocity. The inertia of
a plate of thickness /2, of density ps, and oscillating at a frequency
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w, scales as pyiw>L 6. Equating the two yields the frequency of
oscillations of a freely hinged rigid plate approximately parallel
to the flow w, ~ (pU?/pshL)Y?. On the other hand, for a
flexible plate of thickness 4 and made of a material of Young’s
modulus E (bending stiffness of order EA3) the elastic restoring
force per unit length due to a deflection by the same angle 6
scales as Eh360/L3 so that the frequency of the lowest mode of
free bending vibrations of a flexible plate w, ~ (Eh?/psL*)"2.
Equating the two yields a critical velocity for the onset of flutter
of a plate of given length U, ~ (Eh3/p/L>)12. As we will see in
the following sections, this simple result arises naturally from the
analysis of the governing equations of motion of the flag and
the fluid. In particular, our analysis is capable of accounting for
the unsteady nature of the problem in terms of the added mass
of the fluid and the vortex shedding from the trailing edge in
terms of the seminal ideas of Theodorsen (3).

Equations of Motion

Elasticity. We consider the dynamics of an inextensible two-
dimensional elastic plate® of length L, width /, and thickness
h < L < [, made of a material of density p; and Young’s
modulus E embedded in a three-dimensional parallel flow of an
ambient fluid with a density p; and kinematic viscosity », shown
schematically in Fig. 1. We assume that the leading edge of the
naturally straight plate is clamped at the origin with its tangent
along the x axis and that there are no variations in the flow along
the direction of the clamped edge, and that far from the plate,
the fluid velocity U = Ux. Then the transverse position of the
plate Y(x, t) satisfies the equation of motion (10):

mY, = —BY . + AP + TY,,. [1]

Here, and elsewhere A, = dA/db, m = pshl is the mass per unit
length of the flag, B = ER3l/12(1 — o) is its flexural rigidity
(here o is the Poisson ratio of the material), AP is the pressure
difference across the plate due to fluid flow, and T is the tension
in the flag induced by the flow.

In deriving Eq. 1, we have assumed that the slope of the plate
is small so that we can neglect the effect of any geometrical
nonlinearities; these become important in determining the de-
tailed evolution of the instability but are not relevant in under-
standing the onset of flutter. For the case when the leading edge
of the flag is clamped and the trailing edge is free, the boundary
conditions associated with Eq. 1 are (10):

Y(t,0)=0, Y.(,0) =0,
[2]
Y. (t,L)=0, Y./ L)=0.

To close the system of Egs. 1 and 2, we must evaluate the fluid
pressure AP by solving the equations of motion for the fluid in
the presence of the moving plate.

3To whom correspondence should be addressed. E-mail: Im@deas.harvard.edu.

bOur analysis also carries over to the case of an elastic filament in a two-dimensional parallel
flow.
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Fig. 1. Schematic representation of the system. An elastic plate of length L,
width /, and thickness h << [, L clamped at the origin is embedded in a
three-dimensional parallel flow of an inviscid fluid with velocity U in the x
direction. Its transverse position is denoted by Y (x, t). The incomplete cylin-
ders depict the real vortex that is shed from the trailing edge, and an

imaginary vortex in the interior of the plate that moves inwards, and is
necessary to preserve the impenetrability of the boundary of the plate.

Aerodynamics. We will assume that the flow is incompressible,
inviscid, and irrotational. Then the tension in the flag 7 = 0,°
and we may describe the unsteady fluid flow as a superposition
of a noncirculatory flow and a circulatory flow associated with
vortex shedding, following the pioneering work of Theodorsen
(3). This allows us to respect Kelvin’s theorem preserving the
total vorticity of the inviscid system (which is always zero) by
considering a vortex sheet in the fluid and an image sheet of
opposite strength that is in the plate. Both flows may be
described by a disturbance velocity potential ¢, which itself may
be decomposed into a noncirculatory potential, ¢,., and a
circulatory potential, ¢, with ¢ = ¢, + ¢,. Then ¢ satisfies the
Laplace equation, V2¢ = 0, characterizing the two-dimensional
fluid velocity field, (u, v) = (¢x, ¢y), with boundary conditions
on the flag, V¢n|ly—o = Y; + UY,, and in the far-field, V¢p — 0
asr — .

For small deflections of the plate, the transverse velocity of the
fluid, v, varies slowly along the plate. Then we may use a classical
result from airfoil theory (11) for an airfoil moving with a
velocity v = Y, + UY,, assumed to be vary only slightly from a
constant, to deduce an approximate form for the noncirculatory
velocity potential along the plate as (12)

(bnc = Vx(L 7x)[Yt + UY:v] [3]

This expression neglects terms of order O(UY,) (and higher)
that correspond physically to the rate of change of the local angle
of the plate, which can only be systematically accounted for in a
non-local way.4 A true check of the validity of our model requires
a comparison with the solution of the complete problem, con-
stituting work in progress. However, as we will see, this simple
model is able to capture the qualitative essence of the mecha-
nisms involved and agrees reasonably with experiments. Pro-
ceeding forward, then, we can use the linearized Bernoulli
relation to determine the jump in pressure due to the noncir-
culatory flow so that

Pnc = _2pf(at¢)nc + Uax‘;bnc)

UQ2x — L
_ % (Y, + UY,) — 2\x(L — x)pY,.

[4]

‘Inthe appendices, we treat the case where T # 0due to the presence of a Blasius boundary
layer.

dThe general solution of the Laplace equation in two dimensions with the given boundary
conditions may be written as ¢ = [ dx'L(Y: + UYy)/|x — x| and yields a nonlocal
potential. However, when the transverse velocity Y: + UYx varies slowly in space and is
close to a constant, we may use the local approximation given by Eq. 3.
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Here we note that the fluid added-mass effect® is characterized
by the term proportional to Y, and again we have neglected
terms of order O(Y,,) and higher associated with very slow
changes in the slope of the plate.

Kelvin’s theorem demands that vorticity is conserved in an
inviscid flow of given topology. Thus, the circulatory flow
associated with vortex shedding from the trailing edge requires
a vorticity distribution in the wake of the airfoil and a (bound)
vorticity distribution in the airfoil to conserve the total vorticity.
If a point vortex shed from the trailing edge of the plate with
strength —TI" has a position (L/2)(1 + Xy), Xo = 1, we must add
a point vortex of strength I' in the interior of the sheet at
(L/2)(1 + (1/X0)). This leads to a circulatory velocity potential
along the plate (3-5)

T (L —x)\x2 -1
¢r = o arctan s

5(1 + xg) — xx,

where xo = ((xo + 1/X0)/2) characterizes the nondimensional
center of vorticity, which is at ((1 + x¢)/2). Therefore, for a
distribution of vortices of strength y defined by I' = (L /2)dx,
the circulatory velocity potential is

yx(L —x) Wwe—1 4
vdx

E(l + x() — xx,

0-

__LLf
b, = w2 1 arctan

[5]

To calculate the pressure difference due to the circulatory
flow, we assume that the shed vorticity moves with the flow
velocity U so that 9,¢, = (2/L)Udy,¢+.f Then, we may write (3)

U “2x + L(xg—1
P, = i f (o )ydxo. (6]
1

The vortex sheet strength <y in the previous expression is
determined by using the Kutta condition, which enforces the
physically reasonable condition that the horizontal component
of the velocity does not diverge at the trailing edge:®

9y + dpc)|e—r = finite. [7]

Substituting Eqs. 3 and 5 into Eq. 7 yields the relation
L xoTl dxy =Y, + UY, 8
27 xo—ly 0o=Y t x* [8]

1

Multiplying and dividing Eq. 6 by the two sides of Eq. 8 we
obtain

_(@eC-1)+2x01-0)

Y \/x(L —Xx)

where

eWhen the plate moves, fluid must also be displaced and the sheet behaves as if it had more
inertia (12).

This implies a neglect of any acceleration phase of the vorticity, a reasonable assumption
at high Re.

9This is tantamount to the statement that that the inclusion of viscosity, no matter how
small, will regularize the flow in the vicinity of the trailing edge.
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is the Theodorsen functional (3) quantifying the unsteadiness of
the flow. For example, for an airfoil at rest that starts to move
suddenly at velocity U, y = 8(xo — (2/L) Ut) corresponding to
the generation of lift due to a vortex that is shed and advected
with the fluid. Then

C=1 L 11

o aU [11]
We see that as Ut/L — o, C — 1, which limit corresponds to
the realization of the Kutta condition for steady flow (12).
Adding up the contributions to the pressure jump across the
plate from the circulatory and noncirculatory flows given by Egs.
5 and 9 we have AP = P,. + P,, i.e,

Ap = _PfUC['Y]f(%) (Y, + UY,) — LPf”(%) Y

[12]
where the dimensionless functions n(s) and f(s) are
1-ys
f(S):Z\/ PR [13]
n(s) =21 — s)s. [14]

By way of comparison, our consideration of the fluid forces
embodied in Eq. 12 differs from that of Crighton and Oswell
(13), who treated the case of an infinite plate avoiding many of
the complications of a finite plate, and is also different from the
treatment of Fitt and Pope (8), who neglected the role of fluid
added-mass. In the slightly different context of fish swimming,
Lighthill (14) considered an undulating slender body such as an
eel swimming at high Reynolds number for which he wrote

AP = (9, + Ud)(akx)v),

for the lateral force exerted by the fish on a water slice by
equating it to the material derivative of the momentum liberated
in the fluid, with a(x) as an ad hoc representation of the apparent
mass of the cross section at x, and v = Y; + UY,. Our theory
differs from this by explicitly accounting for the potential flow
field and vortex shedding using the Theodorsen approach in the
limit of small deformations when the vertical velocity v is almost
constant, and suggests an obvious extension of our work to
locomotion.

Aeroelasticity. Substituting Eq. 12 in Eq. 1 (with 7 = 0) gives us
a single equation of motion for the hydrodynamically driven
plate

mY, = —BY

~nuctyf| ,xj) (Y, + UY,)

X

with C[v] determined by Eq. 10. We note that Eq. 15 accounts
for the effects of unsteady flow past a flexible plate of finite
length, including vortex shedding and fluid added-mass, but is
only valid for small-amplitude motions. To make Eq. 15 dimen-
sionless, we scale all lengths with the length L of the flag, so that
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x =sL,Y = nL, and scale time with the bending time L/Upg,
where Ug = (1/L)V/(B/m) is the velocity of bending waves of
wavelength 27L. Then Eq. 15 may be written as

*A/tn'rr = T Mssss T PUOC[YV(S)(UT + lxlo’ﬂs). [16]

Here Ml = 1 + pn(s), where p = (pL/m) = (py/p)(L/h)
characterizes the added mass effect and the parameter uy =
(U/Uy) is the ratio of the fluid velocity to the bending wave
velocity in the plate. We can use symmetry arguments to justify
the aerodynamic pressure C[vy]f(s)(n. + uoms): the term m;
arises because the moving fluid breaks the s — —s symmetry,
while the term 7, arises because the plate exchanges momentum
with the fluid, so that the time reversibility 7 — —7 symmetry
is also broken. These two leading terms in the pressure, which
could have been written down on grounds of symmetry, corre-
spond to a lift force proportional to m, and a frictional damping
proportional to m,. By considering the detailed physical mech-
anisms, we find that the actual form of these terms is more
complicated due to the inhomogeneous dimensionless functions
f(s), n(s). Thus, understanding the flapping instability reduces
to a stability analysis of the trivial solution 1 = 0 of the system
16, 2 to perturbations as a function of the problem parameters
p> Uo.

Since the free vortex sheet is advected with the flow, the
vorticity distribution may be written as y = y((2U/L) (t — t1) —
Xo) and #; being the time at which shedding occurs, which in
dimensionless terms reads y = y(2uo(T — 1) — Xo). Accounting
for the oscillatory nature of the flapping instability with an
unknown frequency w suggests that an equivalent description of
the vorticity distribution is given by y = Re(Ae/ @7~ a¥)
where ¢ = w/2uy is a nondimensional wave number of the vortex
sheet. Using the above traveling wave form of the vorticity
distribution in Eq. 10 we get an expression for the Theodorsen
function (3),

Hy(q)
Hylq) + iHy(q)
where H; are Hankel functions of ith order. The system 16, 17,

2 completes the formulation of the problem for the stability of
a straight flag.

Clyl=Cl) = [17]

Stability Analysis

To understand the mechanism of instability of the trivial solution
of 16, 2, we note that for a typical textile flag in fast-moving air,
the added-mass parameter p = 1, while the scaled velocity 1y >
1. We can thus simplify Eq. 16 even further by looking at the
asymptotic limit p — 0, uy — % but with the scaled aerodynamic
pressure puj being finite. Furthermore, in this limit the vorticity
is advected rapidly from the trailing edge so that we can use the
quasi-steady approximation (15). This supposes that the lift
forces are slaved adiabatically to those on a stationary airfoil
with the given instantaneous transverse velocity Y, + UY,, so
that C — 1, following Eq. 11. By assuming that the Kutta
condition is satisfied instantaneously, we overestimate the lift
forces and thus expect to get a threshold for stability that is
slightly lower than if C # 1. Then Eq. 16 becomes time-
reversible:"

Nrr = ~ Mssss — P”%f(s)”fh [18]

The two terms on the right-hand side of Eq. 18 correspond to the
existence of two different modes of oscillation: (i) that of a
flexible plate bending with a frequency that is dependent on the

hThis is because the term breaking time reversal symmetry puomn. becomes negligibly small.
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Fig. 2. Spectrum Im(o), Re(o) of the system (18,2) when p << 1 (with u§ =
(1 0.53/\/;;)). The eigenvalues with the smallest absolute value are plotted for
up = 0.9uf (disks) and for ug = 1.1uf (square). We see that instability occurs
via a collision and splitting of two pairs of eigenvalues along the imaginary
axis (indicated by the arrows) and is a signature of a 1:1 resonance mechanism
in a time-reversible system.

wavenumber and (if) that of a rigid plate in the presence of
flow-aligning aerodynamic forces. In this limiting case, we can
clearly see the physical mechanisms at work in determining the
stability or instability of the plate: Small plates are very stiff in
bending, but as the plate length becomes large enough for the
fluid pressure to excite a resonant bending instability, the plate
starts to flutter. Equivalently, the instability is observed when
the bending oscillation frequency become of the order of the
frequency of oscillations of a hinged rigid plate immersed in a
flow. This simple picture allows us to estimate the criterion for
instability by balancing the bending forces (Eh3n/L*) with the
aerodynamic forces p;U?(n/L) so that for a given flow field the
critical velocity of the fluid above which the flag will flutter

scales as
Eh3 1/2
(o)

which in dimensionless terms corresponds to ug ~ 1/p'/2. Then
the typical flapping frequency w is given by balancing plate
inertia pshw?n with the aerodynamic forces pU?(n/L) and

leads to
U2 1/2
o~ (2]
pshL

[19]

[20]

To see this quantitatively, we look for solutions to 18, 2 of the
form n(s, 7) = &(s)e’” and compute the associated spectrum,
a(uo) using AUTO (16). In Fig. 2, we show that for uy < u§ =
10.53/V/p with p << 1, the spectrum lies on the imaginary axis
as expected, and as uo = uj, the four eigenvalues with smallest
absolute value collide and split, leading to an instability via a 1:1
resonance (17).

As p ~ O(1), the effective damping term, puoCf(s)n., be-
comes important, so that the spectrum is shifted to the left, i.e.,
Re(o) < 0. In this case, although the instability is not directly
related to a resonance, the physical mechanism remains the
same, i.e., a competition between the destabilizing influence of
part of the fluid inertia and the stabilizing influence of elastic
bending, subject to an effective damping due to fluid motion.
Substituting the separable form n(s, 7) = &(s)e“” into Eq. 16 we
get

02'/“& = 7§ssss - C[V]Puof(s)((ff + uOgs)- [21]

1832 | www.pnas.org/cgi/doi/10.1073/pnas.0408383102

At the onset of the oscillatory instability, Re(o) = 0, so that o =
iw and C[v] is given by Eq. 17. Together with the boundary
conditions 2, this yields a nonlinear eigenvalue problem for w, &
since the Theodorsen function C(g) = C(w/2u,) depends on w.
We again solve the resulting system numerically with the AUTO
package (16), using a continuation scheme in o starting with a
guess for the Theodorsen function C(w/2uy) = C(0) = 1. The
results, shown in Fig. 3, show that when uo > u§(p), Re(a) > 0
with Im(o) # 0, i.e., an oscillatory instability leading to flutter
arises. We see that for sufficiently large u, the plate is always
unstable, i.e., large enough fluid velocities will always destabilize
the elastic plate. As p >> 1, the added mass effect becomes
relatively more important and it is easier for the higher modes
of the plate to be excited. We note that the stability boundary
when C # 1 accounting for vortex shedding corresponds to a
higher value of the scaled fluid velocity u( than that obtained by
using the quasi-steady approximation C = 1, and is a conse-
quence of the quasi-steady approximation, which overestimates
the lift forces. In Fig. 3 Inset, we see that as p — 0, g — 0.
Therefore, C(q) = C(0) = 1 so that in this limit the quasi-steady
hypothesis is a good approximation. In Fig. 4 we show the mode
shapes when p < 1 and p >> 1; as expected, the most unstable
mode for p >> 1 is not the fundamental mode of the plate. We
also see that the normalized amplitude of the unstable modes is
maximal at the trailing edge; this is a consequence of the
inhomogeneous functions f(s), n(s) in Eq. 16 as well as the
clamped leading edge and a free trailing edge.

In Fig. 2 we also show the experimental transition curve
obtained from a recent study on the onset of flutter in paper
sheets (7). The large error bars in the experimental data are due
to the fact that there is a region of bistability wherein both the
straight and the flapping sheet are stable. Nevertheless, we see
that we do capture the qualitative trends of the experiments, and
in the following discussion we show that it is possible to do

Py

Fig. 3. Stability diagram obtained by solving the eigenvalue problem 16, 2
parametrized in terms of the scaled added mass, p, and the scaled flow
velocity, ug. The thin dashed line represents the transition curve using the
quasi-steady approximation where C = 1; for values of p, ug below this line,
the flag is stable, and for values above it, it is unstable. The thin solid line
represents the transition curve when vortex shedding is taken into account,
i.e., C # 1.The role of the third dimension and flag tension is considered in
the appendices and changes the marginal stability curve slightly. The bold
solid line is obtained by including three-dimensional effects using a simple
model (see Appendix 1) for a flag of aspect ratior = 2.5, and the bold dashed
solid line takes into account the tension in the flag that arises due to viscous
effects via a simple estimate of the Blasius boundary layer (see Appendix 2)
with Re = 104 The dots correspond to experimental data characterizing the
transition to flutter in three-dimensional flows past flexible sheets of paper
(7); the large error bars are a consequence of the variations due to three-
dimensional effects as well as regions of bistability where both the flapping
and stationary state are stable. (Inset) The dimensionless wavenumber of the
instability g = (w/2up) as a function of p. When p << 1, g tends to be zero and
Cq) — 1.
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Fig. 4. Snapshots corresponding to the mode of instability &s) with p = 0.2, ugp = 66 (a) and p = 25, ug = 6.6 (b). We see that for sufficiently large values of
the added mass parameter p, the primary instability of the flag flutter occurs in a higher mode than otherwise.

slightly better quantitatively by accounting for the effects of the
tension in the flag due to viscous boundary layers and the third
dimension.

Discussion

Our linearized theory cannot capture the bistability in the
transition to flutter without accounting for the various possible
nonlinearities in the system arising from geometry. But even
without accounting for these nonlinearities, there is a systematic
discrepancy between our theory and the data, which consistently
show a higher value of u( for the onset of the instability. While
there are a number of possible reasons for this, we believe that
there are three likely candidates: The role of nonlocal interac-
tions, three-dimensional effects, and the tension in the plate
induced by the Blasius boundary layer, all of which would tend
to stabilize the sheet and thus push the onset to higher values of
up. Postponing the question of nonlocal interactions to the
future, in Appendix 1 we describe a simple model to account for
three-dimensional effects and show that it pushes up the stability
boundary as shown in Fig. 2. An explanation of this effect follows
immediately from the fact that the added-mass parameter is
rescaled due to the effects of the lateral boundaries of the flag.
In Appendix 2, we consider the role of the tension in the flag due
to the fluid induced shear at large but finite Reynolds numbers.
Using the Blasius boundary layer calculation to determine the
tension, 7, via (I.1) a reworking of the stability analysis in the
previous section pushes up the marginal stability curve by ~20%
when Re ~ 10%, making the comparison with the experimental
data quantitatively better. A final remark concerns the role of
the free vortex sheet behind the flag. We have assumed that this
sheet is localized to the vicinity of y = 0, but experimental
observations (6, 7) show that a Kelvin—-Helmholtz-like instability
destabilizes the sheet giving it a transverse velocity component.
Thus, the vortex sheet is advected at a velocity slower than that
of the fluid. Neglecting the transverse dynamics of the vortex
sheet as done here overestimates the lift forces and lowers the
marginal stability curve for the onset of the instability.

The commonplace occurrence of flutter in a flag belies the
complexity hidden in this phenomenon. Extracting a qualitative
and quantitative understanding involves the consideration of a
number of effects. Our hierarchy of models starting with a
relatively simple physical picture of the basic resonance-like
behavior to the more sophisticated analyses in the quasi-steady
and the unsteady cases have allowed us to dissect the physical
mechanisms involved. In particular, we account for the finite
length and finite bending stiffness of the sheet, as well as the
fluid effects due to added-mass, vortex shedding, three-
dimensional flow, and viscous boundary layer drag. We also
provide a relatively simple criteria for the onset of the instability
in terms of the scaling laws (19, 20). There are clear avenues for
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further questions, the most prominent of which include a de-
tailed comparison with a two-dimensional numerical simulation
and further experiments; these will be reported elsewhere.

Appendix 1: Three-Dimensional Effects

In this appendix, we introduce an approach that accounts for
three-dimensional effects. By introducing the noncirculatory
velocity potential (Eq. 3), the flag is assumed to a flag of infinite
span moving in the y direction with a velocity v. As a conse-
quence, ¢, did not depend on the z variable. To generalize the
analysis of Theodorsen to the case when the flag has finite width,
we assume the flag to be a rectangular plate of length L and
width /. Integrating the equation of motion for the plate (Eq. 1)
in the z direction to simplify the problem in this case yields

!
pshl)ztt = _Byxxxx - 2pf(at + Uax)f ¢(x7 O+a Z)dZ,
0

[22]

where we have used the linearized Bernoulli equation to deter-
mine the pressure. The last term in Eq. 22 simplifies when the
flag is infinitely wide, i.e., when ¢(x, 0%, z) = ¢(x, 0"). More
generally, we define the function A(r)

1
f Guclx, 07, 2)dz = [A(r) . (x), [23]

0

where r = (I/L) is the aspect ratio of the flag, and ¢,.(x, 07) is
the noncirculatory potential corresponding to the infinitely wide
flag. A(r) characterizes the importance of the third dimension,
and we expect that A(r)/r — 1 whenr — 0 and A(r) — 1 when
r — . Indeed, using a commercially available software program
FEMLAB, to compute ¢, aty = 0% as a function of r confirms
this, as shown in Fig. 5. Similarly, since the circulatory potential
computed via the Kutta condition (Eq. 8) is also proportional to
A(r) so that Eq. 22 reads

(1 +A(”)P)"7-rr = T Mssss — PA(”)UOC['Y]f(S)(”?-r + uo”’h)'
[24]

We see that including three dimensional effects modify the
added mass parameter and the pressure, both of which are
rescaled by a factor A(r), which is smaller than unity. As a
consequence, the marginal stability curve shown in Fig. 3 is
shifted up, as shown in Fig. 3, and is even closer to the
experimental data. Of course, this simple model ignores the
additional complexity of vorticity distributions along the edges of
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Fig.5. Three-dimensional effects. (a) Plot of the noncirculatory velocity potential for an aspectratio of the flagr = //L = 1.5.(b) Plot of the aspect ratio function

A(r) as function of r.

the flag, at z =
trend.

0,/, and is thus only suggestive of the general

Appendix 2: Tension Induced by the Boundary Layer

In high Reynolds number flows past the flag, the viscous
boundary layer exerts a shear stress on the flag that puts in under
avariable tension T which stretches the flag nonuniformly, being
largest at the clamped anchor and vanishing at the trailing edge.
This stabilizes the flag to some extent; in particular, it may be
responsible for the experimentally observed subcritical nature of
the instability (6). Restricting ourselves here to the case of the
linearized theory for a slightly deformed flag with a Blasius
boundary layer leads to a wall shear stress T ~ [p; V (vU3/x) (12),
where v is the kinematic viscosity of the fluid. When combined
with the equation for the balance of horizontal forces 7, = —1
and the boundary condition 7(L) = 0, we find that

1. Paidoussis, M. P. (1998) Fluid-Structure Interaction: Slender and Axial Flow
(Academic, London).

2. Lord Rayleigh (1879) Proc. Lond. Math. Soc. X, 4-13.

3. Theodorsen, T. (1935) NACA Report 496, http://naca.larc.nasa.gov/reports/
1935 /naca-report-496.

4. von Karman, T. & Burger, J. M. (1935) in Aerodynamic Theory, ed. Durand,
W. F. (Springer, Berlin), vol. 2.

5. Glauert, H. (1997) Elements of Aerofoil and Airscrew Theory (Cambridge Univ.
Press, Cambridge, U.K.), 2nd Ed.

6. Zhang, J., Childress, S., Libchaber, A. & Shelley, M. (2000) Nature 408, 835.

7. Watanabe, Y., Suzuki, S., Sugihara, M. & Sueoka, Y. (2002) J. Fluids Struct. 16,
529.

8. Fitt, A. D. & Pope, M. P. (2001) J. Eng. Math 40, 227.

9. Zhu, L. & Peskin, C. S. (2002) J. Comp. Phys. 179, 452.

1834 | www.pnas.org/cgi/doi/10.1073/pnas.0408383102

T—4lpr2<1 f) 25
=3 R\ \L) [25]

where the characteristic Reynolds number is defined as Re =
UL/v >> 1. Using this simple relation in Eq. 1 yields an
eigenvalue problem similar to 21 for the instability threshold.
Solving this with Re ~ 10% shifts the marginal stability curve
upwards in the direction of the experimentally obtained one, as
shown in Fig. 3, but the effect is small.
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