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Research on next generation agricultural systems models shows that the most important current limitation is
data, both for on-farm decision support and for research investment and policy decision making. One of the
greatest data challenges is to obtain reliable data on farmmanagement decision making, both for current condi-
tions and under scenarios of changed bio-physical and socio-economic conditions. This paper presents a frame-
work for the use of farm-level and landscape-scale models and data to provide analysis that could be used in
NextGen knowledge products, such as mobile applications or personal computer data analysis and visualization
software.We describe two analytical tools - AgBiz Logic and TOA-MD - that demonstrate the current capability of
farmlevel and landscape-scale models. The use of these tools is explored with a case study of an oilseed crop,
Camelina sativa, which could be used to produce jet aviation fuel. We conclude with a discussion of innovations
needed to facilitate the use of farm and policy-level models to generate data and analysis for improved knowl-
edge products.
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1. Introduction

In the introduction to this special issue, Antle et al. (2016b) discuss
the critical need for data, models and knowledge products that provide
user-friendly data acquisition and analytical capability for decision
makers. The use cases range from farm-level decision support, to the ag-
ricultural research community and donors making research investment
decisions, to policy decision makers whose goal is the sustainable man-
agement of natural resources. Janssen et al. (2017) provide examples of
data and information technology structures that illustrate how private
and public data components could be developed for such use cases.
Jones et al. (2017) argue that the most important current limitation is
data, both for on-farm decision support and for research investment
and policy decisionmaking. One of the greatest data challenges is to ob-
tain reliable data on farm management decision making both for cur-
rent conditions and under scenarios of changing bio-physical and
socio-economic conditions.

This paper discusses how farm-level decision models can be used to
support farm decision making and to provide data for landscape-scale
models for policy analysis. In the second section of this paper we pro-
vide an overview of the kinds of information needed to support sci-
ence-based policies for sustainable landscape management as well as
improved on-farm management. We describe how existing decision
support tools could be used to develop a data infrastructure that can
en access article under
provide this type of information. In sections three and four we describe
a landscape-scale policy analysis tool (TOA-MD) and a farm-level deci-
sion support tool (AgBiz Logic) that could be used to support landscape
scale and farm level decision-making. Section five illustrates the use of
these tools with an analysis of the economic potential for a new oilseed
crop, Camelina sativa, to be incorporated into the winter wheat-fallow
system used in the U.S. Pacific Northwest. In the concluding section
we discuss the challenges that will need to be addressed if these and
other similar data and modeling tools are to be integrated into data
and modeling platforms that could support new knowledge products
for both farm and policy decision makers.

2. The need for better data, models and knowledge products

Both governmental and non-governmental organizations have
established awide variety of data, knowledge and institutional arrange-
ments that together constitute an “infrastructure” that supports man-
agement of agricultural landscapes. This physical and institutional
infrastructure differs greatly around the world, but all have in common
the very substantial challenge of acquiring timely, site-specific data and
combining it with analytical tools to improve the quality of decision
making from farm to landscape scales. To varying degrees, this decision
making infrastructure has evolved in many countries along with public
policy towardswhatwewill describe as “science-based policy” – that is,
policy designed to achieve the goal of sustainablymanaging agricultural
landscapes as efficiently and effectively as possible given the best-avail-
able science and technology.
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A large and growing body of scientific knowledge from agricultural,
environmental, economic and social science disciplines exists as a foun-
dation onwhich a science-based policy for agriculture can be further ad-
vanced, startingwith the idea that agriculture is a “managed ecosystem”
(Antle et al., 2001; Antle and Capalbo, 2002; Swinton et al., 2007). The
scientific literature has established that farmers' land management de-
cisions affect biological and physical systems through a number of
mechanisms. Some effects, such as changes in soil productivity, may
be limited to the land owned by the farmer; others, such as runoff into
surfacewaters, may appear offsite. A key insight from this body of scien-
tific literature is that agricultural productivity depends upon and plays a
key role in providing a set of “ecosystem services” ranging from food
production to the provision of cleanwater andmaintenance of biodiver-
sity (Reid et al., 2005).

There are two types of policies and programs being used for agricul-
tural landscape management often referred to as “conservation”
and “working lands” policies, closely related to the ideas of “land spar-
ing” and “land sharing” used by ecologists for wildlife management
(Phalan et al., 2011). In addition to managing agricultural landscapes,
agricultural policy in many countries has also sought to improve the
economic well-being of agricultural households through a variety of
subsidy programs that transfer income from taxpayers to agricultural
producers and landowners. The biofuel policy we discuss later in this
paper is an example of a working land policy designed to produce envi-
ronmental benefits by substituting biofuels for fossil fuels while main-
taining food crop production.

These and other types of domestic and trade policies may affect pro-
ducers' land management decisions, and may either complement or
conflict with the goals of sustainably managing agricultural landscapes.
For example, the biofuel development program investigated later in this
paper shows that subsidies may be required to achieve its goals of in-
creasing biofuel crop production, butmay also reduce food crop produc-
tion and increase food prices. Both the resource efficiency and the
distributional effects of policies are important to agricultural producers
and to others in society, and need to be taken into account in designing
science-based policies. Indeed, there are inevitably trade-offs among the
various private and public goals related to the management of agricul-
tural landscapes. A goal of the knowledge infrastructure needed to sup-
port science-based policy is to improve our understanding of these
trade-offs so that stakeholders can make informed choices among poli-
cy alternatives and their likely impacts.

2.1. Assessing policy synergies and tradeoffs

Economics provides an analytical framework to evaluate the need
for policy interventions, given sufficient physical, biological and eco-
nomic data. In this framework, typically described as “benefit-cost anal-
ysis,” private outcomes (e.g., farm income generated by producing and
selling crops and livestock) are combined with the value of “non-mar-
ket” outcomes, such as maintaining water quality and biodiversity, to
determine the management strategy that yields the best outcome for
society. In principle, if all policy options could be evaluated in this
way, the best option could be identified. To implement this benefit-
cost framework, however, both quantities and values of marketed
goods are needed (e.g., quantity and price of corn produced), as well
as quantities and values of non-market outputs (e.g., nutrient concen-
tration in surface water and the environmental or health damages
caused by it).

While it is straightforward to measure and value market outcomes
such as the amount and value of corn produced in a given area, it is dif-
ficult to quantify and value non-market outcomes such as changes in
ecosystem. With adequate scientific understanding, spatially-relevant
data and suitablemeasurement technologies, it is possible to objectively
quantify the non-market. But in many cases valuing non-market out-
puts is exceedingly difficult. For example, contamination of water by
nutrients such as nitrates may have adverse impacts on human health,
and it may be possible to estimate the magnitude of these effects, but
it is difficult to attach amonetary value to health effects that is generally
accepted by the affected people and society. Similarly, ecosystem
services such as biodiversity are difficult to quantify and value in mon-
etary terms. For these reasons, strict application of the “benefit-cost
analysis” approach to the design of science-based policies faces serious
challenges.

An alternative to benefit-cost analysis is what we refer to as “policy
tradeoff analysis” (Crissman et al., 1998; Antle et al., 2014; Kanter et al.,
in press). Rather than attempting to attach monetary values to ecosys-
tem services, the tradeoff analysis approach defines a set of quantifiable
economic, environmental and social “indicators” that can be used to as-
sess the status of the agricultural landscape and outcomes associated
with it. Alternative policies are evaluated in terms of the interactions
among these indicators. In this approach, there is no one “solution” or
best policy because different stakeholders may value tradeoffs between
outcomes (indicators) differently. However, the tradeoff analysis ap-
proach has the virtue of providing the various stakeholders with the in-
formation they need to make these value judgments.

Tools suitable for policy tradeoff analysis are already being used in
research and policy design (Antle et al., 2014; Kanter et al., in press).
Many indicators have been developed for policy analysis (Bates and
Scarlett, 2013). Various measures of farm household well-being are
used, such as farm income and its distribution among geographic re-
gions and among different types of farms. Measures of environmental
outcomes and ecosystem services are available from direct measure-
ments and from models, including soil quality and productivity, air
and water quantity and quality, greenhouse gas emissions, and wildlife
habitat. For example, the U.S. Department of Agriculture has construct-
ed an “environmental benefits index” to assist in the design and imple-
mentation of conservation programs that combines a number of
different environmental indicators into a summary measure (U.S.
Department of Agriculture. Economic Research Service, 2006).

2.2. The need for better farm-level data and analytical tools

The increasing utilization of precision farming and mobile technolo-
gies, together with improvements in data management software, offer
expanding opportunities for an integrated data infrastructure that
links farm-level management decisions to site-specific bio-physical
data and analytical tools to improve on-farm management. These
farm-level data can be integrated with public data at the landscape
scale for research and policy analysis. Analytical tools using data at the
landscape scale could provide the improved understanding needed to
support science-based policy and sustainable management of agricul-
tural landscapes.

Much of this growing volume of new data is private – for example,
information about where and when agricultural operations occur, and
their consequences. There is also a growing amount of public data,
such as satellite imagery and weather and soil data, historical crop
yields, and economic data. A critical feature of the newknowledge infra-
structure is that it must be able tomeasure, store, manage and integrate
both private and public data inways that respect the privacy and propri-
etary interests of individuals while enabling diverse stakeholders to
benefit from improved information and analyses.

In addition to the need to be profitable and provide an acceptable
standard of living for the farm household, farm decision making must
increasingly respond to the requirements of environmental regulations
and related public policies aiming to achieve more sustainable resource
management. Farmers must also meet the demands by food companies
and the public for assurance that sustainable and ethical practices are
being used. All of these pressures – economic, environmental and social
– create a need for better farm-level data and analytical tools.

New technologies began to provide new sources of “big data”
for farm management beginning with the automation of agriculture
1990s. Machinery including tractors, chemical applicators, and
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harvesters are now equippedwith global positioning system controllers
that can both control and track various aspects of the farm operations,
and hand-held mobile devices as well as personal computers and man-
agement software provide managers with ways to enter information
about management decisions and carry out analysis. Moreover, these
data can be stored “in the cloud,” aggregated with data from many op-
erations, and used for analysis to improve on-farm management as
well as for policy analysis as discussed in the previous section.

Due to these technologies, some producers now have access to their
past crop yield and related management data at the field or sub-field
resolution. This information can be combined with satellite imagery,
high-resolution spectral and thermal data obtained from UAVs, and
weather data. These data provide the foundation for highly sophisticat-
ed, site-specificmanagement – i.e., “precision agriculture” – that has the
potential to substantially improve economic and environmental effi-
ciency of management decisions and also provide the kind of informa-
tion needed to meet both private and public demands for sustainable
agricultural production. However, to achieve these efficiency improve-
ments, the capability to effectively capture and analyze these data is
needed. For example, despite these advances in data acquisition by
equipment sensors, variable rate application of nutrients and other ag-
ricultural chemicals continues to be based on simple rule-of-thumb or
empirical approaches, and not by using model-based systems ap-
proaches that account for the interaction of soils, weather and related
management decisions. In addition to the farm and landscape scale
analyses discussed thus far, there will also be a growing demand for
farm-level information to be integrated with other components of the
agricultural value chain, tomeet both policy requirements and consum-
er demands for more sustainably produced food products.

2.3. Assessing impacts of new technologies and climate adaptation

Most agricultural technology impact assessment is carried out after
technologies have been disseminated. However, there is a growing rec-
ognition of the need for forward-looking, or ex ante, technology impact
assessment designed to anticipate both intended and unintended im-
pacts (Antle, 2011; Antle et al., 2014). One of themost important grow-
ing applications of ex ante impact assessment is for climate adaptation
and climate smart agriculture (Lipper et al., 2014). There is awidely rec-
ognized need to not only assess climate impacts on agricultural systems,
but also to develop adaptation strategies and provide information to
support farmer decision making for climate adaptation (Government
Accounting Office, 2014). There are two key elements of this type of
analysis.

First, the research team must project the future climate and socio-
economic conditions in which the farm decision maker will be operat-
ing. New multi-disciplinary and participatory methods to create future
scenarios for this type of analysis have recently been developed
(Valdivia et al., 2015). Second, researchers need to obtain information
about the potential adaptations and theways that farm decisionmakers
would implement them. Farm-level decision support tools linked to a
web-based system could be used to obtain reliable information about
famers' currentmanagement practices, and also could be used to obtain
their evaluations of management alternatives under conditions defined
by future changes in climate, economic conditions and policies.

2.4. Farm-level and landscape-scale data and analytical tools

Fig. 1 provides an overview of the features of farm-level data and
decision tools, landscape-scale data and analytical tools that support sci-
ence-based policy, and their interrelationships. While farm-level deci-
sion making and landscape-scale analysis have different purposes,
they both depend on both private data (site- and farm-specific charac-
teristics of the land and the farm operation, and the site- and farm-
specific management decisions that are made) as well as public data
(weather, climate and other physical data describing a specific location,
and prices and other publicly available economic data). A key question
for the design of the agricultural knowledge infrastructure is how both
types of data can be collected, managed and utilized efficiently and
securely.

Farm-level data and decision tools are evolving rapidly along with
innovations in computer power, software, mobile information technol-
ogies and technologies for site-specific management. The left-hand side
of Fig. 1 presents the generic structure of these tools, thedata they use as
inputs, and the outputs that are generated. Various decision tools and
software are now in use (Antle et al., 2015b) which collect detailed in-
formation and generate outcomes that are useful for farm-level man-
agement decisions. This information and data can be used to monitor
the economic and environmental performance of a farm operation
over time and space.

The right hand side of Fig. 1 shows the general structure of the data
and models needed to carry out landscape-scale research and policy
tradeoff analysis. There are three broad categories of regional data: pub-
licly available biophysical data, including down-scaled climate and soils
data; publicly available economic data, includingprices and policy infor-
mation; and the confidential site- and farm-specific data obtained from
producer- and industry-generated databases.

As with farm-level decision tools, there is a need to more systemat-
ically develop and applymethods for the improvement of thesemodels,
for example through model inter-comparison studies such as those
being undertaken by the Agricultural Model Inter-comparison and Im-
provement Project. Typically thesemodels require spatially and tempo-
rally explicit data that are statistically representative of the farms and
landscapes in a geographic region in order to provide reliable informa-
tion about economic and environmental impacts and tradeoffs.

The currently available data are inadequate for various reasons.
Manymodel implementations rely on the publicly available information
on land management collected periodically through mailed question-
naires or enumerator interviews, which usually limits the spatial di-
mension of the models to political units, agro-ecological zones or
similar delineations. Consequently, models often must be operated
with averaged data thatmay fail to accurately represent site-specific en-
vironmental processes and outcomes. Many data are collected with
samples that are not statistically representative of relevant regions or
populations for landscape-scale analysis; many data are not spatially
or temporally explicit, are only available (released) after substantial ag-
gregation (thus limiting their usefulness), and are often available with
long time lags between when the land management decisions are
made, the data are collected, and when they become available for re-
search or policy purposes. For example, the 2012U.S. agricultural census
data were only available in 2014, and then are only available in limited
ways for research and policy analysis. Longitudinal data are particularly
important for policy research, i.e., representative samples of farms that
provide data for the same farms over time. The Living Standards Mea-
surement Survey data being coordinated by the World Bank are being
collected longitudinally in some countries now, but due to issues such
as long respondent recall and limited statistical representation, these
data have a number of substantial limitations. Another critical issue
is data quality. Farmers lack incentives to bear the high costs of
responding to lengthy questionnaires, and often lack detailed records
needed to accurately respond to detailed questions about management
inputs, production outputs, and prices paid and received, and various
other details often asked in farm surveys. A tool that could be used by
farmers to make management decisions, and simultaneously collect
that information for research and policy analysis, could overcome
these limitations.

3. TOA-MD: a model for landscape-scale data integration and policy
tradeoff analysis

Landscape-scale policy analysis can be implemented using various
spatially-explicit models designed to simulate the adoption and impact
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of new technologies, changes in policy, and environmental change such
as climate change (Antle and Capalbo, 2001; Troost and Berger, 2014;
vanWijk et al., 2014; and Kanter et al., in press). In this sectionwe brief-
ly describe an economic impact assessment model called TOA-MD
(Tradeoff Analysis Model for Multi-dimensional Impact Assessment).
TOA-MD provides a framework in which bio-physical and economic
data can be integrated for technology impact assessment and policy
analysis at the landscape (or population) scale.

The TOA-MDmodel is a parsimonious, generic model for analysis of
technology adoption and impact assessment, and ecosystem services
analysis. Further details on the conceptual and statistical foundations
of the model are provided in Antle (2011) and Antle et al. (2014). The
model software and the data used in various studies are available to re-
searchers with documentation and self-guided learning modules at
http://tradeoffs.oregonstate.edu. Various types of data can be used to
implement an analysis using TOA-MD and other landscape-scale policy
analysis models. The data can include farm production data, simulated
outputs of bio-physicalmodels, price projections from global or national
market models, and data from alternative policy or climate scenarios,
depending on the type of analysis (Fig. 2). Estimation of parameters
for TOA-MD and other spatially-explicit impact assessment models re-
quires data from a statistically representative sample of the farm popu-
lation, as discussed in Antle and Capalbo (2001) for econometric
models, and in Troost and Berger (2014) for models based on mathe-
matical programming.

The TOA-MD model was designed to simulate technology adoption
and impact in a population of heterogeneous farms. The TOA-MD
model uses the standard economic model that is the foundation of the
econometric policy evaluation literature (Heckman and Vytlacil,
2007). The analysis is applied to farm decision makers who choose be-
tween the production system they are currently using (call this System
1) and an alternative production (System 2). Each decision maker is as-
sumed to choose the system with the highest expected return. Thus, in
the population, the proportion of farmers using system 2 is determined
by the distribution of the difference in expected economic returns be-
tween the two systems. Other impacts (environmental or social) are es-
timated based on the statistical relationship between those variables
and expected economic returns to the alternative systems. The outputs
of the TOA-MD model include the predicted adoption rate of the alter-
native system, the average impacts on adopters, and the average im-
pacts on the entire population of farm households. The model can also
generate indicators showing the percent of households experiencing
an outcome above or below a defined threshold. An example of a
threshold indicator is a poverty rate showing the percent of households
with incomes below a poverty line.
Fig. 3. AgBiz Logic data inputs, mo
The analysis of technology adoption and its impacts depends critical-
ly on how the effects of the new technology interact with bio-physical
and economic conditions faced by farm decision makers. A key element
in the TOA-MD analysis is reliable estimates of the effect of the new
technology (i.e., the changes in the farming system that farmers could
adopt) on the farming system's productivity and profitability. This infor-
mation can come from various sources, including from formal crop and
livestock simulation models, from experimental or observational data,
or from expert judgment.

Two types of tradeoff analysis that can be carried out with TOA-MD
are described by Antle et al. (2014) as adoption-based tradeoffs and
price-based tradeoffs. Adoption-based tradeoffs occur when the adop-
tion rate of a technology changes in response to an economic incentive
or other factor affecting technology adoption. An important example of
an adoption-based tradeoff is a policy to provide payments to farmers if
they change management practices to increase the provision of ecosys-
tem services such as soil carbon sequestration. Price-based tradeoffs
occur when changes in the prices of the outputs or inputs used by
farmers induce them to make changes in their land management deci-
sions that in turn induce changes in the economic, environmental or so-
cial outcomes associated with the farming system. The analysis of
Camelina sativa presented below is an example of a price-based tradeoff.

4. AgBiz Logic: a farm-level data acquisition and analysis tool

AgBiz Logic (AgBiz Logic.com) is an analytical tool that integrates
data, scenarios, economic and financial calculators and climate and en-
vironmental modules. It generates estimates of economic and environ-
mental outcomes for current and alternative management practices
(Fig. 3). A key feature of AgBiz Logic that distinguishes it from many
other farm management tools is that it is designed to analyze current
and prospective management scenarios. This feature makes it a poten-
tially useful tool to acquire data for a landscape-scale analytical tool
such as TOA-MD.

4.1. Components of AgBizLogic

The AgBiz Logic software suite consists of the following economic
and financial modules:

• AgBizProfit: capital investment tool that evaluates an array of short-,
medium-, and long-term investments. The module uses the eco-
nomic concepts of net present value, annual equivalence, and in-
ternal rate of return to analyze the potential profitability of a
given investment.
del components and outputs.

http://tradeoffs.oregonstate.edu
http://Logic.com
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• AgBizLease: a module to establish alternative short- and long-run
crop, livestock and other capital investment leases. The module
uses the economic concepts of net present value to analyze crop
sharing or rental agreements under these alternatives.

• AgBizFinance: a module for making investment decisions based on
financial liquidity, solvency, profitability, and efficiency of the farm
or ranch business. After an AgBizFinance analysis has been created,
investments in technology, conservation practices, value-added
processes, or changes to cropping systems or livestock enterprises
can be added to or deleted from the current farm and ranch opera-
tion. Changes in financial ratios and performancemeasures are also
calculated.

• AgBizClimate: a module that translates information about climate
change to farmers and land managers that can be incorporated
into projections about future net returns. By using data unique to
their specific farming operations and locations, growers can design
management pathways that best fit their operations and increase
net returns under alternative climate scenarios.

• AgBizEnvironment: a module that uses environmental models and
other ecological accounting to quantify changes in environmental
outcomes such as erosion, soil loss, soil carbon sequestration and
GHG emissions associated with input levels and management
practices.

AgBiz Logic operates on the premise that growers want to maximize
net returns over time, taking into account investment costs, operating
expenses and revenues for crop and livestock products. This decision
support tool has been used to quantify farm-scale tradeoffs associated
with changes in climatic conditions. Capalbo et al. 2017 present an
illustrative analysis of how climate change may impact dry-land
wheat producing farmers in the U.S. Pacific Northwest. Projected chang-
es in climate are translated into changes in key climate factors affecting
the grower's yields via the AgBizClimate; these yield changes are
transformed into net returns. These yield changes are the impetus for
producer-generated adjustments in input use, management, and tech-
nology adoption. Decision tools and modules such as AgBiz Logic; pro-
vide essential analytical output for efforts labeled climate-smart
agriculture which focuses on making farms and farmers more resilient
to a changing climate. These decision support tools are at the very
heart of the recommendations called for in the recent U.S. Government
Accountability Office report 14–755 (U.S. GAO, 2014), which speaks to
USDA's ongoing efforts to better communicate information to growers
in a timely downscaled manner.

4.2. AgBizLogic as a data acquisition tool

One of the greatest challenges in implementing policy analysis of al-
ternative agricultural systems, such as adaptation to climate change, or
responses to new policies or technologies, is the design of plausible
“counter-factual” (i.e., as-yet unobserved) systems. AgBiz Logic is de-
signed to be a farm-level scenario analysis tool, where the scenarios
can involve any type of alternative management. This feature makes
AgBiz Logic uniquely suited to serve as a data generation tool for policy
analysis using a model like TOA-MD that requires data for current as
well as prospective or future systems. AgBiz Logic provides a systematic
framework in which farm decision makers can record their best esti-
mates of the cost and productivity effects of a new system on their
own farms. If this information could be acquired from a suitable sample
of farms, it could then be used by analysts to estimate parameters of the
TOA-MD model for landscape-scale policy analysis.

The conventional way to obtain the farm production data is to con-
duct a survey, such as the surveys done periodically by government
agencies (e.g., agricultural census or other statistical surveys such as
the Agricultural Resource Management Survey in the United States or
the Farm Accountancy Data Network data collected in European
Community countries). There are various limitations to farm survey
data. One is that the data are often collected periodically, e.g., the U.S.
agricultural census is carried out on five-year intervals, and then only
made available to researchers with a substantial delay. Another major
limitation is that the data often lack sufficient detail, particularly for
management decisions such as fertilizer and chemical use, machinery
use, and agricultural labor. A third limitation is that these surveys can
be extremely expensive both for respondents (e.g., to complete large
elaborate questionnaires) and for organizations collecting the data
(e.g., to employ enumerators, data entry workers, quality control spe-
cialists, etc.).

A tool like AgBiz Logic could be utilized to provide higher quality,
more timely data at lower cost. As portrayed in Fig. 1, a data system
that linked farm management software to a confidential database
could provide near real-time data on management decisions, and do
so for a statistically representative “panel” of farm decision makers
over time. Moreover, the level of detailed management data utilized
by AgBiz Logicwould provide the needed level of detail for implementa-
tion of analysis using a tool such as TOA-MD. Also, users of AgBiz Logic
would have every incentive to enter accurate information because
they would be using this information tomake their actual management
decisions. Finally, a tool like AgBiz Logic provides a user-friendly, effi-
cient way for farmers to enter data, thus substantially reducing the
cost of data collection.

5. Potential of Camelina sativa as a biofuel in the U.S. Pacific
Northwest

In this section we illustrate the use of TOA-MD to evaluate Camelina
sativa for its potential use as a crop that could produce biodiesel fuel for
aviation and other uses, particularly in regions where dryland cropping
systems are currently dominant. Our goal is to illustrate the type of anal-
ysis that could be implemented using data that could be generated by a
tool like AgBiz Logic.

The policy question addressed in this example is whether it would
be economically feasible to incorporate Camelina into the dryland
wheat system currently in use in the U.S. Pacific Northwest (PNW) as
part of the U.S. Department of Energy's “Farm to Fly” initiative. Key is-
sues for this initiative are the profitability of Camelina for farmers at
prices competitivewith fossil fuels, whether itwould be possible to pro-
vide sufficient quantities tomeet the goals of the private airline industry
and the U.S. military, and what impacts biofuels would have on food
production and prices.

Table 1 summarizes the farm level revenue and cost data used in this
example. These datawere obtained from farmers' responses to the 2007
Agricultural Census, but similar data could have been obtained using
AgBiz Logic from a statistically representative sample of farms. We im-
plement the analysis using agricultural census data to illustrate the
analysis that could be done using similar data obtained from AgBiz Logic.

Wheat is produced in the PNW in various rotations with fallow and
with other crops. This analysis involves incorporating Camelina into the
winter wheat-fallow (WWF) system practices in low-rainfall areas
(typically 350–550mm/yr., or 12–18 in./yr.). TheWWF systemhaswin-
ter wheat planted in the fall and harvested in mid-summer of the fol-
lowing year, with no crop planted the next season, to restore soil
moisture. Thus, a crop is typically planted and harvested on only half
of the available land each year. The alternative system we analyze
here, denotedWWC, involves replacing the fallowed landwith Camelina
so that half of the land is planted to winter wheat each year and half is
planted to Camelina in a rotation. Experimental data from the region
show that this rotation would likely result in a reduction in winter
wheat yields from the regional average of about 50 bu/ac to about 33
bu/ac on average, with an average Camelina yield of 1400 lb per acre
(Wysocki, 2015).

The next step for the TOA-MD analysis is to construct similar data for
the alternative WWC system. As we noted in the previous section, if



Table 1
Revenueand cost statistics for analysis ofCamelina adoption based on 2007 agricultural census data forwinterwheat-fallow systemand representative budget data and yield experimental
data for Camelina.

Farm size Wheat yield
(bu/acre)

Wheat revenue
($/farm)

Other crops revenue
($/farm)

Wheat and other crops
cost ($/farm)

Govt. subsidies
($/farm)

Camelina yield
(lbs/acre)

Camelina revenue
($/farm)

Camelina cost
($/farm)

System 1 (Winter wheat - fallow rotation)
Large Mean 50 473,095 15,341 273,879 60,744

Std Dev 15 206,054 15,427 199,556 33,640
Small Mean 51 65,360 4921 69,219 12,827

Std Dev 18 42,245 10,626 55,755 8887

System 2 (Winter wheat - Camelina rotation)
Large Mean 32 307,512 15,341 273,879 60,744 1400 532,000 284,050

Std Dev 50 133,935 15,427 199,556 33,640 n.a. 231,710 123,716
Small Mean 33 65,360 4921 69,219 12,827 1400 98,000 87,500

Std Dev 12 27,459 10,626 55,755 8887 n.a. 41,172 36,761

Note: mean large farm size =4170 acres, mean small farm size 720 acres.
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AgBiz Logic were used to generate data for this alternative system, par-
ticipating farmers would be provided available information about
Camelina such as experimental yields, and the farmers would provide
estimates of the yields they would expect to obtain, along with esti-
mates of costs of production for the practices they would implement.
To represent the data that could be obtained from AgBiz Logic, we use
data obtained from enterprise budgets constructed by farmers and ex-
tension economists (Seavert et al., 2012; Stein, 2012), and experimental
yield data for Camelina cited above. Based on experimental data show-
ing that elimination of fallow would reduce wheat yields 35%, the reve-
nue per acre for winter wheat is decreased accordingly, and the cost of
production is reduced because fallow costs are eliminated. In place of
the fallow, the Camelina crop is assumed to yield 1400 lb per acre, and
there are similar cost components as noted above for winter wheat
(variable costs and machinery replacement). The result is a net return
that varies with the price assumed for Camelina as shown in Table 2. A
low Camelina price of $0.10/lb would provide a net return to the
WWC system similar to the WWF system. Recent market prices for oil-
seeds similar to Camelina have been in the range of $0.15/lb.

For analysis of the adoption of a new system using the TOA-MD
model, we need estimates of average returns which we interpret as
the data from the enterprise budgets described above, and we also
need an estimate of the variance of economic returns in the farm popu-
lation. The use of AgBiz Logic to collect data for this scenario from
farmers would provide an estimate of this variance. Lacking these
data, we assume that the coefficient of variation of Camelina returns in
the population is similar to the coefficient of variation of returns towin-
ter wheat, and combine that estimate with the estimate of average
Table 2
Mean net returns, adoption rates and treatment effects based on TOA-MD analysis of the
Winter wheat – Camelina system in the U.S. Pacific Northwest.

Camelina price

Mean net returns

WWF WWC Adoption Rate ATE ATT

Large Farms
0.1 275 152 21 -45 31
0.15 275 285 52 4 49
0.225 275 485 85 76 97
0.3 275 684 94 148 161

Small Farms
0.1 32 17 33 -46 73
0.15 32 41 59 29 115
0.225 32 78 79 145 209
0.3 32 114 86 260 321

Note: WWF = winter wheat-fallow system, WWC = winter wheat-Camelina system.
Mean net returns are $1000/farm. ATE = average treatment effect = percent change in
mean returns between system. ATT = average treatment effect on the treated
(adopters)= percent difference betweenmean return to adopters ofWWC and the coun-
terfactual return adopters would receive fromWWF. ATE and ATT are in percent of mean
returns to WWF.
returns to calculate a variance. The TOA-MD model also requires a
value for the correlation between the returns to the WWC and WWF
systems. This parameter also could be estimated from data generated
by farmers using AgBiz Logic to evaluate the WWC system. Lacking
these data, we set the value to 0.75, a typical value for this parameter
when it can be estimated with observational data.

Table 2 summarizes the average net returns for theWWF andWWC
systems, for small and large farm groups, predicted adoption rates and
economic impact obtained from the TOA-MDmodel for Camelina prices
ranging from a low value of $0.10 to a high value of $0.30 per pound.
Prices in the range of $0.10 to $0.15 per pound result in relatively low
adoption rates of 20 to 60%, whereas at prices above $0.20/lb adoption
would increase to 80–95%, depending on farm size. Thus, the analysis
shows that adoption of the WWC system would increase substantially
if priceswere in this higher range. It is difficult to knowwhat themarket
price of Camelinawould be if a biofuel market were developed, but this
analysis shows that a price substantially above the recent oilseed mar-
ket price would be required to induce a high rate of adoption of the
WWC system. The analysis also shows somewhat higher adoption
rates for larger farms. Examination of the WWF data shows larger
farms earn a larger proportion of their income from wheat, and thus
benefit relatively more when Camelina becomes profitable at high
prices, compared to smaller farms that earn somewhat more of their in-
come from non-wheat crops and government subsidies.

The economic impacts of the WWC system are represented in two
ways in Table 2. The middle column of the table presents the “average
treatment effect” (ATE)which is the average impact of theWWC system
relative to theWWF system if it were adopted by all farms (or by a ran-
dom sample of farms). However, adoption is not random for farmers
who choose the system with the highest expected economic returns.
Under this behavior, the economic impact on the adopters is measured
by the average treatment effect on the treated (ATT), the last column of
Table 2. The ATT is equal to the difference between the returns from the
WWC system for the adopters and the returns the adopters would re-
ceive from the WWF system if they did not adopt.

To summarize, using the results in Table 2, two important implica-
tions for the economic impacts of theWWC system are: (1) the average
return of this system (the average treatment effect, or ATE) is negative
for low Camelina prices, meaning that the WWF system would provide
higher returns than theWWC on average in the farm population. It fol-
lows that the adoption ratewill be less than 50% as Table 2 shows for the
relatively low Camelina price of $0.10; and (2) for those who do adopt
WWC, the return is necessarily positive and increaseswith the Camelina
price, as indicated by the average treatment effect on the treated, or ATT.

Fig. 4 presents the implications of the TOA-MD analysis for Camelina
supply. By running the simulations for a range of prices, we estimate the
willingness of farmers to switch from the WWF to the WWC systems
and thus increase Camelina production by replacing fallow acres with
Camelina. The figure shows a relatively elastic response to the Camelina
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price in the $0.10 to $0.225 range. The figure also shows how the supply
would be affected by lower or higher wheat prices, with higher wheat
prices discouraging WWC adoption. Under our assumption that wheat
yields would be reduced, WWC adoption would also result in lower
wheat production, reducing it by up to 18% at a high Camelina price
and a lowwheat price. Thisfinding shows that therewould be a tradeoff
between biofuel production and food grain production. This tradeoff is
of interest to policy decision makers, such as the United States Navy,
who are concerned about the effect that biofuels could have on food
prices. Coupling this analysis to a market equilibrium analysis would
provide further information about the possible price and economic im-
pacts of a policy supporting biofuels, e.g., as in Reimer and Zheng
(2015).

6. Concluding observations

In this paper we describe two analytical tools – AgBiz Logic and TOA-
MD – that demonstrate the current capability of farm-level and land-
scape-scale models to meet the needs for improved data, models and
knowledge products. In their present form, these models provide sub-
stantial capability to address the data challenges identified by Jones et
al. (2017), Antle et al. (2017a), and Janssen et al. (2017). However,
there are also needs for these and similar models to be improved.

First, models need to be more useful to farm decision makers. As
Antle et al. (2017a) observe, users do not want models per se, rather
they want the information they can produce. This means that models
must be embedded in decision support tools that have value to farm
managers. One improvement could be to automate data collection
using sensors on machinery and other mobile devices, as well as from
web-based sources such as weather, and economic data such as prices.
Another area of improvement is inter-operability of tools like AgBiz
Logicwith farm accounting and tax preparation software, so that infor-
mation can be entered once and then utilized in an integrated way
across multiple analytical tools. Another area for improvement is
inter-operability with other models or model output databases, such
as crop simulation models and environmental impact models.

Similar ease-of-use and inter-operability issues apply to analytical
tools for landscape-scale analysis like TOA-MD and other simulation
models, such as crop or environmental process models that may be
used with it. Data from tools like AgBiz Logic needs to be integrated
with cloud-based systems andwith the other public data needed to im-
plement a landscape scale analysis identified in Fig. 3. The current ap-
proach of manually carrying out this integration on a case-by-case
basis makes this type of analysis costly even in a small geographic re-
gion, and often makes integration infeasible across larger regions.

Second, the fact that virtually all stakeholders want access to model
outputs, rather than access to the models themselves, means that there
is a demand for “knowledge products,” i.e., tools that facilitate access to
model outputs and provide analytical capability to interpret model out-
puts for decision making. As Janssen et al. (2017) observe, it remains to
be seen what form these knowledge products will take – as “apps” on
mobile devices, as is now being done for some types of decisionmaking
such as pesticide spray decisions – or as larger tablet computer dash-
boards for data visualization and additional processing through meta-
models and other analytical tools. The fact that these knowledge prod-
ucts have been slow to materialize suggests some form of “market fail-
ure” – i.e., some constraints that prevent this latent demand from being
expressed and satisfied.

A perusal of the rapidly emerging market for private advisory ser-
vices utilizing “big data” shows that, at least in some parts of the
world such as the United States where large-scale commercial agricul-
ture dominates, this latent demand is beginning to bemet by private in-
dustry (Antle et al., 2015a, 2015b). Yet it remains to be seen how this
emerging private supply of information services will operate, and
whether it can also satisfy the public good uses of such data. It is even
less clear how these technologies can serve the needs of the small-
scale farmers in the developing world where commercialization lags.

As suggested byAntle et al. (2017a), one solution to these challenges
appears to be private-public partnerships among the various organiza-
tions that have a mutual interest in assuring that the data are obtained
efficiently and used appropriately for both private and public purposes.
Such partnerships could help create a pre-competitive space for the de-
velopment of data and analytical tools that is built on the recognition
that there are important public-good attributes of the data, methods
and analytical tools, linked to a competitive space to incentivize the
commercial development of improved knowledge products.

Several challenges need to be addressed to facilitate a linkage be-
tween farm-levelmanagement tools such asAgBiz Logic and policy anal-
ysis tools like TOA-MD and other landscape scale models. First, a
statistically representative group of farms would need to be identified
who would agree to use AgBiz Logic and allow their data to be used in
a landscape scale analysis. This would involve a sampling process simi-
lar to identifying a sample of farms for a farm-level economic survey.
Second, software would need to be designed to transmit and assemble
the individual farm data into a database that could subsequently be
used to estimate TOA-MDparameters whilemaintaining confidentiality
of individual producers. Note that data would need to be collected over
multiple growing seasons in most cases to account for crop rotations
and other dynamic aspects of the farming system. Farmhousehold char-
acteristic data could be collected as a part of AgBiz Logic, or could be col-
lected using a separate survey instrument. Environmental and social
outcome data collection would need to be tailored to the specific type
of variable. For example, measurement of soil organic matter could re-
quire infield soil sampling and laboratory analysis, possibly combined
with modeling, or the use of specialized sensors.

For scenario analysis, it is necessary to project from current biophys-
ical and socioeconomic conditions into the alternative conditions de-
scribed by a scenario. For climate impact assessment, this is currently
being done on a global scale using new scenario concepts called “Repre-
sentative Concentration Pathways” and “Shared Socio-Economic Path-
ways.” To translate these future pathways into ones with more detail
needed for agricultural assessments, “Representative Agricultural Path-
ways” are being developed (Valdivia et al., 2015). The data acquired
through tools such as AgBiz Logic could be combined with these future
projections to implement regional integrated assessments using the
methods developed by the Agricultural Model Inter-comparison and
Improvement Project (Antle et al., 2015a).
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