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The next generation of gene-based crop models offers the potential of predicting crop vegetative and reproduc-
tive development based on genotype andweather data as inputs. Here,we illustrate an approach for developing a
dynamic modular gene-basedmodel to simulate changes inmain stem node numbers, time to first anthesis, and
final node number on the main stem of common bean (Phaseolus vulgaris L.). In the modules, these crop charac-
teristics are functions of relevant genes (quantitative trait loci (QTL)), the environment (E), and QTL × E interac-
tions. The model was based on data from 187 recombinant inbred (RI) genotypes and the two parents grown at
five sites (Citra, FL; Palmira, Colombia; Popayan, Colombia; Isabela Puerto Rico; and Prosper, North Dakota). The
model consists of three dynamic QTL effect models for node addition rate (NAR, No. d−1), daily rate of progress
from emergence toward flowering (RF), and daily maximummain stem node number (MSNODmax), that were
integrated to simulate main stem node number vs. time, and date of first flower using daily time steps. Model
evaluation with genotypes not used in model development showed reliable predictions across all sites for time
to first anthesis (R2 = 0.75) and main stem node numbers during the linear phase of node addition (R2 =
0.93), while prediction of thefinalmain stemnodenumberwas less reliable (R2=0.27). The use ofmixed-effects
models to analyze multi-environment data from a wide range of genotypes holds considerable promise for
assisting development of dynamic QTL effect models capable of simulating vegetative and reproductive
development.

© 2016 Published by Elsevier Ltd.
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1. Introduction

Tools that integrate genetic, environment and management infor-
mation to predict crop performance in contrasting environments are
needed to meet global food demands and assist plant breeders in
designing new cultivars for increased yield (Hatfield and Walthall,
2015). Crop models are biophysical process-based simulation tools
that predict crop growth and yield for a range of soil, climate, and
management conditions. However, although they include empirically-
derived parameters that allow them to simulate performance of differ-
ent varieties, they still lack the integration of actual genetic information
and thus are limited in their connection to plant genetics (Boote et al.,
1996). Of note is that parameters termed “genetic coefficients” or
“Genotype-Specific Parameters (GSPs)” that describe phenology, plant
architecture (leaf area, number and plant dimensions), and biomass
a State University, NC, USA
allocation in existing crop models are not yet linked to any gene(s).
They do not take into account gene-by-environment (G × E) or G × G
interactions at the level of individual processes that are considered in
the models. This lack of genetic information within the crop models
requires multi-environment experiments to estimate the GSP values
when new cultivars (genotypes) are released. This process is time con-
suming, costly, and limits the utility of crop models in plant breeding
programs and other practical applications. This omission of G and
G × E information in crop models is not surprising since many of these
models were developed before this type of information was known.
However, these models do include environmental sensitivities of the
traits that allow them to simulate dynamic growth and development
processes under targeted environments. Therefore, a next step is to in-
tegrate genetic information (G and G × E) into models to predict a
genotype's performance in a targeted environment.

The advances in genomics, phenomics (phenotyping), and computa-
tional technologies within the last decade have given scientists the un-
precedented opportunity to understand the shaping of a given crop
phenotype by the complex interactions among genotype, environment,
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andmanagement. For example, newDNAsequencing technologies have
increased the number of genetic markers for identifying genes associated
with phenotypic traits. Large-scale phenotypingmethods such as the use
of unmanned aerial vehicles (UAVs), robotics, and sensor technologies
are reducing costs and time for collectingfield phenotypemeasurements.
Also, new computational and statistical tools are rapidly advancing our
ability to identify genes and environmental factors that affect crop traits.
In spite of the technical advances and statistical sophistication of gene
mapping approaches, few researchers have tackled the prediction of phe-
notypic vegetative and reproductive development of a genotype as affect-
ed by G, E, and G × E using daily (or shorter time step) environmental
inputs. Nor do most studies reveal biological insights into the mecha-
nisms of crop performance in specific environments (reviewed in
Technow et al., 2015). Since crop models have the capacity to model
daily vegetative and reproductive development from a mechanistic
standpoint, and we can quantify some G × E interactions at a process
level, integrating this information into cropmodels provides an opportu-
nity to build the next generation of gene-based crop models.

The earliest and most common approach for integrating genetic in-
formation into crop models is linking specific genes to model parame-
ters (i.e., the model's GSPs that had been estimated from field data,
see White and Hoogenboom, 1996, 2003, and a more recent review by
Yin et al., 2004). For example, GSPs in the CROPGRO-Soybean model
were converted into mathematical functions of day length-sensitive
genes (E loci), which were used to simulate the flowering and
maturity behavior of soybean based on genetic information of cultivars
(Messina et al., 2006). Chenu et al. (2009) modified the APSIM maize
model (Keating et al., 2003)with parameters for leaf and silk elongation
that were computed with equations that contained the quantitative
trait loci (QTL). They were able to simulate a genotype's growth under
drought conditions using this method. Others have shown that using
whole-genome prediction methods (statistical approaches) when
linked with crop models, have increased accuracy in prediction of yield
in new environments in comparison with using statistical approaches
alone (Technow et al., 2015). While these approaches appear to be
promising methods for integrating genetics into crop models, current
cropmodels lack specific gene-by-environment interactions at a process
level and many models assume uniform environmental responses
across genotypes.

QTL analyses can dissect the genetic architecture of complex traits,
and in combination with statistical methods, such as mixed effect
models, it is possible to estimate the genetic, environmental, and
G × E effects on the phenotype (Boer et al., 2007; Chenu et al., 2009;
Peiffer et al., 2014). We propose that these mixed effect approaches
can be used to identify QTL, E, and QTL × E interactions underlying spe-
cific crop processes and that together with the decades of understand-
ing of processes mechanisms from crops models can be combined to
build a gene-based crop model that predicts aspects of crop perfor-
mance based on genetic, environment, and management data. One ad-
vantage to this approach is that crop models already have subroutines
(modules) that simulate different processes, such as phenological de-
velopment, leaf area expansion, dry matter accumulation, and seed
growth that are integrated together to simulate overall crop growth
(Jones et al., 2001, 2003). Specific subroutinesmodeling selected biolog-
ical processes could bemodified to incorporate G, E, and G× E effects on
those particular processes without having to alter other processes with-
in themodel (Boote et al., 2013). Also, studies have already demonstrat-
ed the usefulness of using this type of QTL-based approach to modify
modules within crop models (Yin et al., 2000a; Reymond et al., 2003;
Nakagawa et al., 2005; Messina et al., 2006; Uptmoor et al., 2008;
Chenu et al., 2009).

The common bean (Phaseolus vulgaris L.) is the legume with the
highest level of direct consumption around the world and is an impor-
tant protein and nutrient source for the malnourished poor in Latin
America and Africa (Broughton et al., 2003). The genome of the bean
is relatively small with 11 chromosomes, and its sequence was recently
published (Schmutz et al., 2014). Models of different crops have been
developed from the early SOYGRO soybean model (Wilkerson et al.,
1983), including the DSSAT CROPGRO-Bean model (Hoogenboom et
al., 1994). These models provide established structure to explore differ-
ent strategies to integrate genetic information or develop novel gene-
based models. Due to the diversity in phenotypic responses and the
well-established crop model for bean, it is a good test case for linking
genetic information with a process-based model.

Here, we describe a prototype gene-based model that simulates the
main stem node number over time and flowering date for common
bean as affected by the genotype of the crop (represented by QTLs),
and its response to the environment, and genotype-by-environment in-
teractions (QTL × E) by integrating dynamic QTL effect models for daily
development rate of progress toward appearance of the first flower
(RF(t), modified from Bhakta, 2015), daily maximum main stem node
number (MSNODmax), and, node addition rate (NAR(t), Zhang, 2015).
The modules described here incorporate relationships (QTL, E, and
QTL × E) previously identified through a linear mixed effect statistical
model approach, knowledge of physiological processes, and a daily
time step with corresponding E inputs that vary daily (e.g., day length,
temperature, solar radiation). The described approach traces a path to-
ward building a next generation of gene-based crop models using QTL,
E, and QTL × E interaction effects on separate development and growth
processes, which are hypothesized to bemore capable of predicting the
phenotype of specific genotypes over a range of environments.
2. Materials & methods

2.1. Plant materials & field sites

The details on the RI family of the common bean that were used in
these studies can be found in Bhakta et al. (2015). Briefly, the RI family
of 187 genotypes was generated from a cross between the determinate
Andean cultivar, Calima, with an indeterminate Mesoamerican cultivar,
Jamapa, for these studies (Bhakta et al., 2015). The population was de-
veloped through single seed descent to the 11th generation, and bulked
to the 14th generation (F11:14). The population was then planted across
five field sites: Citra, FL (CT); Palmira, Colombia (PA); Popayan, Colom-
bia (PO); Isabela, Puerto Rico (PR); and Prosper, North Dakota (ND).
Details on the field sites are provided in Table 1 with the weather files
in supplemental table (Table A.1 weather information). The experimen-
tal design followed a latinized, row-columndesignwith three replicates
(3 plots of each genotype, and 6 to 9 plots for each parent line). Details
of the experiment design are presented in Clavijo-Michelangeli (2015).
2.2. Phenotyping

Two types of phenotypic data were collected. The first data were
non-destructive measurements in which 6 plants per plot (marked
after emergence) were observed every 2 to 3 days for developmental
time-to events (such as time to first anthesis). For each replication in
each plot, the number of days it took 50% of the plants to reach anthesis
was determined. The second type of data included weekly destructive
samplings of 3 replicates (one plant per plot) performed after emer-
gence of the first true leaf. Samples were collected at each site depend-
ing on the availability of plants and measurements of node numbers
were recorded for the main stem on each day of sampling. In this
study, we examined the duration between emergence and first flower
(TF), maximum node number on the main stem (MSNODmax), and
number of nodes on the main stem on day t (Nobs(t)) were used to
model rate of progress toward flowering (RF), MSNODmax, and node
addition rate (NAR) respectively. Of note, nodes after the unifoliate
node position were counted for number of nodes on the main stem
(i.e., number of trifoliate).



Table 1
Site management summary.

Sitea CT PA PR PO ND

Latitude 29 39′ N 03 29′ N 18 28′ N 02 25′ N 47 00′ N
Longitude 82 06′ W 76 81′ W 61 02′ W 76 62′ W 96 47′ W
Elevationb (m) 60 1000 128 1800 280
Growing season Mar, 2011 to Nov, 2011 to Feb, 2012 to Mar, 2012 to May 2012 to

Jun. 2011 Jan, 2012 May 2012 Jun, 2012 Aug, 2012
Previous culture Fallow Beans Beans Fallow Wheat
Soil texture Sand Clay Clayey kaolinite Medium loam Silt/clay loam
Fertilization [kg ha−1] N-P-K:136-60-112 40 (Urea) 55(N-P-K:10-10-10) N-P-K:129-96-80.3 No fertilizer
Irrigation Cent pivot Rain fed Drip Rain fed Rain fed
Plant density [plans m−2] 4.3 3 3.9 4.3 3.3
Row spacing [cm] 90 120 100 90 150
# of replicates 3 3 3 3 3
# of genotypes 168 174 128 178 176
TMEAN [°C] c 24.61 23.94 24.36 18.08 20.39
TMAX [°C]c 31.87 28.80 25.41 29.24 11.93
TMIN [°C]c 17.93 19.49 14.07 20.49 −1.63
SRAD [MJ m−2 d−1]c 20.41 14.67 15.78 22.58 15.01
DL [h d−1]c 13.36 11.82 12.90 12.21 14.96

a Abbreviations of CT, PA, PR, PO, andND represent corresponding sites of Citra, FL (CT); Palmira, Colombia (PA); Popayan, Colombia (PO); Isabela, Puerto Rico (PR); and Prosper, North
Dakota (ND).

b Meters above sea level.
c Average environmental values taken over the season within each site.
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2.3. Molecular marker & linkage mapping

A SNP-based linkage map was constructed with the RI family using
the genotyping-by-sequencing (GBS) method described in Bhakta et
al. (2015). The final linkage map comprised 513 molecular markers
with an average interlocus distance of 1.9 cM.

2.4. Training and evaluation dataset

The subsetting of data for model development and evaluation is de-
scribed in Table 2. Modules for each of the three traits (RF, MSNODmax,
and NAR) were developed with the same 171 RILs grown across the 5
sites, while evaluation of eachmodule was performed with the remain-
ing RILs as well as the 2 parents.

2.5. Linear mixed effect analysis

Boer et al. (2007) have described in detail procedures to develop sta-
tistical linear mixed effect models to evaluate, for a given phenotype,
the magnitude of the G (QTL), E, and G (QTL) × E interactive effects on
traits, which were implemented in this study using the training dataset
of 171 RILs at the five sites. The procedures were based on multi-envi-
ronment, single trait analysis with an unstructured error variance–co-
variance matrix. Static trait values were first fitted with the linear
mixed effect model shown in Eq. (1)

yijk ¼ μ þ Si þ G j þ SiG j þ εijk ð1Þ

where a static phenotypic trait (y) is predicted with the trait general
mean (μ); fixed site effect for site i (Si); random genetic effect for geno-
type j (Gj); random G × S interactive effect (SiGj); and random error
Table 2
Number of genotypes (RILs) used formodel development (training) andmodel evaluation
for trait modules, RF, MSNODmax and NAR.

RF MSNODmax NAR

Training 171 171 171
Evaluation 16 + 2 parents 15 + 2 parents 9 + 2 parents
(εijk). Next, the genetic effect in Eq. (1) was expanded to include QTL
effects to form Eq. (2).

yijk ¼ μþSi þ QTLj;q þ G j þ SiQTL j;q þ SiG j þ εijk ð2Þ

This step identified the fixed QTL effects for marker region (q) in
genotype (j) (QTLj ,q) that were significant in explaining the random ge-
netic effect in Eq. (1). Furthermore, Eq. (2) identified fixed site-by-QTL
interaction effects (SiQTLj ,q). The site effects in Eq. (2) were further
expanded with environmental terms to give Eq. (3).

yijk ¼ μ þ Ei;eþSi þ QTLj;q þ G j þ Ei;eQTL j;q þ SiQTL j;q þ SiG j þ εijk ð3Þ

This step identified the fixed effects for environmental covariate e at
site i (Ei ,e) that were significant in explaining fixed site effect in Eq. (2).
Furthermore, Eq. (3) identified environmental covariates that were
interacting with QTL regions (Ei ,eQTLj ,q). The examined environmental
covariates included: average temperature (TMEAN),minimum temper-
ature (TMIN), maximum temperature (TMAX), average day time tem-
perature (TD), average night time temperature (TN), average day-
night temperature differences (TDN), solar radiation (SRAD), and day
length (DL).

Accordingly, this methodology was applied to fit statistical models
for the traits to identify significant QTL, E, and QTL × E factors for the
selected processes in this study using GenStat 15th edition (Payne et
al., 2009). The linear mixed effect model developed by Bhakta (2015)
for time to flowering (TF) used genotypic and environmental covariates
averaged over the time between emergence and first flower; the linear
mixed effect model presented here for MSNODmax used genotypic and
environmental covariates averaged over the time between emergence
and first observation of final main stem node number; the linear
mixed effectmodel developed by Zhang (2015) for NAR used genotypic
and environmental covariates averaged over the duration of linear node
addition.

2.6. Dynamic QTL effect model

Linear mixed effect models that estimate static trait values across
season cannot simulate the dynamic behavior of key traits as they re-
spond to changes in explanatory variables within the season. For exam-
ple, explanatory variables such as temperature and SRAD fluctuate on



228 C. Hwang et al. / Agricultural Systems 155 (2017) 225–239
daily or hourly basis. Therefore, dynamic models are needed. Informa-
tion (i.e., QTL, E, and QTL × E terms affecting a trait) from Section 2.5
was used to guide the construction of dynamic QTL effect models. We
simplified the approach for temperature responses by using daily
mean temperature (TMEAN(t)) instead of hourly or minimum and
maximum daily temperatures. The dynamic QTL effect RF module
used daily values of the environmental variables to predict daily rate es-
timates; this is the approach used in the CROPGRO-Bean model (Jones
et al., 2003) and most dynamic crop models. Similarly, we developed
the dynamic QTL effect NAR module to respond to daily environmental
variables. By integrating the daily rates, the dynamic rate models (RF
and NAR) account for variations in QTL, E and QTL × E interactions
over time, which is important for predicting crop development in the
field. For example, we used dailymean temperature (TMEAN(t)) values,
even though Bhakta (2015) found that the individual temperature co-
variates (average max and min temperatures) over an extended time
period were more influential in affecting the rate of development to-
ward flowering than mean temperature.

The general scheme of the dynamic QTL effects model for each trait
(i.e., two daily development rate traits, RF(t) and NAR(t), and one static
trait (final main stem node number, Nfinal) estimated with the
MSNODmax module) is presented in Eq. (4) below.

y tð Þ ¼ μ þ∑e
i¼1 b1i � Ei tð Þ−Ei

� �� �þ∑q
j¼1 b2 j

� QTLj
n o

þ∑e
i¼1∑

q
j¼1 b3i; j

� QTLj � Ei tð Þ−Ei
� �n o

þ εijk ð4Þ
Common Bean Mode

Set weather & QTL explanator

Set initial state variab

Run NAR Module

Run RF Module 

End Common Bean Mo

For t in 1 : END 

Update state variable

Fort >= emergence

Run MSNODmax Mod

IF N (t-1) < MSNODmaelse 

For TF < 1

Fig. 1. The framework of the gene-based Common Bean Model (GB-CBM) with the modules of
stem (MSNODmax), andmain stemnode addition rate (NAR). The input files include the dailywe
for a location (END) set simulation run time for a genotype at a site. Time to flowering (TF) is th
that defines determinacy of a genotype for this model.
where a phenotypic trait (y(t)) for a day (t) is predicted with the trait
generalmean (μ); trait environment effect parameter (b1i

) for the ith en-
vironment covariate (ECV); daily ECV values (Ei(t)); ECV means across
sites for a trait ðEiÞ; trait QTL effect parameters (b2j

) for the jth QTLmark-
er; QTL marker values (QTLj); trait QTL × E parameters (b3i,j

); and trait
QTL × E effects ðQTLj � ½EiðtÞ−Ei�Þ . Each dynamic QTL effect model
(RF(t) and NAR(t)) thus uses daily environmental inputswith the equa-
tion structure shown in Eq. (4) whereas the MSNODmax module uses
average environmental inputs over time from planting to the current
simulation day (t) until anthesis to predict final number of nodes on
the main stem.
2.7. Gene-based common bean model framework

A prototype, gene-based Common Bean Model (GB-CBM) was de-
veloped by combining the threemodules that simulate RF, MSNODmax,
and NAR and integrating the daily-predicted rates to simulate day of
first flower, node numbers on the main stem over time, and final num-
ber of main stem nodes for common bean. The structural layout of the
GB-CBM is presented in Fig. 1. Input files for weather, management,
field observations, genetic marker information (QTL), and gene-based
module parameter values are read at program initiation. A genotype
in the population is selected and simulated for each of the five sites:
Citra, FL (CT); Fargo, ND (ND), Palmira, Colombia (PA); Popayan,
Colombia (PO); and Isabela, Puerto Rico (PR). For each genotype at a
site, variables are computed based on daily weather information from
l
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else 

rate of progress from emergence to flowering (RF), maximum node number on the main
ather and genotype information. Emergence days after planting and last day of experiment
e state variable that accounts for phenology (anthesis). JC28 is the QTL region in themodel

Image of Fig. 1
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the start (planting) to the last day of the experiment (DAY). The GB-
CBM then runs the modules for flowering ((duration to flowering)−1,
RF), maximum main stem node number (MSNODmax), and main
stem node addition rate (NAR) to simulate the dynamic changes in
main stem node number and time to first flower for each genotype at
a site. This process is repeated for the entire population to produce a
simulated distribution of main stem node numbers over time, days to
first flower across multiple sites, and final node number.

The RF(t) and NAR(t) rate modules were run each simulation day
based on the allelic makeup at relevant QTLs and the daily environmen-
tal conditions for each RI line and across all five environments. The day
of first flower was simulated for each line growing in each environment
by the computed development progress, TF(t). TF(t) was computed by
numerically integrating daily computations of RF(t), starting at emer-
gence (Eq. (5)).

TF tð Þ ¼ TF t−1ð Þ þ RF tð Þ � dt; for emergence date ≤ tand TF b 1ð Þ
ð5Þ

Simulated nodes on each day (N(t)) were obtained by numerical
integration of the NAR values as follows:

N tð Þ ¼ N t−1ð Þ þ NAR tð Þ � dt for TF b 1ð Þ for determinate genotypes
or any TF for indeterminate genotypesð Þ
and N t−1ð Þ b MSNODmax t−1ð Þ; for all genotypeð Þ

ð6Þ

where, the simulation starts at time t equal to or greater than emer-
gence day. For all genotypes, initial node number is set at 0.0 at t equal
to emergence day. For determinate genotypes, numerical integration
with NAR(t) is performed as long as first flower has not occurred and
node number is less than the maximum main stem node number
(Nfinal). For indeterminate genotypes, numerical integration with
NAR(t) is performed beyond first flower and while node number is
less than the final main stem node number (Nfinal). dt is the numerical
integration time step (dt = 1 day in this study). For determinate geno-
types, finalmain stemnode number (Nfinal) is set at first flower orwhen
node number reaches the maximummain stem node number estimate
of the previous day. For indeterminate genotypes, final main stem node
number (Nfinal) is set when node number reaches the estimate of
maximum main stem node number estimate of the previous day
(MSNODmax(t− 1)).

In theGB-CBM, theQTL (i.e., JC28) region that contains the FIN/TFL1Y
gene defines the determinacy of a genotype (Repinski et al., 2012). That
QTL region determines whether a terminal inflorescence will develop
on the main stem. Due to the bi-parental nature of our RI population,
Calima (determinate) markers are assigned the value of +1 while
Jamapa (indeterminate) markers are assigned −1. Therefore, a geno-
type is indeterminate and continues to add nodes up to the maximum
main stem node number after flowering if it has a QTL marker value of
−1 for that region, otherwise node addition on the main stem ends
on the day of first flower appearance (i.e., determinate genotypes stop
main stem node addition at anthesis). Molecular marker data used in
the models are provided in supplemental table, Table A.2 Genotype. In
contrast to the daily development rate traits (NAR(t) and RF(t)), the
MSNODmax module was initiated at emergence for each genotype at
a given site, but used average environment values from planting to cur-
rent simulation day (t) to estimate daily maximum main stem node
numbers. The module was terminated upon simulated anthesis and
maximummain stem node numberswere set. Further studies are need-
ed to determine the exact window for the environment as they affect
apical node development and differentiation. Parameters for each dy-
namic QTL effect model were estimated for daily time steps described
in Section 2.8.
2.8. Model calibration & evaluation

All modules were built using the R programming language (version
3.2.3; R Core Team) and the dynamic QTL effect model for each module
was calibrated with the training set of 171 RILs across the 5 sites using
the nonlinear least squares algorithm in the minpack.lm package
(Elzhov et al., 2013) as implemented in the statistical package R to esti-
mate parameters for the explanatory terms in Eq. (4) for each of the
three traits modeled in this study. Initial values for each parameter
were those identified from the linear mixed effect model for each pro-
cess. Because we are using dynamic models instead of simple static
equations to model node number and time of first flower, we used the
approach described by Wallach, (2006) to numerically simulate values
using QTL, E, and parameter inputs for comparison with each observed
value to compute errors. To estimate the parameters associatedwith the
QTL and E components of the model for RF(t), errors between observed
and simulated duration between emergence and first flower, across all
environments (S) and genotypes (G), were used to estimate parameters
of the dynamic QTL effect model for first flowering (Eq. (7)).

SSQError FLð Þ ¼ ∑
5

S¼1
∑
171

G¼1
FL−FLobsð Þ2 ð7Þ

where FL is simulated day of first flower and FLobs is observed first
flower day. Similar to the criterion for fitting the RF(t) dynamic model,
the sum of square error between observed number of nodes measured
on each date during the linear phase of node addition (Nobs(t)) and sim-
ulated number of nodes on those same dates (N(t) were used to esti-
mate the parameters of the dynamic model for node addition rate that
minimizes the sum of squared errors (SSQError(N)) between observed
and simulated node numbers across all environments (S), genotypes
(G), and observation dates (t) (Eq. (8)).

SSQError Nð Þ ¼ ∑
5

S¼1
∑
171

G¼1
∑
obs

1
N tð Þ−Nobs tð Þð Þ2 ð8Þ

TheMSNODmaxmodule parameters were estimated based on min-
imizing the sum of squared errors (SSQError(Nfinal)) between observed
(Nfinal,obs) and simulated maximum node numbers (Nfinal) across all
environments (S), and genotypes (G) (Eq. [9]).

SSQError Nfinal
� � ¼ ∑

5

S¼1
∑
171

G¼1
Nfinal−Nfinal;obs
� �2 ð9Þ

where Nfinal is simulated final node number determined by using
average environment values from planting to first observed final node
number for each genotype at a site.

Model evaluations using the evaluation set of genotypes were per-
formed with the two common bean parents as well as an additional
16 RI genotypes for RF(t), 15 for MSNODmax, and 9 RI genotypes for
NAR(t) using R2, %RMSE, %Bias, and d-statistics (Willmott et al., 1985).

3. Results

3.1. Linear mixed effect analysis

The linear mixed effect models for the RF, MSNODmax, and NAR
traits identified a total of 22 QTLs with 10 of these having QTL × E inter-
actions. TheQTLs for eachmodulewere designated as TFi for QTLs found
to affect time from emergence to first flower (within the RF module),
MSNi for QTLs found to affect maximum main stem node number



Fig. 2. TheQTL that were identified frommulti-environment composite interval QTLmapping for time from emergence to flowering (TF),maximumnumber of nodes along themain stem
(MSNODmax), and node addition rate (NAR) in the common bean RI population. TFi are markers (Bhakta, 2015) that were used in the RFmodule, MSNi are markers that were used in the
MSNODmax module, and NARi are markers that were used in the NARmodule (Zhang, 2015). Markers with QTL × E are denoted with the * symbol. Bars denote the 1 LOD intervals while
whiskers denote the 2 LOD intervals from the peak LOD value for each identified QLT marker.
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(within the MSNODmax module), and NARi for QTLs found to influence
node addition rate (within the NAR module), with i denoting the order
which the QTLs were named (Fig. 2). All E, QTL, and QTL × E interactive
terms in the linear mixed effect models had chi-square P-values b0.05.
The chi-square probability for terms in theMSNODmax linearmixed ef-
fect model is reported in supplemental Table A.3. Subsets of QTLs
associatedwith each of the three traitswere foundon the same chromo-
some segment. For example, QTLs TF2, MSN2, and NAR2, were found in
the same region of chromosome 1. Given the fact that recombination is
significantly suppressed in this region, it is highly unlikely that these
QTLs will be easily resolved by recombinational analysis. However, we
must point out that these QTLs are in the same region occupied by

Image of Fig. 2


Table 3
The terms in the dynamic QTL effect model showing the parameter IDs and estimated pa-
rameter values with standard errors (SE) for 1/duration from emergence to flowering
(RF).

Term Parameter ID Estimated value (SE)b

Mean RF RFb 0.029 (1.5E − 4)
TMEANa RFb1.1 7.5E − 4 (3.6E − 5)
SRADa RFb1.2 −7.3E − 6

(1.4E − 5)
DLa RF b1.3 −2.2E − 3

(8.9E − 5)
TMEAN × DLc RF b1.4 −3.3E − 4

(2.3E − 5)
TF1 RF b2.1 9.8E − 4 (1.1E − 4)
TF2 RF b2.2 1.7E − 3 (1.3E − 4)
TF3 RF b2.3 −3.9E − 4

(1.5E − 4)
TF4 RFb2.4 2.0E − 4 (1.3E − 4)
TF5 RFb2.5 −1.5E − 4

(1.2E − 4)
TF6 RFb2.6 8.9E − 4 (1.2E − 4)
TF7 RFb2.7 −5.3E − 4

(9.9E − 5)
TF8 RFb2.8 −3.1E − 4

(8.9E − 5)
TF9 RFb2.9 −3.4E − 4

(9.0E − 5)
TF10 RFb2.10
−9.7E − 5(9.0E − 5)
TF11 RFb2.11 2.6E − 4 (1.5E − 4)
TF12 RFb2.12 −6.6E − 5

(1.5E − 4)
TF2 × TMEANa RFb3.1 −3.6E − 5

(3.4E − 5)
TF3 × TMEANa RF b3.2 6.7E − 5 (3.7E − 5)
TF3 × DLa RF b3.3 −1.1E − 3

(7.1E − 5)
TF5 × TMEANa TMEANa RF b3.4 5.5E − 5 (2.6E − 5)
TF7 × DLa RF b3.5 −2.6E − 4

(5.9E − 5)
TF12 × SRADa RF b3.6 −6.4E − 6

(1.3E − 5)
TF12 × DLa RF b3.7 −3.9E − 4

(5.8E − 5)

a Mean values across sites for TMEAN[°C]: SRAD[MJ·d−1]: DL[hr] are 21.35:18.31:12.7,
respectively.

b Estimated values are attained from non-linear least squares algorithm.
c TMEAN× DLwas the only term not included in the original linearmixed effect model

developed by Bhakta, 2015.
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FIN/TFL1Y, a gene that has been found to control growth habit and there-
fore affect main stem node number (Repinski et al., 2012). Accordingly,
genotypeswith TF2,MSN2, and NAR2with value+1were determinate
and stopped main stem node addition at first flower, while indetermi-
nate genotypes (TF2, MSN2, and NAR2 with value −1) continued
node addition up to the maximum node number after anthesis.
Additional experimentation andmolecular analyses will need to be per-
formed to confirm the role of these QTLs/genes and environmental co-
variates in node development and time to first flower, and to extend
the model for QTL × QTL interactions.

3.2. Dynamic QTL effect modules

The dynamic QTL effect model for RF(t) is shown below (Eq. (10))
with estimated parameter values for the dynamic, daily model. Tem-
perature and day length interactions have been shown to affect
flowering time for common bean by White and Kornegay (1994)
and were included in this analysis but not in the liner mixed effect
model presented by Bhakta (2015). The parameter IDs, estimated
parameter values, and standard errors (SE) for the RF module are re-
ported in Table 3.

RF tð Þ ¼ 0:029þ 7:5 � 10−4 TMEAN tð Þ−21:35ð Þ−7:3 � 10−6 SRAD tð Þ−18:31ð Þ
−2:2 � 10−3 DL tð Þ−12:7ð Þ
−3:3 � 10−4 TMEAN tð Þ−21:35ð Þ DL tð Þ−12:7ð Þ
þ9:8 � 10−4 � TF1þ 1:7 � 10−3 � TF2−3:9 � 10−4 � TF3þ 2:0 � 10−4 � TF4
−1:5 � 10−4 � TF5þ 8:9 � 10−4 � TF6−5:3 � 10−4 � TF7−3:1 � 10−4 � TF8
−3:4 � 10−4 � TF9−9:7 � 10−5 � TF10þ 2:6 � 10−4 � TF11−6:6 � 10−5 � TF12
þTF2 −3:6 � 10−5 TMEAN tð Þ−21:35:ð Þ

� 	

þTF3 6:7 � 10−5 TMEAN tð Þ−21:35ð Þ−1:1 � 10−3 DL tð Þ−12:7ð Þ
� 	

þTF5 5:5 � 10−5 TMEAN tð Þ−21:35ð Þ
� 	

þTF7 −2:6 � 10−4 DL tð Þ−12:7ð Þ
� 	

þTF12 −6:4 � 10−6 SRAD tð Þ−18:31ð Þ−3:9 � 10−4 DL tð Þ−12:7ð Þ
� 	

ð10Þ

The first term on the right hand side of Eq. (10) is the overall average
rate of progress towardflowering across sites. The value of 0.029d−1 in-
dicates that on average, the time between emergence and first flower
across all genotypes and sites was 34.5 days. The 4th term indicates
that an hour increase above 12.7 h in day length would result in a
2.2E − 3 lower rate of development from the general mean of 0.029
rate of daily progress toward first flower. Increasing the day length by
one hour will increase the time to first flower from 34.5 to 37.3 days
provided all other variables were kept at their average values. This
timing will also vary as a function of QTL alleles and their interactions
with specific environmental variables as indicated in Eq. (10). This effect
is analogous to the photoperiod sensitivity (PPSEN) parameter current-
ly used in the DSSAT CROPGRO-Bean model to simulate development
rate toward anthesis as affected by photoperiod. The Calima QTL allele,
TF2Cal, will have a (+1) coefficient and therefore would increase the
daily rate by a factor of 1.7E− 3 from the generalmean rate of 0.029 to-
ward first flower as a result of that QTL effect. Similarly, the same QTL
allele will decrease the rate by a factor of 3.6E− 5 for a one degree in-
crease in temperature above 21.35 °C. In contrast, the Jamapa allele,
TF2Jam, will have the opposite effect. The sensitivity of the RF module
to environmental factors can be seen in supplemental figure, Fig. A.1.
However, not all Calima alleles affect the time to first anthesis in the
same direction. For instance, although TF3Cal will have a (+1) coeffi-
cient, the parameter value (−6.0E − 4) of this QTL is negative indicat-
ing that the Calima allele of TF3 actually decreases the rate in contrast to
the TF2Cal effect.

Next, we present the parameters and equation developed for
the MSNODmax module (Eq. (11)). The parameter IDs, estimated
parameter values, and standard errors (SE) for theMSNODmaxmodule
are reported in Table 4.

MSNODmax tð Þ ¼ 12:37þ 0:43 TMEAN 0 : tð Þ−21:85ð Þ þ 0:10 SRAD 0 : tð Þ−18:74ð Þ
þ1:2 DL 0 : tð Þ−12:81ð Þ−0:43 �MSN1−3:56 �MSN2−0:63

�MSN3−0:20 �MSN4−0:60 �MSN5þ 0:32 �MSN6

þMSN2½−0:08 TMEAN 0 : tð Þ−21:85ð Þ−0:05 SRAD 0 : tð Þ−18:74ð Þ
−0:62 DL 0 : tð Þ−12:81ð Þ� þMSN6 � ½0 : tÞ−21:85Þ
þ0:01 SRAD 0 : tð Þ−18:74ð Þ� ð11Þ

where TMEAN(0:t) is daily average temperatures averaged between
planting (t= 0) and the current simulation day (t) up to simulated an-
thesis. Eq. (11) indicates that a one degree increase above 21.85 °C in
the mean temperature would result in additional 0.43 nodes from the
general mean of 12.37 maximum nodes as a result of the temperature
effect. The Calima QTL allele, MSN2Cal, will have a (+1) coefficient and
therefore would decrease the maximum node number by 3.56 from
the general mean of 12.37 maximum nodes as a result of the QTL effect.
Similarly, the sameQTL allele will decrease themaximumnodes by 0.08
nodes for a one degree increase in temperature above 21.85 °C. In con-
trast, the Jamapa allele, MSN2Jam, will have the opposite effect.



Table 4
The terms in the dynamic QTL effect model showing the parameter IDs and estimated pa-
rameter values with standard errors (SE) for maximum number of nodes along the main
stem (MSNODmax) module.

Term Parameter ID Estimated value (SE)b

Mean MSNODmax MSNODmaxb 12.37 (0.13)
TMEANa MSNODmaxb1.1 0.43 (0.05)
SRADa MSNODmaxb1.2 0.10 (0.03)
DLa MSNODmaxb1.3 1.2 (0.08)
MSN1 MSNODmaxb2.1 −0.43 (0.12)
MSN2 MSNODmaxb2.2 −3.56 (0.15)
MSN3 MSNODmaxb2.3 −0.63 (0.10)
MSN4 MSNODmaxb2.4 −0.20 (0.10)
MSN5 MSNODmaxb2.5 −0.60 (0.10)
MSN6 MSNODmaxb2.6 0.32 (0.12)
MSN2 × TMEANa MSNODmaxb3.1 −0.08 (0.05)
MSN2 × SRADa MSNODmaxb3.2 −0.05 (0.04)
MSN2 × DLa MSNODmaxb3.3 −0.62 (0.09)
MSN6 × TMEANa MSNODmaxb3.4 −0.02 (0.05)
MSN6 × SRADa MSNODmaxb3.5 0.01(0.03)

a Mean values across sites for TMEAN[°C]: SRAD[MJ·d−1]: DL[hr] are
21.85:18.74:12.81, respectively.

b Estimated values are attained from non-linear least squares algorithm.
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The model for NAR(t) is shown below (Eq. (12)) with estimated pa-
rameter values for the dynamic model. The parameter IDs, calibrated
parameter values, and standard errors (SE) for the NAR module are
reported in Table 5.

NAR tð Þ ¼ 0:252þ 2:0 � 10−2 TMEAN tð Þ−21:51ð Þ−7:9 � 10−4ðSRAD tð Þ

−17:38Þ þ 4:4 � 10−3 DL tð Þ−12:74ð Þ
−6:0 � 10−3 � NAR1þ 7:0 � 10−3 � NAR2þ 8:2 � 10−3 � NAR3

−4:5 � 10−3 � NAR4

þNAR1 � −1:9 � 10−4 DL tð Þ−12:74ð Þ
h i

þNAR2 � 2:1 � 10−3 TMEAN tð Þ−21:51ð Þ
h i

ð12Þ
where TMEAN(t) is the daily average temperature for simulation

day (t). The average rate of node appearance in the study of 0.252 indi-
cates that there was 3.97 days between the appearances of successive
leaf tips. Eq. (12) indicates that a one degree increase above 21.51 °C
in the temperature for a day would result in a 0.02 faster daily rate
from the general mean of 0.252 rate of node addition per day as a result
of the temperature effect. This linear temperature response is analogous
to temperature response functions in existing DSSAT CROPGRO-Bean
Table 5
The terms in the dynamic QTL effect model showing the parameter IDs and estimated pa-
rameter values with standard errors (SE) for main stem node addition rate (NAR).

Term Parameter ID Estimated value (SE)b

Mean NAR NARb 0.252 (4E − 3)
TMEANa NARb1.1 2.0E − 2 (5.7E − 4)
SRADa NARb1.2 −7.9E − 4

(3.2E − 4)
DLa NARb1.3 4.4E − 3 (8.0E − 4)
NAR1 NARb2.1 −6.0E − 3

(1.0E − 3)
NAR2 NARb2.2 7.0E − 3 (1.0E − 3)
NAR3 NARb2.3 8.2E − 3 (9.2E − 4)
NAR4 NARb2.4 −4.5E − 3

(9.0E − 4)
NAR1 × DLa NARb3.1 −1.9E − 4

(6.6E − 4)
NAR2 × TMEANa NARb3.2 2.1E − 3 (5.2E − 4)

a Mean values across sites for TMEAN[°C]: SRAD[MJ·d−1]: DL[hr] are
21.51:17.38:12.74, respectively.

b Estimated values are attained from non-linear least squares algorithm.
model, where cultivar development rate is calculated with non-linear,
piecewise temperature response function f(Tbase, Topt). The Calima QTL
allele, NAR2Cal, will have a +1 QTL value and therefore would increase
the rate of node appearance by 7.0E− 3 from the generalmean of 0.252
nodes per day as a result of the QTL effect. Similarly, the same QTL allele
will increase the node addition rate by 2.1E− 3 nodes per day for a one
degree increase in temperature above 21.51 °C. In contrast, the Jamapa
allele, NAR2Jam, will have the opposite effect. The sensitivity of the
NAR module to environmental factors can be seen in supplemental fig-
ure, Fig. A.2.

3.3. Evaluation of GB-CBM

The RFmodule operating on daily time stepswas able to capture the
delay in flowering that was observed in ND (Fig. 3 A, B) since the dy-
namic QTL effect model had day length (DL), temperature × DL interac-
tion (TMEAN×DL), and QTL × DL interaction terms. The RFmodule had
an evaluation of R2, %RMSE, and %Bias values of 0.75, 10.4, and−1.1, re-
spectively across locations (Fig. 3 B). The MSNODmax module did not
perform as well as the other two modules for the evaluation set (R2,
%RMSE, and %Bias values of 0.27, 33.36, and 0.15, respectively across lo-
cations; Fig. 3 D). It should be noted that a 0.15% bias would only result
in over simulation of about 1.0 node or less. Our assumption for using
ECV values over time periods of planting to current simulation day up
to simulated anthesis to predict maximummain stem node number re-
quires additional studies. There are likely additional environmental co-
variates that are affecting the variation in maximum main stem node
number that were not considered. A source and sink relationship be-
tween photosynthesis and assimilate allocation could also be a driving
force behind the final main stem node number. The few replications
used (n= 3), frequency of measurements for each genotype (a sample
per week), and samplingwith different plants limit all of these analyses
as well. The NAR module predicted node number over the linear phase
of node addition well for the evaluation set but with high bias (R2,
%RMSE, and %Bias values of 0.93, 24.64, and 20.51, respectively across
locations; Fig. 3 F). The somewhat high bias in predicted node number
(N) is partly due a propagation of error since predicted rates (each
with somebias)were integrated for each dayover the course of the sim-
ulation. Based on intercept values from a node addition rate linear re-
gression analyses, time of first node appearance is likely genotype-by-
environment specific. Therefore, an additional module should be
added for the duration from emergence to appearance of first node for
improved node development simulations.

Integrating the three modules together for the GB-CBM (Fig. 1) pro-
vides the time series simulation formain stem node numbers for all 187
genotypes across the five sites (Fig. 4). The emergence of plants was de-
layed in ND and can be seen relative to the other sites (Fig. 4 ND vs. CT,
PA, PO, PR). For determinate genotypes such as Calima, either simulated
first flower or maximummain stem node number stopped the addition
of main stem nodes. For indeterminate genotypes such as Jamapa, the
MSNODmax module set the maximum main stem node number. The
separation of the two groups can clearly be seen and is due to the strong
effect of the QTLs called TF2, MSN2, and NAR2. These QTLs either repre-
sent the action of the TFL1Y/FIN gene, or the action of separate genes
tightly linked to FIN (Fig. 4, grey lines). Of note, the range of grey lines
represents the simulated main stem node numbers of the RIL popula-
tion as they differed from the parents. The time series plots for node
number showed the observed data from both Calima and Jamapa in
CT, in which there were fewer node numbers at later time points, likely
due to the extreme temperatures that may have caused failures in node
formation for single observed plants sampled (Fig. 4, CT). This lower
node number was associated with a large range of phenotypic re-
sponses found in CT (e.g., increased number of branches).

A comparison of the GB-CBM simulation results for node number
across sites with all of the observed data over the season from the 187
RILs shows that the GB-CBM model had fairly good predictions of



Fig. 3.The simulatedwith daily time steps from theRF (anthesis days after emergence) (A andB),MSNODmax (maximummain stemnodenumber) (C andD), andnodenumber during the
linear phase of node addition predicted byNAR (node addition rate) (E and F)module versus observed datawith 1:1 lines are shown for the calibration set (A, C, E) and evaluation set (B, D,
F) across the five sites (CT, ND, PA, PO, PR). The evaluation set included the parents, Calima (CAL) in blue and Jamapa (Jam) in orange and RILs in grey with 14 additional lines for RF and
MSNODmax, and 7 additional lines for NAR. The analyses of these plots included R2, %RMSE, and %Bias.
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node number with an average across sites R2, %RMSE, %Bias, and
Willmot agreement index of 0.72, 35.28, 15.65, and 0.89, respectively
(Fig. 5). The overall GB-CBM node number simulation performance
was reduced by CT and PR results with R2, %RMSE, %Bias, and Willmot
agreement index of 0.62, 54.3, 31.62, and 0.83, respectively in CT, and
0.61, 36.58, 18.55, and 0.85, respectively in PR. Crops in CT experienced
several days of hot temperatures and thus had a greater variability in
their node number compared to other sites PO and PA (Fig. 5 A vs. C,
D). The poor GB-CBM performances in warm conditions (CT and PR)
suggest that additional heat stress modules are needed. The poor GB-
CBM performance in ND suggests that additional day length or day
length and temperature interaction terms are needed. The reason for
the high bias can be explained by the NAR module and was discussed
previously but is more prominent in the warmer sites.

The GB-CBM simulated anthesis days after planting (ADAP) fairly
well, except in the case of ND, with an average across sites R2, %RMSE,
%Bias, and Willmot agreement index values of 0.68, 6.4, −1.99, and
0.88, respectively (Fig. 6). The model did a relatively poorer job of cap-
turing ADAP in ND (R2= 0.45) compared to the other sites (Fig. 6), and
is likely due to the fact that NDwas the only sitewith long days and lim-
ited the accuracy in identifying long-day effects for theRFmodule (Fig. 6
B). The RF module appears to require additional adjustment in the low
temperature responses for ADAP since there was some bias (−4.02%)
in the prediction of ADAP for the coolest site, Popayan (PO; Fig. 6 D).
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Fig. 4. Simulation results using the GB-CBM to predict main stem node number over time for 187 genotypes (RILs), across the five field sites (CT, Citra, ND, North Dakota, PA, Palmira, PO,
Popayan, PR, Puerto Rico) with observed data for the parents Jamapa (JAM) in triangle and Calima (CAL) in circles. The grey lines represent the RILs with them segregating based on JC28 QTL.
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4. Discussion

Several approaches to develop gene-based cropmodelswith varying
degrees of complexity have been suggested (White and Hoogenboom,
2003). The least complicated approach is to incorporate additive and
epistatic effects as linear models that predict traditional GSPs (genetic
coefficients) into crop models, provided data are available for a wide
range of genotypes grown under a wider range of environments. A sim-
ilar approach was proposed for the dry bean (P. vulgaris L.) simulation
model in DSSAT (CROPGRO-Bean) in which seven genes that were as-
sumed to affect phenology, growth habit, and seed size were used to
predict GSPs based on linear functions of the genes, and the GSPs
were used with the original functions for computing process rates
(White and Hoogenboom, 1996). This gene-based model accurately
predicted phenology but was unable to accurately predict yield varia-
tions (Hoogenboom et al., 1997). Integration of genetic information
into other crops such as soybean (Glycine max L.; (Messina et al.,
2006)), maize (Zea mays L.; (Reymond et al., 2003; Reymond, 2004;
Chenu et al., 2009)), rice (Oryza sativa; (Gu et al., 2014)), and barley
(Hordeum vulgare L.; (Yin et al., 2000a, 2000b, 2004)) resulted in vary-
ing degrees of success. For example, GSPs in the CROPGRO-Soybean
model were converted into mathematical functions of the (day
length-sensitive) E loci and used to simulate the reproductive develop-
ment behavior of soybean cultivars. The modified model accounted for
75% of the variance in maturity date in independent cultivars from Illi-
nois, USA based on weather data and 4 of the 6 E loci, which were
found using SSR-linked markers (Messina et al., 2006). Chenu et al.
(2009) modified the APSIM maize model (Keating et al., 2003) to
allow parameters for leaf and silk elongation to be affected by QTL inter-
actions to simulate maize growth under drought conditions. The study
was able to construct a QTL network affecting the examined traits, and
identify the best combination of traits for yield under the management
practices in the experiment. Technowet al. (2015) recently demonstrat-
ed the utility of integrating a maize model with approximate Bayesian
computation (ABC) algorithm for G and G × E effects to improve geno-
mic prediction. Although the study used synthetic data, the ABC algo-
rithm improved the maize model prediction accuracies relative to
using statistical relationships based on markers alone.

More complex approaches for integrating geneticswith cropmodels
have been suggested and include simulating gene expression over the
course of plant development or including polypeptide translation infor-
mation (White and Hoogenboom, 2003). The higher level of biological
networks/levels may increase errors within the models, and it has
been argued that further increasing the level of complexity in regards
to the genetics may not be necessary for further improving cropmodels
as a breeding tool if they capture the physiological basis of the traits (Yin
et al., 2004; Hammer et al., 2010). The approach suggested here would
allow flexibility in designing modules at the desired level of biological
complexity (also discussed in Yin et al., 2004). New gene-based mod-
ules can be built to replace sets of calculations for specific crop growth
or developmental processes already in the existing CROPGRO-Bean
model. These granular modules would be designed to incorporate G, E,
andG×E factors to improvemodel capabilities to simulate performance
of multiple genotypes across a range of environments. These modified
models would have the capacity to quantify crop performance when
new cultivars are developed or to test existing ones in target environ-
ments without having to conduct costly multi-location experiments.

The early stages of plant development are just one part of the growth
and development processes of plants but they are important processes
that also affect yield. In common bean genotypes with a determinate
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Fig. 5. Simulated versus observed plots of main stem node number using the GB-CBM over the season for 187 genotypes (RILs) by field sites (Citra (A), North Dakota (B), Palmira (C),
Popayan (D), Puerto Rico (E)) with R2, %RMSE, %Bias, and Willmot agreement index. Determinate genotypes are black, while indeterminate genotypes are grey. The parameters were
estimated across all sites but plotted to compare performance at each site. The lines represent 1:1 relationships.
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growth habit, the terminal meristemmakes a transition from the vege-
tative to the reproductive phase thus ending the addition of nodes on
the main stem (Ojehomon and Morgan, 1969). In indeterminate com-
mon bean genotypes, nodes continue to be added on the main stem
after the reproductive phase has begun and this continues (Kwak et
al., 2012) until achieving some maximal node number. The rate of
node/leaf addition depends on temperature, the genotype, and CO2

levels (Reddy et al., 1995; Vallejos and Pearcy, 1987) and is associated
with levels of miR156, squamosal-like proteins and cytochrome P450
genes in Arabidopsis (Schwarz et al., 2008;Wang et al., 2008). Node ad-
dition rate and the rate of progress towardfloweringwere both found to
be under genetic and environmental control for the bean RILs used in
these studies (Zhang, 2015; Bhakta, 2015).

We have constructed a prototype gene-based Common Bean Model
(GB-CBM) to simulate early vegetative and reproductive development
by integrating dynamic QTL effect models for node addition rate, rate
of progression to anthesis, and the maximal main stem node number.
The focus of this work was to illustrate an approach for transforming
QTL effectmodels of growth and developmental processes intomodular
dynamicmodels for predicting early growth and development based on
QTL, E, and QTL × E factors previously identified by linear mixed effect
statistical models. The component models in this study were based on
assumptions that the QTLs, E, and QTL × E are the same factors affecting
trait development. For this reason, dynamic simulations of these traits
can be accomplished through daily time steps using the daily values of
the relevant environmental factors. As a result, the highly influential ef-
fects were captured with this approach while maintaining simplicity.

The prototype GB-CBM presented here could be expanded at differ-
ent levels. First, additional modules for the growth of the main stem
could include internode and leaf expansion rates, and rate of addition
of branches. Also, the expansion of the GB-CBM for more complex traits
that additionally affect yield will require modules for other processes
(e.g., photosynthesis, leaf area expansion, seed and pod growth, senes-
cence among others). Second, additional studies are needed to expand
the identity of QTLs that had significant effects on the modeled traits.
Further work with diversity panels (more genotypes), with additional
environments could identify other QTLs and better estimate their
interacting effects. Finally, the assumption of linearity of environment
effects on a trait is another limitation in the current GB-CBM version
since most biological processes have nonlinear responses to the envi-
ronment. For example, many developmental and growth responses in-
cluding node addition and flowering show a temperature response
that is a piecewise function of base and optimal temperatures, such as
used in the CROPGRO-Beanmodel (Jones et al., 2003). Other approaches
to account for non-linear QTL effects over the growth cycle have been
developed where logistic leaf senescence curve parameters for potato
were directly predictedwithQTL informationwith non-linear extension
of mixed effect models (Malosetti et al., 2006). Here, the model did a
poor job of simulating node development for the extreme temperatures
(cold in PO and hot in CT), so incorporating nonlinear temperature
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Fig. 6. Simulated versus observed plots of Anthesis using theGB-CBMfor 187 genotypes (RILs) byfield sites (Citra (A), NorthDakota (B), Palmira (C), Popayan (D), Puerto Rico (E))with R2,
%RMSE, %Bias, and Willmot agreement index. Determinate genotypes are black, while indeterminate genotypes are grey. The parameters were estimated across all sites but plotted to
compare performance at each site. The lines represent the 1:1 relationships.
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functions for describing the dynamic processes is likely to improve pre-
dictions. This would be similar to functional mapping that targets the
genes that control growth and development by treating these biological
processes as nonlinear dynamic traits rather than static phenotypes (Ma
et al., 2002; Wu et al., 2003; Malosetti et al., 2006; Wu and Lin, 2006;
Yang et al., 2009). Functional mapping identifies and estimates the
effect of dynamic QTLs by testingwhether these parameters display sig-
nificant differences among genotypes (Wu and Lin, 2006). Incorporat-
ing functional mapping approaches may lead to models that better
represent the underlying biological responses of dynamic traits. Man-
agement (M) factors such as plant density, water, and nutrients were
not included in the presented model. Conceivably, one could extend
the approach to include M effects and G × E ×M interactions, if pheno-
type in M conditions were included.

The dynamic processesmodeled in this study (NAR(t) and RF(t)) are
also included in the existingCROPGRO-Bean cropmodel. This is one rea-
son that these two processes were selected. However, the functional
relationships used in the existing bean model are very different from
the equations developed by the dynamic QTL effect approach used in
this paper (Eqs. (10) and (12) for RF(t) and NAR(t), respectively).
These differences deserve attention here. In the CROPGRO-Bean
model, neither of these processes was dependent on genes/QTLs as
they are in the approach described in this paper. In fact, NAR(t) (similar
to the TRIFL parameter in the CROPGRO-Bean model) was assumed to
have the same cardinal temperature dependency for all genotypes.
Temperature was the only environmental variable used to compute
daily node addition rates; this function is piece-wise linear (using hour-
ly temperatures) with a base temperature of 5 °C, an optimum temper-
ature of 27 °C above which further increases in temperature do not
increase node appearance rates, and two other temperature thresholds
that describe a slowing rate (above 37 °C) and no development above
45 °C. These two upper thresholds are highly uncertain. Eq. (12) in-
cludes daily mean temperature, daily solar radiation, day length and
four QTLs and Fig. A.2 (supplemental material) shows the temperature
effect developed fromdata in this study to be linear, with a base temper-
ature somewhat lower than 10 °C that appears to vary among geno-
types. The extent that these cardinal temperatures are affected by
genotype needs to be explored since others propose these may not be
genetically controlled for some species (Parent and Tardieu, 2012). Ad-
ditional work is needed to evaluate whether incorporating nonlinear
functions for environmental effects in the dynamic QTL effect models
would improve results.

Comparison of the dynamic QLT effect model (Eq. (10)) with the
process model used to predict daily rate of progress toward flowering,
RF(t)), in the CROPGRO-Bean model is somewhat more complex. In
the existing bean model, a multiplicative model formulation is used as
follows (Eq. (13)):

RF tð Þ ¼ MR � f Thour tð Þð Þ � g P tð Þð Þ ð13Þ
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whereMR is amaximumdaily rate that is a GSP (normally estimated
from field data), f(Thour(t)) is a nonlinear function of hourly tempera-
ture (Thour(t)) and assumed to be the same function for all genotypes,
and g(P(t)) is a nonlinear function of day length (Boote et al., 2013)
with GSPs for critical day length (CSDL) and for sensitivity to increases
in day length above the critical threshold (PPSEN). Comparing this
equation with Eq. (10) shows that 12 QTLs affect RF(t), and of course
the equation uses only linear responses to environmental factors and
includes interactive terms for temperature and day length. Fig. A.1
shows that the dynamic QTL effect model produced similar responses
to day length as had been assumed in the existing bean model, with
the negative slope of RF(t) being analogous to PPSEN. However, the
effect of day length depends on temperature in Eq. (10) due to the
TMEAN(t)·DL(t) term in the equation, and these effects vary among ge-
notypes. This figure also shows that the relationship with temperature
varies with genotype, which had not been considered in the existing
bean model.

Based on these results, one may suggest that process models be de-
veloped using dynamic QTL effect methods, using prior knowledge of
the functional relationships that crop modelers have demonstrated in
specific physiological studies (as demonstrated here). For example,
one could implement Eq. (10) in place of existing computations in the
CROPGRO-Bean model for flowering time simulations. One could even
introduce hourly temperatures, similar to those used in current crop
models. This would result in equations that would be very different
from Eq. (13), and look more like Eq. (10) but use nonlinear instead of
linear terms. An alternative to this approach would be to use the linear
mixed effect models that can be used by researchers who are exploring
G, E, M, and G × E ×M interactions. Then, crop modelers could use that
information to revise their original modules for different processes as
more information is developed, making the terms in the functions that
they use, similar to Eq. (13), depend on genes and G × E interactions.
For example, Tb and Topt values for the temperature function in Eq.
(13) can be predictedwith identified G, E, and G × E factors.We believe
that both of these approaches have merit and should be pursued. One
advantage of expanding mixed effect models to model dynamic pro-
cesses is that software could be created to develop nonlinear mixed
effect models of dynamic processes and this could encourage more
involvement of geneticists and bioinformaticians in gene-based crop
modeling.

One of the major implications of this study is the critical need for
phenotyping data that have wide variations in genetic characteristics
combined with wide variations in environmental variables (includ-
ing temperature and day length). In fact, for this study there were
only five environments, which limited the reliability and inference
of some of the parameters estimated relative to sensitivities to E
and G × E. True model evaluation will require that new field sites
that were not used in the calibration process be validated. One prom-
ising approach might be to make further use of the many yield trials
that are conducted by plant breeders in different states and regions.
Additionally, automated phenotyping techniques will improve the
feasibility of these efforts. By combining genotype information with
phenotypic information, it may be possible to make rapid advances
toward more holistic, gene-based crop development, growth, and
yield models.

5. Conclusion

Although traditional crop models are able to reproduce some G × E
interactive effects on yield through GSPs, they have not adequately rep-
resented G× E interactive effects at the level of dynamic growth and de-
velopment processes. The approach demonstrated here incorporates
these important interactions at a process level, which are likely to enrich
these G × E interaction effects on yield. Empirical GSPs have to be
estimated for every genotype, which is costly and time consuming.
We showed that there is potential for quantifying rates of vegetative
and reproductive development of cropswithdynamicQTL effectmodels
based on G and E information identified frommixed effect statistical ap-
proaches, using data from multiple locations, and that this could elimi-
nate the need for one to conduct experiments in multiple locations
when a new cultivar is released, if the alleles of pertinent genes of the
cultivars are known. Nonlinear dynamic QTL effect models are needed
to establish a functional relationship between a given trait and the
genetic and environmental factors that contribute to the trait along
with the G × E interactions; the dynamics of these factors will provide
a better representation of the biology of any growth or developmental
process. Although the approach used to model vegetative and repro-
ductive development processes in this study was successful, it is not
yet clear whether this approach can be used to develop component
modules of other growth processes, such as dry matter growth and
partitioning to grain yield. Next generation crop models can be built
through the type of incremental improvements as described here. In
the future, it should be possible for one to genotype a new cultivar
and be able to predict crop performance in a range of environments
with good accuracy.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.agsy.2016.10.010.
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Appendix A

Table A.3
The significant terms in the linear mixed effect model for maximum number of nodes
along the main stem (MSNODmax) module.
Significant Term
 Chi Pr.b
ean MSNODmax
 –

EANa
 ***

ADa
 ***

La
 ***

SN1
 ***

SN2
 **

SN3
 ***

SN4
 ***

SN5
 ***

SN6
 0.134c
SN2 × TMEANa
 ***

SN2 × SRADa
 ***

SN2 × DLa
 ***

SN6 × TMEANa
 **c
SN6 × SRADa
 ***
M
a Mean values across sites for TMEAN[°C]: SRAD[MJ·d−1]: DL[hr] are 21.85: 18.74:
12.81, respectively

b Chi-square probabilities for each term from the mixed effect model analysis
⁎⁎⁎ denotes chi-square probability with 1df b0.001.
⁎⁎ denotes chi-square probability with 1df b0.01.
c MSN6 remained in the model because MSN6 × TMEANwas found to be significant in

the final model
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Fig. A.1. Environment sensitivity analyses for rate of progress toward flowering (RF) with parent lines highlighted. Grey lines represent the RI population. For each day length (DL) sensitivity
analysis, mean temperature and solar radiation values were held at 21.35 °C and 18.31 MJ m−2 d−1, respectively. Simulated rate was then predicted with DL values from 10 to 14 h in
increments of 0.5 h. For each solar radiation (SRAD) sensitivity analysis, mean temperature and day length values were held at 21.35 °C and 12.7 h, respectively. Simulated rate was then
predicted with SRAD values from 10 to 30 MJ m−2 d−1 in increments of 0.5 MJ m−2 d−1. For each mean temperature (TMEAN) sensitivity analysis, solar radiation and day length values
were held at 18.31 MJ m−2 d−1 and 12.7 h, respectively. Simulated rate was then predicted with TMEAN values from 10 to 30 °C in increments of 0.5 °C. For each temperature by day
length interaction (TMEAN × DL) sensitivity analysis, solar radiation and day length values were held at 18.31 MJ m−2 d−1 and 14 h, respectively. Simulated rate was then predicted with
TMEAN values from 10 to 30 °C in increments of 0.15 °C.
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Fig. A.2.Environment sensitivity analyses for node addition rate (NAR)modulewithparent lines hi
mean temperature and solar radiation valueswere held at 21.51 °C and17.38MJm−2d−1, respect
For each solar radiation (SRAD) sensitivity analysis, mean temperature and day length values we
values from 10 to 30 MJ m−2 d−1 in increments of 0.5 MJ m−2 d−1. For each mean tempe
17.38 MJ m−2 d−1 and 12.74 h, respectively. Simulated rate was then predicted with TMEAN
interaction (TMEAN x DL) sensitivity analysis, solar radiation and day length values were held a
10 to 30 °C in increments of 0.15 degrees.
ghlighted. Grey lines represent theRI population. For eachday length (DL) sensitivity analysis,
ively. Simulated ratewas then predictedwithDL values from10 to 14 h in increments of 0.5 h.
re held at 21.51 °C and 12.74 h, respectively. Simulated rate was then predicted with SRAD
rature (TMEAN) sensitivity analysis, solar radiation and day length values were held at
values from 10 to 30 °C in increments of 0.5 degrees. For each temperature by day length
t 17.38 and 14 h, respectively. Simulated rate was then predicted with TMEAN values from
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