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SUMMARY The ecology of forest soils is an important field of research due to
the role of forests as carbon sinks. Consequently, a significant amount of infor-
mation has been accumulated concerning their ecology, especially for temperate
and boreal forests. Although most studies have focused on fungi, forest soil bac-
teria also play important roles in this environment. In forest soils, bacteria in-
habit multiple habitats with specific properties, including bulk soil, rhizosphere,
litter, and deadwood habitats, where their communities are shaped by nutrient
availability and biotic interactions. Bacteria contribute to a range of essential soil
processes involved in the cycling of carbon, nitrogen, and phosphorus. They take
part in the decomposition of dead plant biomass and are highly important for
the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacte-
ria interact with plant roots and mycorrhizal fungi as commensalists or mycor-
rhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle,
including N fixation. Bacterial communities in forest soils respond to the effects
of global change, such as climate warming, increased levels of carbon dioxide, or
anthropogenic nitrogen deposition. This response, however, often reflects the
specificities of each studied forest ecosystem, and it is still impossible to fully in-
corporate bacteria into predictive models. The understanding of bacterial ecol-
ogy in forest soils has advanced dramatically in recent years, but it is still incom-
plete. The exact extent of the contribution of bacteria to forest ecosystem
processes will be recognized only in the future, when the activities of all soil
community members are studied simultaneously.
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INTRODUCTION

Forests represent one of the largest and most important ecosystems on Earth,
covering more than 40 million km2 and representing 30% of the total global land

area (1). Forest ecosystems are found in most of Earth’s biomes and harbor a large
proportion of the global diversity. For example, temperate and boreal forests occupy
most of the land surface of the Northern Hemisphere and contain 46% of all trees on
Earth— 0.66 and 0.74 trillion, respectively (2). Due to their global extension, the
processes occurring in these two biomes are of global importance, and an understand-
ing of the composition and function of their microbiomes is thus essential (Fig. 1).

Forests typically represent important carbon (C) sinks with large amounts of recal-
citrant organic matter in their soils, especially the temperate forest soils, which receive
tons of litter per hectare yearly (3). The presence of large trees distinguishes forests
from grasslands, wetlands, and agricultural areas in multiple ways (4). Trees represent
a multitude of habitats, such as the phyllosphere or rhizosphere, but they also sub-
stantially affect the remaining parts of the ecosystem. This is mainly because, as the
dominant primary producers, they supply the bulk of the C that enters the ecosystem,
and while some of this C is in the form of simple organic molecules, a significant
fraction, such as the complex biomass of wood, litter, or roots, is composed of
recalcitrant biopolymers (4). Trees also largely contribute to the spatial heterogeneity of
forest ecosystems by multiple means, including the penetration of soils by various
guilds of roots, generation of patches of litter and ground vegetation, and changes of
the morphology of the terrain during uprooting or the production of deadwood (4, 5).

Temperate forests extend approximately from latitudes 25°N to 50°N, gradually
changing into boreal forests further north (6). The southern limit of boreal forests is
understood as the latitude at which conifers are competitively excluded by temperate
tree species with higher rates of photosynthesis. There is, however, no distinct bound-
ary between the two biomes but rather a broad transition zone that includes a mix of
coniferous and deciduous tree species (7). Temperate forests are characterized by
temperature ranges between �30 and 30°C, with hot summers and cold winters and
with 750 to 1,300 mm of precipitation per year. Boreal forests— or mountainous forests
in the temperate zone—face lower temperatures, with cold winters lasting more than
6 months and average summer temperatures of around 10°C. Despite the lower
precipitation levels (300 to 900 mm of rain per year), boreal forests are typically moist
because of the reduced evaporation at low temperatures. In addition, other factors,
such as elevation, substrate, drainage, physical soil properties, and nutrient availability,
are also responsible for the distribution of forest types on landscape scales.

Temperate forests are composed of a large variety of deciduous trees, while
coniferous trees dominate temperate forests at higher altitudes but also occur fre-
quently in plantation forests (8, 9). Boreal forests exhibit a reduced tree diversity with
a larger proportion of coniferous trees (10).

Although temperate and boreal forests fulfill several important ecosystem services,
their role as large C sinks has gained specific interest in recent decades, especially in the
context of global change. Recent approximations indicate that the current C stock
stored in forests worldwide is approximately 861 Pg, of which 44% is in soil, 42% in
above- and belowground biomass, 8% in deadwood, and 5% in litter (11). Of the global
stock of C stored by forests, boreal forests contain 32% and temperate forests another
14%, indicating that their importance for global C sequestration is equivalent to that of
tropical forests (11). The large amount of stored C has the potential to influence the
feedback between the climate and the global C cycle (12). In this sense, global change,
including both climate change and other changes linked to human activities, has been
recognized as a major threat to forests (13). Over the millennia, human overexploitation
has been the most important risk for forests, and the C balance of forests is largely
affected by human activities, including deforestation, the management of production
forest, reforestation, afforestation, and others (11, 14). Other disturbances that are
associated with climate change and atmospheric drivers are also affecting the C
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balance of forests. In this sense, the effects of increasing temperature, persistence of
droughts, recurrence of fires, or expansion of native and invasive forest pests together
with the increasing loads of nitrogen (N) and carbon dioxide affect forest nutrient cycles
to a level where forests may potentially become net sources rather than sinks of CO2

(12, 13, 15). Therefore, a better understanding of the role of forests in C fluxes that are
largely dependent on the activity of bacteria and fungi has been highlighted as an
essential prerequisite for projecting future predictions of the health of our planet (16).

While plants are the key drivers of C uptake from the atmosphere in forests, forest
microorganisms contribute greatly to the C balance in these ecosystems. They play an
important role as decomposers, symbionts, or pathogens, influencing the C turnover
and retention and the availability of other nutrients (17–19). Microbial communities are
vital in mediating the biogeochemical cycles, and an understanding of their role in
ecosystem processes is essential for the prediction of the forest response to future
environmental conditions (8, 17, 20).

Fungi are the most well-studied microbes in temperate and boreal forest soils that
harbor abundant and diverse communities of saprotrophic and mycorrhizal fungal taxa
(12, 21, 22). Fungi are considered the main decomposers in forest soils because of their
ability to produce a wide range of extracellular enzymes that allow them to efficiently
degrade the recalcitrant fraction of dead plant biomass (23–25). Moreover, mycorrhizal
fungi play a pivotal role in the mobilization and sequestration of N and P in the forest
soil and are also responsible for significant soil transport of C (26–29). It is not surprising
that most of the research on forest soil ecology so far has focused on fungi (18, 19). This
traditional emphasis on fungi, however, is slowly shifting with an increasing appreci-
ation of the role of bacteria as the other major component of forest ecosystems (19).

Bacteria represent another important, though less explored, integral part of the
microbial community in forest soils. For example, recent findings indicate that bacteria
commonly harbor genes encoding plant cell wall-degrading enzymes (30) and contrib-

FIG 1 Distribution of temperate and boreal forests in the Northern Hemisphere. Natural areas of deciduous and mixed temperate forest (light green) and
evergreen coniferous forest (dark green) are shown in green, and natural areas occupied by boreal forests are shown in blue. The regions in which microbial
communities inhabiting soil have been studied are shown as dots. The bottom images show forest ecosystems dominated by Quercus, Pinus, Fagus, and Picea
trees.
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ute significantly to the decomposition of organic matter (31–35). In addition, bacteria
are the major natural agents responsible for N fixation in forest ecosystems (36) and for
other ecosystem processes, such as mineral weathering leading to the release of
inorganic nutrients (37). The roles of bacteria and fungi, however, should not be viewed
as separate. The high abundance of fungal biomass in forest soils has multiple conse-
quences for bacteria, including the creation of specific niches in the soil patches
colonized by mycorrhizal fungi (i.e., the mycorrhizosphere) and soil mycelial mats (38,
39), provision of nutrients via organic matter decomposition (40), and an increase in soil
connectivity by fungal mycelia that allow certain bacteria to move across the environ-
ment (41). Conversely, the functioning of mycorrhiza is modulated by mycorrhiza
helper bacteria (MHB) (42).

It is only recently that advances in analytical methods have allowed us to assess the
role of bacteria in the complex forest ecosystem and to address the important ques-
tions that previously remained unanswered, such as the following. Which habitats do
bacteria inhabit, and what are the major drivers of their abundance and diversity? What
is their role in nutrient cycling and the C balance? How do they interact with other
forest organisms? How do they respond to climate change, and how does this response
affect ecosystem processes? The aim of this review is to answer these questions for
temperate and boreal forests to summarize the present knowledge about the role of
bacteria in ecosystem processes and about their response to global change, as well as
to motivate further research in the bacterial ecology of forests.

BACTERIAL COMMUNITIES IN FOREST ECOSYSTEMS

Forest ecosystems provide a broad range of habitats for bacteria, including soil and
plant tissues and surfaces, streams, and rocks, among others, but bacteria seem to be
especially abundant on the forest floor, in soil and litter (4). Five phyla, Acidobacteria,
Actinobacteria, Proteobacteria, Bacteroidetes, and Firmicutes, appear to be abundant in
most soils (43). In addition to pH, which seems to be the most important driver of the
bacterial community composition in soils, organic matter content, nutrient availability,
climate conditions, and biotic interactions (especially the effect of vegetation) affect the
composition of bacterial communities (43–47). The spatial variation of these parameters
is responsible for the presence of hot spots of microbial activity with increased
abundance and activity in the soil, such as in and on plant debris, including litter and
deadwood, or on and around plant roots (48–50). Each of these niches has specific
properties and, consequently, a specific bacterial community (Fig. 2).

Bacterial Communities on Plant Litter and Deadwood

Due to the activity of primary producers, dead plant biomass—litter and dead-
wood—represents the most important C sources for forest soil microbes. The estimated
1011 tons of fallen leaf litter that accumulates yearly on the forest floor surface and its
transformation are of great importance for the cycling of C and other nutrients (51–53).
The litter habitat is dominated by a diverse community of fungi that have traditionally
been considered to be key players in litter decomposition. In addition to fungi, recent
studies have demonstrated an active role of bacteria in litter transformation. In the litter
of coniferous forests, bacteria incorporated relatively more cellulose-derived C than
that incorporated by fungi (31). Cellulose-C was accumulated mainly by Betaproteo-
bacteria, Bacteroidetes, and Acidobacteria. Similar results were found in different pine
forest soils in North America, where members of the Proteobacteria (Burkholderiales,
Caulobacteriales, Rhizobiales, and Xanthomonadales), Bacteroidetes (Sphingobacteriales),
and subdivision 1 Acidobacteria accumulated the most cellulose-derived C (32). Re-
cently, studies of deciduous forests reported that at least 10% of litter bacteria are able
to decompose cellulose. Many of these bacteria belong to the Proteobacteria, Actino-
bacteria, Bacteroidetes, and Acidobacteria, but members of other phyla are also active
(33, 54). Considering the frequency of cellulolytic genes in bacterial genomes (30),
bacterial involvement in decomposition seems to be a relatively common trait.
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While the acidic soils of coniferous forests harbor mainly Proteobacteria, Acidobac-
teria, and Actinobacteria (8, 55), in temperate deciduous forests, litter bacterial com-
munities seem to be especially enriched with Proteobacteria and Bacteroidetes (45, 56,
57). Indeed, significant differences in the chemical structure of litter and root exudates
among tree species influence soil bacterial communities through changes in substrate
chemistry (45, 58, 59). Litter quality, which includes the quantity of nutrients, tissue
structure, and the C/N ratio, varies between tree species and results in varying litter
decomposability (60–62). Higher litter quality is typically associated with faster litter
turnover and the liberation of exchangeable basic cations, such as Ca2� and Mg2�,
helping to maintain low levels of soil acidification (63–65). When trees typical of
temperate and boreal forests were ranked in order of increasing acidification ability of
their litter, conifers appeared to be the most acidifying, followed by beech, oak, and
birch. Maple, hornbeam, ash, and lime comprised the group with the least acidifying
forest trees (59). These effects of litter quality on soil nutrient status and pH indirectly
drive the bacterial community composition of forest soils and its activity (66–68).

The production of litter is not constant throughout the year; it is limited to a short
autumnal period in deciduous forests. These and other aspects of seasonality in the
temperate and boreal zones have been identified as key factors affecting the C input
into the soil environment and its decomposition by soil bacteria. Cold and dark winters
and warm summers with longer photoperiods affect the development and production

FIG 2 Drivers of bacterial community composition in forest soils and features of bacterial ecology in the rhizosphere,
litter/deadwood, and soil compartments of the forest floor.

Forest Soil Bacteria: Diversity and Function Microbiology and Molecular Biology Reviews

June 2017 Volume 81 Issue 2 e00063-16 mmbr.asm.org 5

http://mmbr.asm.org


of foliage and, consequently, microbial community structure and activity in the litter
and soil as well as in the foliage (69). Temperature differences affect decomposition
rates by accelerating or decelerating enzymatic processes (55, 70). On a shorter time
scale, selected weather events, such as precipitation or snowmelt, contribute to the
mobilization of nutrients that are washed into the forest soil, and they represent
periods of high microbial activity, especially of fast-growing r-strategists (50).

During decomposition, the chemical composition of litter changes with the gradual
removal of cellulose, hemicellulose, and lignin (58, 71). In contrast to fungi, bacteria
inhabiting the phyllosphere of living leaves do not seem to be largely involved in litter
decomposition and are quickly replaced by other taxa (72). Proteobacteria and Bacte-
roidetes are considered to be copiotrophs that preferentially consume the labile pool of
organic C (73) and are thus typical for freshly fallen litter. The fresh litter is also
characterized by the quantitative dominance of fungi. The biomass of bacteria in-
creases gradually during decomposition (58, 74), as does their diversity (57, 72). During
decomposition, the abundance of mycophagous bacteria coincides with the peak of
fungal biomass in the fresh litter. In this stage of decomposition, potentially mycolytic
bacteria in Quercus litter represent as much as 40% of the total community (72),
highlighting the importance of the fungal biomass as a nutrient source. Bacterial taxa
that associate with decomposing fungal mycelia represent a distinct subset of the
bacterial community, including members of the genera Pedobacter and Chitinophaga
(Bacteroidetes) and Pseudomonas, Variovorax, Ewingella, and Stenotrophomonas (Proteo-
bacteria) (75). With ongoing litter decomposition, the share of cellulolytic bacteria
gradually increases (72).

Importantly, a large proportion of plant inputs into forest soils are derived from organs
other than leaves, including fine roots, seeds, and twigs (76). While it has been shown that
this type of litter represents an important source of soil organic matter (SOM) C (52, 77),
bacterial communities associated with this substrate remain unexplored.

In addition to litter, coarse deadwood is also an important structural component of
forest ecosystems, especially in unmanaged forests. Wood debris represents a rich yet
recalcitrant source of organic matter, mainly due to its physical impermeability and
high lignin content. These characteristics benefit filamentous, macroscopic fungi (78),
which are consequently the dominant decomposers of deadwood. However, bacteria
are also important inhabitants of decaying wood, especially during the initial phases of
decay (79, 80). The physicochemical properties of wood that are tree specific, such as
the density, pH, and water and N content, determine the composition of bacterial
communities (80, 81). Proteobacteria, Acidobacteria, Actinobacteria, and Firmicutes be-
long to the most abundant phyla (79, 80, 82). Because fungal decomposition changes
the properties of wood substantially via the removal of easily available C, acidification,
and the production of fungal mycelia, bacteria that can thrive at an acidic pH and utilize
C from fungal mycelia are positively selected (80, 83, 84). As observed for litter
decomposition, the bacterial community in deadwood shows successional develop-
ment with wood decay. The assembly of the bacterial community appears to be a
stochastic process during the initial stage of wood decay, and the bacterial abundance
in fresh wood is very low, with �0.2 � 109 16S rRNA copies g�1. During decomposition,
the bacterial abundance increases, reaching levels as high as 3 � 109 to 13 � 109 16S
rRNA copies g�1 in highly decayed Picea abies wood, with a density of 0.15 g cm�3 (80).
While the involvement of wood-associated bacteria in wood biopolymer decomposi-
tion versus the use of substrates liberated by fungal decay remains largely unexplored,
recent studies support a role for bacteria in other important processes, including the
degradation of toxic wood compounds and N fixation. Genera such as Burkholderia,
Phenylobacterium, and Methylovirgula, which are abundant in the middle and late
stages of wood decomposition, are known to degrade aromatic compounds and to use
methanol as a sole carbon source (79, 82). Moreover, the N-fixation ability of bacteria
that are abundant during the late stages of wood decomposition (such as the members
of the Rhizobiales, which may account for 25% of all bacteria in this phase) offers the
possibility of mutualistic interactions with fungi that provide C via wood decomposition
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(82). Despite these initial studies, little is still known about the community dynamics of
wood-inhabiting bacteria or their interactions with wood-decaying fungi (81). Consid-
ering that multiple bacteria are able to utilize cellulose and other recalcitrant plant
polymers and that the fungal biomass is highly abundant in deadwood, the involve-
ment of bacteria in the decomposition of lignocellulose and fungal mycelia appears to
be highly probable.

Bacteria in Forest Soils

Forest soils are among the most diverse microbial habitats on Earth, in which
bacteria are the most abundant group of microorganisms (4, 85). Forest soils are
characterized by a sharp vertical stratification resulting from the decomposition of
litter-derived organic matter and the weathering of the mineral matrix. The decreasing
content and quality of organic matter with soil depth are accompanied by decreases in
microbial biomass, respiration, and activity of extracellular enzymes. For example, in a
Quercus petraea forest soil, organic matter decreased 10-fold, bacterial biomass 8-fold,
and enzyme activity 5-fold to 20-fold across the top 5 cm of the soil profile (86). The
temperate forest soil profile typically comprises the organic horizon, representing a
mixture of processed, plant-derived organic matter and soil components, and the
mineral soil horizon, with a lower content of organic matter, originating from both the
decomposition of organic matter and exudation from abundant tree roots. The bacte-
rial communities are horizon specific, although they display a high level of taxon
overlap (56). For example, the organic and mineral horizons in a temperate Quercus
forest are dominated by Acidobacteria (accounting for 40 to 50% of all sequences),
together with members of the Actinobacteria, Proteobacteria, and Bacteroidetes (56).
Bacterial communities in coniferous forest soils also differ among horizons. Although
Acidobacteria, Proteobacteria, and Actinobacteria are most abundant in organic as well
as mineral horizons, the organic horizon is richer in Proteobacteria and Bacteroidetes (8,
87), which have been proposed to preferentially utilize easily accessible carbon sub-
strates (73, 88). In contrast, communities in the mineral soil harbor a larger proportion
of Firmicutes and Chlorofexi organisms that are more adapted to the use of recalcitrant
carbon substrates and inorganic nutrients.

The high abundance of Acidobacteria, Actinobacteria, and Proteobacteria across
forest soils (87, 89–92) appears to indicate their functional importance. These three
phyla also dominated the active fraction of a P. abies soil, comprising �80 to 90% of
rRNA molecules, and were responsible for the bulk of bacterial transcription (8, 55).

The soil bacterial community composition has been shown to display biogeograph-
ical patterns on a continental scale that are predictable but differ from the well-studied
plant and animal community patterns (44). The first comprehensive study indicated
that the soil pH is the most important driver of the bacterial community composition,
and this observation was confirmed in multiple studies that focused specifically on
forest soils (43, 93–97). Whereas Acidobacteria and Alphaproteobacteria are abundant in
acidic soils (8, 96, 98, 99), the abundances of Bacteroidetes and Actinobacteria increase
with a rising pH (43, 94, 100).

The preference of bacterial taxa for niches with certain nutrient contents and
organic matter quality is indicative of their ecological strategy. The abundance of
Acidobacteria was initially negatively correlated with the C availability in soils, corrob-
orating the idea that Acidobacteria are slow-growing oligotrophs that have adapted to
resource limitations (73, 101, 102). However, the present results show that members of
the Acidobacteria inhabit soils across a wide range of C contents, representing, on
average, 20% of all bacteria; their abundance may exceed 60% in acidic forest soils
where both the content of organic matter and the allocation of C by tree roots are high
(43, 103). Acidobacteria show a high level of metabolic versatility that allows them to
decompose complex C substrates derived from the recalcitrant SOM pool (69, 101).
Recently, subdivision 1 Acidobacteria from acidic coniferous forest soil were demon-
strated to utilize C from cellulose and to produce high titers of extracellular enzymes
(31, 104), indicating their involvement in decomposition in these soils. Unfortunately,
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due to their limited culturability, little is known about the ecophysiology of other
subdivisions of Acidobacteria and the Planctomycetes, except that they are common in
forest soils (105, 106). Verrucomicrobia, which are also abundant in forest soils (56, 107,
108), show an increased abundance with soil depth (109), but it is unclear whether this
is due to their preference for the oligotrophic environment or to the occupation of
specific microniches. Members of the phylum Bacteroidetes, such as the genus Muci-
laginibacter, which are common in forest soils, have been shown to be potent decom-
posers of cellulose and other biopolymers (31, 33, 104).

Importantly, some soil bacteria are involved in the weathering of minerals, a process
of great importance in nutrient-poor soils, where minerals represent an important pool
of inorganic nutrients (37, 110). Members of the Betaproteobacteria, such as the genera
Burkholderia and Collimonas, have been recognized as efficient mineral-weathering
bacteria. These taxa are common in both deciduous and coniferous forest soils (31, 56,
106, 108, 110–112).

For linking of the presence of bacteria or their activity to soil properties, it is
important that soil is a complex of microniches with heterogeneous physicochemical
properties on various scales. Because bacteria inhabit small niches, the properties of
their immediate environment rather than the mean soil properties affect the local
bacterial community. This spatial heterogeneity has been shown to result in the
heterogeneity of bacterial communities on small scales of �1 cm (113). Furthermore,
local dispersal limitations can also remarkably influence the bacterial community
composition (93, 114). Considering the high level of spatial variation of forest C stocks
on the same scale (115), the occurrence of individual taxa in forest soil may actually be
highly variable on a small scale and may differ among activity hot spots, such as the
rhizosphere and the bulk soil (49, 50). The transient nature of some physicochemical
factors, such as soil moisture, can strongly influence the physical connectivity of the soil
matrix, affecting bacterial and nutrient dispersion and, as a consequence, rates of key
soil processes (116–118). Our ability to define and identify activity hot spots and to
analyze their properties, as well as the abundance, composition, and function of their
bacterial inhabitants, will be critical in future analyses to increase our mechanistic
understanding of the roles of bacteria in biogeochemical processes.

Rhizosphere Bacterial Communities

In temperate and boreal forests, most C enters the soil food web via the roots in the
form of labile C compounds, such as sugars, amino acids, and organic acids (119, 120),
with approximately one-third of the plant net primary production (NPP) allocated to
roots and soil (121). Indeed, root exudation, water and nutrient uptake by roots, decay,
respiration, and physicochemical changes in soil are important factors influencing the
composition and function of the microbial community in the rhizosphere, with bio-
geochemical consequences for the entire soils (46, 122).

The roots and rhizospheres of trees as well as ground vegetation associate with
fungi to form mycorrhiza. While the ground vegetation mostly forms a symbiotic
relationship with arbuscular mycorrhizal (AM) or ericoid mycorrhizal (ErM) fungi (29),
more than 90% of forest trees in temperate and boreal zones participate in ectomy-
corrhizal (ECM) symbiosis, and only a minority of trees associate with AM (123). Thus,
ECM is the quantitatively most prevalent and explored mycorrhizal type in forests (124).
ECM fungi form mantels around tree root tips, and their mycelia extend into surround-
ing soils that are used to provide mineral nutrients to their hosts (62, 124, 125). Fungal
associations of AM with trees are much less common and are confined to a few tree
species (38). Due to the large absorptive area and exudation of labile compounds by
ECM hyphae, the mycorrhizosphere and mycosphere represent important niches with
features that differ from the nonmycorrhizal rhizosphere and bulk soil, hosting different
bacterial communities (62, 126, 127). The exudation of labile C by tree roots or
mycorrhizal hyphae enhances the availability of C in the rhizosphere and, consequently,
the microbial abundance and activity of extracellular enzymes in comparison to those
in the bulk soil (128–131). The input of labile C compounds into the rhizosphere selects
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for bacterial strains with rapid growth and low-affinity substrate enzymes (r-strategists)
that are enriched in comparison to the bulk soil profile (73, 132). The quantity and
quality of exudates select for specific microbial communities and the expression of
specific genes and may prime the decomposition of recalcitrant organic matter (133,
134). Considering the seasonal changes in NPP, seasonality is a major driver of microbial
community composition and functioning in the rhizosphere (135).

Despite the importance of the associated ecological processes, bacterial communi-
ties inhabiting rhizospheres in forests have been explored much less than those from
grasslands or agricultural systems. Recent studies from nonforest environments, such as
grasslands (136, 137), croplands (138–140), and other ecosystems (134, 141–143),
concluded that the rhizosphere contains a certain subset of the bulk soil microbiome,
which is enriched in members of the Proteobacteria, Actinobacteria, and Bacteroidetes
(136, 140, 142, 143). The dominance of Alphaproteobacteria, Betaproteobacteria, Actino-
bacteria, and Bacteroidetes was also observed in the rhizospheres of beeches in a
mountainous forest (144). These observations suggest the enrichment of copiotrophic
bacterial taxa (73, 138, 145).

The microbiomes surrounding the ECM roots and hyphae also differ from those in bulk
soil (106, 127, 136). An enrichment of Proteobacteria (e.g., Burkholderia, Rhizobium, and
Pseudomonas) and Actinobacteria (such as Streptomyces) in the mycorrhizosphere was
reported based on culture-dependent studies (41, 124, 146–148). A recent molecular study
of Pinus sylvestris mycorrhizospheres indicated that the community composition is much
more complex and includes both copiotrophic and oligotrophic bacteria (149).

Various roles, ranging from mycorrhiza helpers to mycophages, have been assigned
to the ECM-associated bacteria (124). The mycorrhiza helper bacteria (MHB) isolated
from the mycorrhizospheres of different ECM symbionts either enhance the formation
of mycorrhiza or support the previously established symbiosis (126, 150, 151). In the
mycorrhizosphere, plants, ECM fungi, and bacteria form tripartite associations in which
each player critically affects the metabolism of the others. It has been proposed that
ECM fungi select for bacterial communities through the exudation of low-molecular-
weight compounds, such as organic acids and amino acids (116, 152). Different ECM
fungi in a similar environment can host very similar bacterial communities that are
suited for this niche (146). MHB influence both ECM fungi and their plant host. For
example, MHB from the genera Pseudomonas and Streptomyces promote mycorrhiza
formation by modifying the gene expression of the ECM, leading to accelerated
mycelial growth and stimulating the formation of new lateral roots (92, 150, 153).
Rhizosphere bacteria also provide additional benefits to plants. For example, Streptomyces
AcH 505 is an antagonist of plant pathogens and can induce defense mechanisms in P.
abies and Quercus robur (125, 154, 155). Other very-well-known bacteria promoting plant
vigor are endophytes, such as the members of the genus Rhizobium, which form nodules
on the roots of Alnus plants, fix gaseous N, and provide it to their host.

BACTERIAL INVOLVEMENT IN ECOSYSTEM PROCESSES
Role of Bacteria in the Carbon Cycle

Forest soils store two-thirds of the terrestrial C (156). The flux of C is initiated by the
fixation of atmospheric CO2 by photosynthesis and mediated by the allocation of
recalcitrant and simple organic compounds into the soil (Fig. 3). When plant debris and
simple organic compounds are decomposed and used by microorganisms to build their
biomass, some C is returned to the atmosphere via respiration. Because root exudates
can readily be assimilated by soil microorganisms, decomposition of the dead plant
biomass has been highlighted as the key process regulating C flow in soil systems that
influences the ratio between C mineralization and immobilization (156).

Recent studies indicated that bacteria play a more important role in the transfor-
mation of the dead plant biomass than was previously assumed and significantly
contribute to decomposition processes in litter and soil (31–33). The plant biomass is
composed largely of lignocellulose, a highly organized and interlinked mix of different
polymers that contains various amounts of cellulose, hemicelluloses, and lignin (157).
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Because of the presence of hemicelluloses in a recalcitrant complex with lignin,
cellulose represents the most accessible biopolymer, and its degradation is thus a
key step in the C cycle. The most important enzymes involved in this process are
endocellulases, exocellulases, and �-glucosidases. Together with these enzymes, a
diverse set of hemicellulases, such as endoxylanases, xylosidases, xyloglucanases,
endomannanases, mannosidases, fucosidases, arabinosidases, pectinases, and ligni-
nolytic enzymes, are necessary for the hydrolysis of other polymers that are present in
the plant biomass (158). The genes encoding cellulases are present in 24% of all
sequenced bacterial genomes (159), and glycosyl hydrolases that degrade other plant
structural biopolymers are also common (30). Recently, López-Mondéjar et al. (33)
isolated cellulolytic bacteria belonging to a variety of phyla from a deciduous forest
topsoil, and they demonstrated, for the first time, the presence of cellulolytic members
among some abundant soil genera, e.g., Mucilaginibacter, Luteibacter, and Pedobacter.
Other studies highlight the important ecological role of strains of the phyla Acidobac-
teria and Actinobacteria as degraders of plant biomass polysaccharides in the acidic
soils of temperate forests (31, 104, 160).

Genomes of several forest soil bacteria encode proteins involved in decomposition
of dead plant biomass (33, 161–163). In addition to promotion by hydrolytic enzymes,
efficient hydrolysis is often promoted by the presence of carbohydrate-binding mod-
ules (CBM) that are part of either the enzymes or bacterial cell surfaces (157). Genes
coding for proteins that are involved in signal transduction, nutrient binding, and
transport are often found in the same operons as hydrolase genes. Some of these
proteins, such as the TonB-dependent receptors, have been established as plant
carbohydrate scavengers (164). Other auxiliary proteins, such as the substrate-binding
proteins (SBPs) from ATP-binding cassette (ABC) transporters, have been shown to be
capable of binding a variety of plant cell wall soluble and insoluble saccharides,
including microcrystalline or amorphous cellulose, xyloglucan, xylan, and mannan
(165). The rich suite of these auxiliary proteins expressed by a Paenibacillus sp. strain
from a temperate forest soil suggests their important involvement in polysaccharide

FIG 3 Schematic view of the coupled biogeochemical cycles of carbon, nitrogen, and phosphorus in forest ecosystems.
Colored arrows show the transfer of elements (C in orange, N in green, and P in blue) between ecosystem compartments.
Ecological processes with the active involvement of bacteria are highlighted in bold.
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decomposition (162). A suite of carbohydrate-binding proteins, such as type IV pili and
an atypical oxidative cellulase, in a cellulolytic Luteibacter species from temperate forest
soil demonstrates the variability among the cellulolytic systems of bacteria, which
remain far from being completely described (33, 166, 167). Since plant biomass
represents a renewable and abundant resource for the production of environmentally
friendly chemicals and biofuels (168), forest topsoils represent a rich potential source of
bacterial strains with biotechnological relevance (169, 170).

Soil bacteria are also able to contribute to the breakdown of phenolic compounds,
including lignin, although their efficiency is typically much lower than that of fungi (34,
160). Ligninolytic bacteria can be found among the Proteobacteria (genera such as
Sphingomonas, Burkholderia, Enterobacter, Ochrobacterium, and Pseudomonas, among
others), Firmicutes (Bacillus and Paenibacillus), and Actinobacteria (Rhodococcus, Myco-
bacterium, Microbacterium, and Streptomyces) (35, 171), and there is evidence that
potentially ligninolytic taxa are common in soils. For example, abundant bacterial
laccase genes have been found in temperate hardwood forests (172), and bacterial taxa
possessing laccases, such as Burkholderia, Bradyrhizobium, and Azospirillum, are highly
active in forest soils (173). However, even if the enzymology of bacterial lignin degra-
dation is poorly understood compared to that for fungi, bacteria may use ligninolytic
peroxidases and laccases to reduce the toxicity of phenolic compounds rather than to
degrade lignin.

In addition to plant biomass, fungal mycelia represent an important pool of organic
matter in forest litter and soil (174). Forest ecosystems are dominated by ectomycor-
rhizal fungi (ECM), with a biomass of up to 600 kg ha�1 (147, 151), and the annual
production of fungal mycelia in a spruce forest ranges from 100 to 300 kg ha�1 (77).
Fungal mycelia represent a large C and N pool that typically contains chitin and other
polysaccharides, such as glucans and glucomannans, as well as phenolics, such as
melanin (75, 175). Fungal biomass represents a more readily decomposable substrate
than lignocellulose, and bacteria have been reported to be more important contribu-
tors than fungi to its decomposition (75, 176). The bacteria associated with fungal
biomass decomposition represent a specific subset of the litter and soil communities,
dominated by Pseudomonas, Ewingella, Pedobacter, Variovorax, Stenotrophomonas, and
Chitinophaga, genera that are known to produce chitinolytic enzymes (75). Chitinolytic
enzymes, which are represented by chitinases and N-acetylglucosaminidases, appear to
be widespread in bacterial genomes, especially Actinobacteria (30, 177). The members
of this phylum often contain several chitinase genes as well as a diverse array of
corresponding CBMs, and they often also possess �-1,3-glucanases, thus encompassing
a complex set of enzymes that potentially target fungal cell walls (178). Chitinase
production by soil bacteria is a complex adaptation that combines a nutritional strategy
with potential involvement in the antagonistic interactions with fungi (178, 179).
Although the bacterial biomass in forest soils has a size similar to that of fungi (55), the
process of bacterial cell wall polymer decomposition is far less understood. The
involvement of Planctomycetes, Verrucomicrobia, Armatinomonadetes, or candidate di-
vision OD1 in the degradation of bacterial exopolysaccharides produced in soil was
recently demonstrated (180).

Finally, a large fraction of C in forest ecosystems is allocated belowground during
the vegetation period via tree roots, in the form of root exudates (181, 182). Up to 40%
of newly photosynthesized C can be allocated to the soil via roots, where it is rapidly
respired or incorporated into the microbial biomass (183, 184). The rhizosphere,
including the root-associated mycelia of mycorrhizal fungi, is thus probably the most
important C allocation hot spot in forest soils and is strongly influenced by plant activity
(185). Because ECM fungi cover most of the fine roots and root tips, the largest fraction
of this C is allocated to them (186). The fraction of assimilates that is exuded directly
from roots into the rhizosphere is estimated to range from 1 to 5% and is composed
mainly of carbohydrates, amino acids, and organic acids (120, 187). The rhizodeposition
of C by plants exhibits severalfold seasonal differences that correspond to the intensity
of photosynthesis throughout the year (182). While direct evidence of a net C flux from
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plants to rhizosphere microbiota has been shown for many crops, little is known about
the structure and function of bacterial and fungal communities that are actively
involved in the assimilation of root exudates in forest ecosystems (188). Although
decomposer fungi can find suitable conditions in the nonmycorrhizal rhizospheres of
trees, this niche has traditionally been considered bacterium dominated because their
rapid growth favors their utilization of root exudates (185). Recent studies indicated
that soil bacteria indeed use root exudates in forest soils (189), and the seasonal
production of root exudates leads to an increase in bacterial biomass as well as in the
share of the rhizosphere- and mycorrhizosphere-specific bacteria in mineral soil in
summer (56, 70). In the same way as that of tree roots, hyphae of ectomycorrhizal fungi
exude low-molecular-weight organic compounds that support diverse bacterial com-
munities (78, 190). The rhizosphere of roots colonized by mycorrhizal fungi is specific
in that a portion of the plant-derived C is released into the soil through the ECM
mycelium (155). As a consequence, ECM fungi constitute a nutrient hot spot for other
microorganisms, because the fungal symbionts have a very large surface area and
receive a direct supply of photosynthetic C (149). Soil bacteria have been found to grow
abundantly and rapidly at the expense of the exudates from P. sylvestris roots colonized
by Piloderma, supporting a role for the bacteria in the metabolism of the organic acids
and other compounds produced by the fungus (152). The observation that these
bacteria are able to utilize fungal sugars more readily than plant sugars supports the
existence of a bacterial guild that is specialized for hyphal exudates (191).

Methane represents a gaseous form of organic C that can be oxidized by certain
forest soil bacteria under aerobic conditions (192). These methanotrophic bacteria are
the main consumers of atmospheric methane as well as methane generated by
methanogenic archaea in waterlogged anaerobic horizons of certain soils (193–196).
Due to the presence of methanotrophic bacteria, forest soils (especially those of the
boreal forests) may represent a sink of atmospheric methane. Although methanotrophs
are phylogenetically located in two bacterial phyla, most of the characterized isolates
belong to the Alphaproteobacteria and Gammaproteobacteria (197). The discovery of
new acidophilic methanotrophs related to Verrucomicrobia recently revealed a higher
level of diversity of methanotrophic bacteria in as yet unexplored acidic environments
(198). In addition to using organic C sources, certain soil bacteria are able to fix CO2.
These autotrophic taxa were described for the genus Bradyrhizobium (Betaproteobac-
teria), whose members are abundant inhabitants of forest soils (199, 200), and a recent
transcriptomic study confirmed the expression of the components of a photosynthetic
apparatus in the Cyanobacteria and Proteobacteria. The input of C into forest soils
through fixation is, however, apparently minimal (55).

Role of Bacteria in Nitrogen and Phosphorus Cycles

Nitrogen is the most common limiting nutrient in soils, entering the ecosystem
largely through fixation (Fig. 3). This process is dominated by bacteria that are esti-
mated to be responsible for more than 95% of the N input in unmanaged environments
(36, 201). The presence of the nifH gene of the Alphaproteobacteria (Bradyrhizobium,
Azospirillum, Hyphomicrobium, and Gluconacetobacter) and Deltaproteobacteria (Geo-
bacter spp.) was observed in different temperate forest soils, demonstrating the ubiq-
uity of some N-fixing bacteria, not only as symbiotic but also as free-living taxa (200).
The observed diversity of N-fixing bacteria may rapidly change if there is an exogenous
input of N (36). Particularly in temperate forest soils that are strongly affected by
anthropogenic N deposition, N input is a good predictor of N fixation activity (202).

Nitrification and denitrification lead to the loss of N from soils through NO, N2O, and
N2 gas emissions as well as through the leaching of NO3 if its concentration exceeds the
ecosystem retention capacity (203, 204). Among these, nitrous oxide is a particularly
powerful greenhouse gas with a potentially warming effect that is almost 300 times
larger than that of CO2 (205). Nitrification is the biological oxidation of ammonia to
nitrate via a multienzymatic process. The amoA gene, encoding ammonia oxidase,
which performs the first step of nitrification, is present in ammonia-oxidizing bacteria
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(AOB) as well as ammonia-oxidizing archaea (AOA), but AOB rather than AOA seem to
dominate in soils (206, 207). The reaction catalyzed by this enzyme is often limiting in
temperate and boreal forest soils (208). All known AOB belong to the Betaproteobac-
teria and Gammaproteobacteria, and they are mostly represented by the genera Nitro-
somonas, Nitrosococcus, and Nitrosospira. Nitrosomonas and Nitrosospira are further
subdivided into clusters with different responses to environmental drivers, such as
acidity, pH, and ammonia availability, and due to that, changes in soil N availability can
result in dramatic shifts in the composition of the AOB community (206, 208, 209).
Nitrosospira seems to be the most abundant AOB in acidic forest soils with low NH4

�

contents (206, 210, 211). The amoA gene content, however, appears to vary across
forest soils (212). Nitrification rates seem to be correlated with the AOB abundance in
soil (209, 213). AOB are also involved in N losses from soil by producing N2O during
denitrification (214). Denitrification is essential for the global N cycle, maintaining the
reduction of nitrate or nitrite to gaseous nitrogen compounds, such as N2 and nitrous
oxide. The denitrification pathway is known as dissimilatory nitrate reduction because
nitrate or nitrogen oxides are the final electron acceptors, allowing bacteria to produce
energy at the expense of reduced electron donors in the absence of oxygen. Denitri-
fying bacteria are not always able to perform all the steps of the dissimilatory pathway,
and incomplete denitrification is the major source of N2O emissions from soils (215).
Denitrification can be addressed by studying marker genes involved in the individual
enzymatic steps, such as the reduction of nitrate (narG), nitrite (nirK/nirS), nitric oxide
(norB), and nitrous oxide (nosZ) (205). Denitrifying bacteria are abundant and wide-
spread in forest soils, and denitrification genes have been found in bacterial strains
belonging to the Acidobacteria, Proteobacteria, and Firmicutes, as well as in other
bacterial phyla (216–218). A significant correlation was described among gene abun-
dances, denitrification rates, and NO and N2O fluxes, confirming the importance of their
carriers for the environmental processes that occur in forest soils (69, 203, 219). In
addition to mineral N forms, bacteria may obtain N from a range of organic compounds
present in forest soils, namely, the chitin present in the polysaccharides of fungal
mycelia and the amino acids and proteins in dead organic matter. The utilization of
these compounds is expected to be subject to intensive competition among ectomy-
corrhizal fungi, saprotrophic fungi, and bacteria (146).

While the potential source of N—the atmosphere—is theoretically unlimited, this is
not the case for phosphorus (P), which is supplied mostly by weathering of minerals; P
thus represents the limiting nutrient in many soils (Fig. 3). Bacteria are important
mediators of the P cycle because some are able to solubilize mineral P while others may
immobilize it in their biomass. Unfortunately, the involvement of bacteria in the P cycle
has received far less attention than that in the N and C cycles. The main mechanism
responsible for P uptake by bacteria is through the solubilization and uptake of
inorganic P, its most abundant source. The ability to solubilize inorganic P has been
described for different bacteria and ectomycorrhizal fungi present in the rhizosphere
and soil. This ability is related to the release of organic anions, such as citrate,
gluconate, oxalate, and succinate, into the soil (220). Phosphatase enzymes release
phosphate from organic phosphate esters during organic matter decay (221). In a
recent metagenomic analysis of temperate forest soils, it was highlighted that members
of the Alphaproteobacteria, Betaproteobacteria, Actinobacteria, and Acidobacteria dom-
inated the processes related to P turnover (222, 223). While genes related to P
solubilization are more abundant in P-rich soil, those that play a role in P uptake
systems are more abundant in P-limited soil (222).

EFFECTS OF GLOBAL CHANGE ON BACTERIAL COMMUNITIES IN FOREST
ECOSYSTEMS

Bacteria strongly contribute to key ecological processes that are important for
society in light of the ongoing global change (114). The determination of how rela-
tionships between site factors and bacterial communities affect the equilibrium be-
tween soil organic matter decomposition and C sequestration in forests is of para-
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mount importance for prediction of the responses of terrestrial ecosystems to climate
change (224). Future climatic conditions are predicted to produce tree species migra-
tion (225, 226), an increase in extreme events, such as droughts and wildfires, and an
increase in vegetation productivity due to longer growth seasons (13, 227, 228). These
effects in combination with other phenomena, such as increased N deposition, may
cause dramatic shifts in global C fluxes, in particular affecting the boreal and temperate
forests of the northern continental regions (229–231). The high diversity of C com-
pounds released into the soils and the complex structures of bacterial and fungal
communities, with their overlapping functions, create a very complex system that is
difficult to incorporate into predictive models (16). The complex nonlinear interactions
between forest and atmosphere have the capacity to constrain or amplify climate
change-associated processes, depending on the activity of soil bacteria and fungi
(232–234). Recent studies investigating the effects of global change on ecosystem
properties offer the first clues to the prediction of future developments (Table 1).

Carbon Dioxide

Increasing CO2 concentrations are predicted to boost NPP in boreal and temperate
forests (235); however, their capacity to maintain such high levels of NPP will strongly
depend on their ability to overcome nutrient limitations (236). Unfortunately, the
degree to which forests will persist as C sinks remains uncertain (237); in particular, the
rhizosphere priming effect may be reduced, and the increased NPP may increase soil C
storage (238, 239). It is clear that the degree to which rising CO2 levels will be offset by
C sequestration in forest ecosystems will strongly depend on the adaptation of both
trees and soil microorganisms to the altered environmental conditions.

Thus, how do CO2 levels affect bacterial populations in forest topsoils? And is it
possible to generalize the observations obtained across ecosystems for different soils
with various vegetations? The effects of elevated CO2 levels do not directly affect soil
bacterial populations: CO2 concentrations in soil pores are normally higher than those
in the atmosphere, and the response of bacteria to small CO2 changes is thus negligible
(240). As a result, the observed effects are mostly indirectly driven by altered plant
production and root exudation, which are both tree species specific. In addition,
changes in organic acid exudation by mycorrhizal fungi as a result of the presence of
CO2 will affect the bacterial community composition (152), and this process also
depends on the vegetation properties. It is difficult to determine whether the functional
responses of bacterial communities to CO2 will be similar across forests or will depend
on soil and vegetation characteristics. The expected increase in root exudation should
generally favor the development of soil copiotrophic bacteria over specialized olig-
otrophs. A good example of this response is the decrease in abundance of oligotrophic
Acidobacteria in various soils following an increase in CO2 (144, 152, 238, 240). Such a
general response is rather exceptional considering that different members of the same
phylum often respond differently to the same disturbance (241). The increased abun-
dance of certain bacterial taxa will have functional consequences only if their functional
traits do not change in response to the treatment, which may explain the sometimes
controversial results obtained for responses to CO2 in different forest soils, despite the
fairly consistent response of bacterial abundance after an increase in CO2 (238, 240,
242). For example, while some studies have indicated that an elevated CO2 level does
not affect the AOB abundance or nitrifying activity (207), others have described an
increase in nitrification or nitrifying taxa (240, 243), even in an unaltered bacterial
community. Thus, it is unclear whether the effects of increased CO2 levels on bacterial
biomass, richness, community composition, and functionality will be consistent across
different forest ecosystems.

Global Warming

The rise in temperature is intimately linked to the increased CO2 concentration in
the atmosphere, because the latter largely causes the former. Although both processes
appear globally, the extent of the rise in temperature is predicted to be pronounced in
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the Northern Hemisphere, where temperate and boreal forest ecosystems dominate.
The long-term scenarios are, however, not clear because multiple long-term events,
such as the depletion of labile C limiting bacterial growth, thermal adaptation of
microbial processes, and shifts in microbial communities or in the expression of their
metabolic potential, may attenuate positive feedbacks of warming (244). The C balance
after warming will largely depend on the efficiency of soil microbes in accessing and
using C in response to the altered environmental conditions (12). A very recent work
showed that an increase in temperatures can increase tree exudation rates (229). As a
consequence, warming can alter soil drivers through exudation, which in turn might
produce different responses of soil rhizosphere bacterial communities, affecting SOM
decomposition differently in different environments, depending on the tree-specific
exudation (229).

After years of experimentally increased warming in boreal and temperate forest
soils, bacterial biomass values are usually not significantly different from those of
nonwarmed controls, suggesting an attenuation effect (234, 245–248). However, it has
been demonstrated that warming affects bacterial diversity and that these changes
reflect the magnitude of the temperature change (249). These shifts in bacterial
communities may affect the C cycling processes that involve bacteria. Multiple studies
have shown that short- and long-term warming can affect the composition of the soil
bacterial community toward populations that are more adapted to the use of complex
sources of C (234, 250). Members of the Alphaproteobacteria and Acidobacteria display
increased abundances after simulated warming, suggesting a change in soil bacterial
lifestyle from copiotrophy to oligotrophy, which coincides with the depletion of labile
C while maintaining high levels of respiration (16, 234). This finding is contradictory to
the aforementioned effect of increased atmospheric CO2, which should boost copi-
otrophic bacterial populations, highlighting the necessity of studies that combine the
manipulation of both variables. However, other studies have documented no shifts in
bacterial communities after years of warming (90, 246).

Considering the warming effects on N cycle processes, we may rely only upon a few
contradictory works examining that topic. An increase in temperature was observed to
accelerate nitrification and denitrification processes, affecting the N cycle in soils (229,
251). The warming effect may be offset by other factors, such as N deposition, which
can increase the temperature sensitivity of the enzymes involved in SOM decom-
position or suppress the decomposition process, counterbalancing the priming
effects (245, 252).

Nitrogen Deposition

Global anthropogenic N inputs are estimated to be 30% to 50% higher than those
from natural sources. They have increased 10-fold in the past 150 years and are
projected to double during the next century (253, 254). In contrast to global warming
and increased levels of CO2, however, their effects are largely local. Since N is a limiting
nutrient in most terrestrial ecosystems, including boreal and temperate forests (255),
anthropogenic N deposition may strongly influence NPP in these environments by
reducing this limitation (256). N deposition also has a range of additional consequences
that range from shifts in the soil C/N ratio, soil acidification, and root exudation to
changes in the vegetation and microbiota (257). Bacterial soil communities are clearly
sensitive to increased levels of N itself as well as to all the associated soil physicochem-
ical changes (213, 258, 259).

There appears to be a general consensus that N deposition increases soil C seques-
tration due to the decline in SOM decomposition via the reduction of biomass and
activity of soil microbial populations in many different soil environments, including
temperate and boreal forests (258, 260–264). The most probable reason for C seques-
tration is the observed reduction of tree root exudation (256), although direct effects of
a pH decrease induced by N deposition were proposed as an alternative explanation
(265). Although the reduction of biomass following N input was mostly observed in
fungi (256, 266), it was recently noted that the biomass of soil bacteria can be reduced

Forest Soil Bacteria: Diversity and Function Microbiology and Molecular Biology Reviews

June 2017 Volume 81 Issue 2 e00063-16 mmbr.asm.org 17

http://mmbr.asm.org


as well, by up to 50% (258, 263, 267). Reduction of the bacterial biomass, however,
depends on the level of N input. At chronically low levels of N, which are typical of
boreal and temperate forest soils, the bacterial biomass may remain stable while the
fungal biomass markedly drops. This decrease in the fungal/bacterial biomass ratio due
to N addition is consistently found across forest soils, where it ranges from 25% to 70%
(256, 257, 263, 266).

N deposition also changes the composition of bacterial communities in forest soils.
The abundances of Acidobacteria and Verrucomicrobia decrease, while those of Actino-
bacteria and Firmicutes increase, following the addition of N to a variety of soils (264).
In a report on a temperate forest, the share of Acidobacteria did not respond to N
addition, but some groups within the phylum were significantly affected, suggesting
that the response of the bacterial community may be complex (268). Also, in other
cases, the deposition of N significantly affected relative abundances of core bacterial
phyla, but it reduced bacterial diversity and altered the bacterial composition at lower
taxonomic levels (258, 261).

A decrease in oligotrophic bacteria is often found concomitantly with a decrease in
the activity of enzymes related to cellulose breakdown, again supporting the hypoth-
esis that the addition of N negatively affects microbial SOM decomposition (262, 264).
When genes of the N cycle (fixation, nitrification, and denitrification) were assessed in
N deposition experiments, the metabolic potential of the bacterial community re-
mained stable or even decreased in terms of gene abundance (213, 267). However, in
studies assessing the effects of N addition on N cycle processes in forest soils, it was
reported that after N saturation of the environment, bacterial and archaeal nitrification
and denitrification gain importance, initiating the cycle, and result in the efflux of N
compounds, such as nitrate, N2, or nitrous oxide gas, from the soil ecosystem (150, 269,
270). This phenomenon suggests that the abundances of particular genes, in this case,
are not correlated with the rates of ecological processes. In this sense, it was recently
proposed that even in forest soil environments where the addition of N highly increases
nitrification, it is possible that bacteria with more efficient nitrification pathways are
selected and that this leads to higher rates of nitrification despite the reduced abun-
dance of nitrifiers and genes related to N cycle processes (213). Clearly, metatranscrip-
tomic or metaproteomic studies are needed to gain insight into the regulation of the
N cycle by N availability.

CONCLUSIONS

Undoubtedly, boreal and temperate forests will be important for the global C
balance considering the global change. The role of bacteria in these ecosystems has
been understudied, and it will be important to clarify whether these biomes will
continue to be a large C sink for anthropogenic emissions. Here we show that despite
the important role of fungi in forest soils, bacteria fulfill multiple important ecosystem
roles in the forest environment, including organic matter decomposition, regulation of
mycorrhizal symbiosis, and involvement in N cycle processes. More complex and
comparable studies to assess the variables affected by global change in a wide range
of ecosystems will be required to predict the future of these environments. The effects
produced by greenhouse gas emissions and anthropogenic deposition of chemical
compounds may provide a counterbalancing effect in some ecosystems, while the
changes may be dangerous in others due to positive feedback. Although our knowl-
edge is still very limited, we stress that the scientific data collected over the past years
and even decades is never contradictory with regard to the need for boreal and
temperate forest ecosystem protection by strict policies. A greater decrease in global
forest area will be particularly detrimental because it will prevent other climate change
mitigation efforts, such as the reduction of greenhouse emissions.

Considering the importance of the transfer of C from the roots of primary producers
to soil, the rhizosphere is likely the most important hot spot of bacterial activity in soils.
The available nutrients provided by plants and mycorrhizal fungi lead to the formation
of an interactive network of different soil microbes (not only bacteria) that makes the
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rhizosphere a fascinating and very complex system in which conditions are far from
those in individual pores of the bulk soil. The number of drivers to consider, including
the specificities of compounds and microbial diversity depending on the type of tree
or plant and a large influence of seasonal effects (among others), hampers the acces-
sibility to microbial ecologists of the processes that occur in the rhizosphere. However,
the function of this niche very likely offers the key to understanding the biogeochem-
istry of forest soils. Studies combining the assessment of metabolites present in the
rhizosphere at different times, their turnovers and transformations, and the effects and
implications of bacterial taxa in terms of fluxes are the next step toward elucidating the
effects of forest trees on the rhizospheres and how they relate to the cycling of C and
other nutrients.

The large number of studies examining the bacterial communities in forest ecosys-
tems that were published in recent years are shedding light on the high diversity and
complex structure of these communities. However, to provide insights into the eco-
logical roles and contributions of individual bacterial taxa to biogeochemical processes,
it is necessary to link the community composition to specific functions. Although
DNA-based analyses aid in unraveling community dynamics and changes in microbial
activity, RNA-based studies offer important information about the active bacterial
community and the processes that occur in ecosystems. RNA-based studies of forests
confirm how thousands of microbial taxa are transcriptionally active in forest litter and
soil, underscoring the involvement of many players in important processes that occur
in soil and the importance of taxa with a low abundance of DNA.
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