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SUMMARY Invasive fungal infections cause significant morbidity and mortality in
part due to a limited antifungal drug arsenal. One therapeutic challenge faced by
clinicians is the significant host toxicity associated with antifungal drugs. Another
challenge is the fungistatic mechanism of action of some drugs. Consequently, the
identification of fungus-specific drug targets essential for fitness in vivo remains a
significant goal of medical mycology research. The trehalose biosynthetic pathway is
found in a wide variety of organisms, including human-pathogenic fungi, but not in
humans. Genes encoding proteins involved in trehalose biosynthesis are mechanisti-
cally linked to the metabolism, cell wall homeostasis, stress responses, and virulence
of Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. While there
are a number of pathways for trehalose production across the tree of life, the TPS/
TPP (trehalose-6-phosphate synthase/trehalose-6-phosphate phosphatase) pathway
is the canonical pathway found in human-pathogenic fungi. Importantly, data sug-
gest that proteins involved in trehalose biosynthesis play other critical roles in fungal
metabolism and in vivo fitness that remain to be fully elucidated. By further defining the
biology and functions of trehalose and its biosynthetic pathway components in patho-
genic fungi, an opportunity exists to leverage this pathway as a potent antifungal drug
target. The goal of this review is to cover the known roles of this important molecule
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and its associated biosynthesis-encoding genes in the human-pathogenic fungi stud-
ied to date and to employ these data to critically assess the opportunities and chal-
lenges facing development of this pathway as a therapeutic target.

KEYWORDS fungal pathogenesis, fungal virulence, trehalose, antifungal agents,
antifungal therapy, carbon metabolism, cell wall

INTRODUCTION

he incidence of invasive fungal infections (IFls) has increased significantly over

the last 4 decades, largely due to increased use of aggressive chemotherapies for
malignancies, potent immunosuppressive regimens for organ transplantation, and the
HIV/AIDS pandemic (1-4). Cryptococcus, Candida, Aspergillus, and Pneumocystis are the
most common genera that cause so-called opportunistic invasive fungal infections, but
the incidence of many other fungal diseases is also increasing across the globe (1-9).

There are many clinical challenges in promoting positive patient outcomes for these
human fungal infections that are too often lethal. For instance, a major challenge is that
fungi are eukaryotes that share cellular structures and metabolic pathways with hu-
mans. Therefore, current antifungal drug options are limited and are fraught with
serious side effects in humans. Currently, there are four main treatment classes of
antifungal drugs for invasive disease. These classes target the fungal membrane
(azoles and polyenes), cell wall (echinocandins), and RNA/DNA synthesis (flucytosine)
(5). Although newer antifungal drugs (voriconazole, posaconazole, and isavuconazole)
have been developed from previous antifungal drug structures, these are still limited by
the route of administration, the spectrum of activity, reduced fungicidal properties,
drug-drug interactions, toxicity, and bioavailability (6). For instance, drug-drug interac-
tions with agents metabolized by the P450 cytochrome system may limit the use of
triazoles, such as voriconazole (5, 7). Recently, multiple case reports of antifungal drug
resistance, especially against the azoles and now the echinocandins, have been re-
ported (5, 6, 8-11). Further, a multidrug-resistant species of Candida, Candida auris, is
now emerging in clinics across the world (12). Thus, there is a critical need for novel
antifungal drugs that are fungicidal but have reduced off-target side effects for the
patients who desperately need them.

One strategy for discovering new and potent antifungal drugs is to target unique
fungal metabolic pathways important for fungal fitness and virulence in vivo. Trehalose
biosynthesis is one of the pathways that broadly exists in fungi but not in humans (13,
14). Recent studies on the molecular genetics of this pathway have revealed that
components of the trehalose biosynthesis pathway are essential for Candida, Crypto-
coccus, and Aspergillus species to cause invasive diseases in vertebrates (13-21). How-
ever, much remains to be learned about the mechanisms through which trehalose
biosynthesis affects fungus-host interactions. This knowledge is essential not only for
determining the therapeutic efficacy of targeting this pathway for each respective
disease but also for defining the best target for each fungal pathogen. Consequently,
the goal of this review is to analyze and present the data on the role of the trehalose
pathway in human fungal pathogenesis in order to assess the opportunities and
challenges facing therapeutic development of this pathway.

TREHALOSE PATHWAY
What Is Trehalose?

Trehalose is a nonreducing sugar containing two glucose subunits with an «,a-1,1-
glycosidic linkage (Fig. TA). It is found in plants, fungi, lichens, algae, a wide variety of
bacteria, insects, and invertebrates but not in mammals (outside their microbiomes)
(13, 14). Interestingly, trehalases (trehalose-degrading enzymes) are found in the kidney
and the brush border of the small intestine in mammals, including humans (14). In
fungi, trehalose is present in spores, fruiting bodies, and vegetative cells such as hyphae.
Trehalose is rapidly depleted after germination and used in central fungal metabolism and
in response to specific environmental stresses (13).
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FIG 1 (A) Chemical structures of glucose and trehalose. Trehalose consists of two glucose molecules with an «,a-1,1-glycosidic linkage. (B)
Timeline of trehalose and trehalose-related enzyme discovery.

History of Trehalose

The Pharmacopoea Persica, written in 1681 by Friar Ange of Toulouse, contains the
first record of trehalose, recorded as trehala in the cocoons of Larinus beetles (22-24).
Around a century later, in 1832, H. A. Wiggers discovered that undisturbed solutions of
ergot formed crystals of an odorless nonreducing sugar that he named “mutterkorn-
zucker” (an ergot sugar) (24, 25). This new sugar was resistant to hydrolysis and
polarized light to a greater extent than sucrose (24). In 1858, Mitscherlich found the
same sugar in mushrooms and called it mycose, while Berthelot also found this sugar
in cocoon-like shells of various insects from the Middle East (24). Berthelot extracted
this sugar from the shell and named it trehalique glucose or trehalose (24). He also found
similarity between trehalose and mycose (24). In 1876, Miintz tried to find trehalose in
brewer’s yeast, i.e., Saccharomyces cerevisiae. However, he could not extract trehalose
by using a water and alcohol separation approach and erroneously concluded that this
sugar did not exist in this important yeast. Yet he also tested and concluded that
mycose and trehalose were the same sugar (26). Thereafter, Bourquelot extracted
trehalase from the filamentous fungus Aspergillus niger and Fischer discovered tre-
halase activity in yeasts, in 1893 and 1895, respectively (26, 27). By 1925, Koch and Koch
had observed an unknown sugar on the sides of a flask from an alcohol extract of
Fleischmann’s yeast, S. cerevisiae, that had been undisturbed for several months (26).
The complete trehalose biosynthetic pathway in Saccharomyces was identified and
carefully described in 1953 and 1958 by Leloir and Cabib (28, 29). Lemieux and Bauer
successfully synthesized trehalose in 1954 (24, 30). The amount of trehalose in a given
sample can be detected by monitoring glucose levels after treatment with trehalase, a
highly specific enzyme, which cleaves trehalose into two p-glucose units (14, 31). Given
the seminal role that S. cerevisiae has played in the understanding of trehalose
biosynthesis and function in fungi, it is used for comparative purposes throughout this
review. The timeline for trehalose discovery is summarized in Fig. 1B.
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Biochemical Properties of Trehalose

Trehalose’s formal name is a-p-glucopyranosyl a-p-glucopyranoside (C,,H5,0,,-2H,0
[trehalose dihydrate] or C,,H,,0,, [anhydrous trehalose]) (Fig. 1A). The functions of
trehalose proposed by Colaco and Roser in 1995 are myriad and include water
replacement, glass transformation, and chemical stability (32). Water replacement by
molecules forms hydrogen bonds and protects the surface structure. Trehalose does
not form direct internal hydrogen bonds but instead forms four hydrogen bonds with
two water molecules. This structure allows special molecular flexibility around the
disaccharide bond and may allow trehalose to interact with phospholipid or polar
groups of certain macromolecules (Fig. 2A) (32). However, surprisingly, there is still no
direct evidence of specific interactions between trehalose and proteins (32). For patho-
genic fungi, interactions between trehalose and other molecules are unreported and an
area for further investigation.

With regard to glass transformation, sugars may solidify in a glass state that helps
biomolecules to stabilize and protect small hydrophobic volatile esters from evapora-
tion in cold and desiccating environments. The glass state of trehalose is different from
other sugars because it does not retain water molecules and thus does not form crystals
as other sugars do (Fig. 2B). Due to this unique property, the trehalose glass state is
stable at high temperatures and under desiccation conditions (33, 34). What role this
property of trehalose has, if any, on fungal biology is unclear.

As a nonreducing sugar with a low free energy of activation of the glycosidic
linkage, trehalose is more resistant to hydrolysis than other disaccharides. Under mildly
acidic conditions, other disaccharides go through a Maillard (browning) reaction that
forms many compounds, e.g., furans, imidazoles, and N-nitroso derivatives, which may
negatively affect dried food nutrition. However, trehalose is relatively stable in this
context and does not hydrolyze (32). In fact, O'Brien observed in 1996 that under
suboptimal conditions, trehalose undergoes ~2,000-fold fewer Maillard reactions than
those observed for sucrose (35). Consequently, although there is still some controversy
about the mechanisms of trehalose’s protective properties, it is well known and widely
used in food preservative processes and in mammalian cell and plant preservations
(35). For example, it is used as a cryogenic preservative for spermatozoa and ovarian
tissue and also in the formulation of commercial products such as Herceptin and
Avastin. Its unique properties that preserve protein structures allow its use in everyday
products (36). Further experiments to unravel the biological properties of trehalose are
necessary to fully reveal its biological mechanisms and its potential for preservation of
fragile cells and molecules. This is particularly true for the role of trehalose itself in the
pathogenesis mechanisms of human-pathogenic fungi.

Trehalose Biosynthesis in Fungi

Several trehalose biosynthesis pathways have been identified throughout the tree of
life, and five of these pathways are currently well described (37, 38). The first pathway
consists of two main enzymes: trehalose-6-phosphate synthase (TPS or Tpsip) and
trehalose-6-phosphate phosphatase (TPP or Tps2p) (Fig. 3A) (28, 29). TPS converts
UDP-glucose and glucose-6-phosphate (G6P) into UDP and trehalose-6-phosphate
(T6P). T6P is converted by the TPP into trehalose and free inorganic phosphate (P,). This
canonical pathway is found in a wide variety of organisms, such as eubacteria, archaea,
fungi, plants, and insects (13). It is the most well-studied trehalose biosynthesis
pathway in human-pathogenic fungi. The second pathway found in some fungi was
reported in 1971 (39) and was characterized for the mushrooms Agaricus bisporus (40),
Grifola frondosa (41), and Schizophyllum commune (42). It is also found in some bacteria
(43-46) and protists (47). This pathway is found in the model filamentous fungus
Neurospora crassa, as evidenced by the identification and characterization of the ccg-9
gene (48), which encodes a trehalose phosphorylase enzyme (TreP). TreP converts
glucose-1-phosphate (G1P) and glucose into trehalose (Fig. 3B). This pathway may be
reversible, but to date, that property has been shown only in vitro (40, 49). This
noncanonical pathway of trehalose biosynthesis in fungi is likely present in the
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Dehydrated condition

2 Glass foriﬂon

FIG 2 (A) Trehalose forms hydrogen bonds with two water molecules and functions as a replacement for
water by interacting with the phospholipids or other macromolecules on the cell membrane to protect
their structures under stress conditions. (B) Trehalose forms a glass state without any water retention or
crystallization, thereby protecting the cell membrane under dehydrated conditions.

human fungal pathogen Aspergillus fumigatus, as suggested by the presence of 2
TreP-encoding genes, but so far has not been characterized fully for A. fumigatus or
other pathogenic fungi (21). Thus, it remains unclear whether trehalose can be pro-
duced through TreP in human-pathogenic fungi, and the role of the TreP genes in the
pathogenesis of fungi is unknown. In the context of assessing the value of targeting
trehalose biosynthesis for therapeutic development, it seems warranted to define all
possible trehalose biosynthesis pathways in human-pathogenic fungi. This is a signif-
icant challenge, as a noncanonical pathway may be functional only under specific
environmental or cellular conditions. Regardless, if an alternative pathway can com-
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FIG 3 Trehalose biosynthesis pathways in fungi. (A) The Tps1/Tps2 (TPS/TPP) pathway consists of two
main enzymes: trehalose-6-phosphate synthase (Tps1) and trehalose-6-phosphate phosphatase (Tps2).
(B) The alternative trehalose phosphorylase pathway (TreP) consists of a trehalose phosphorylase enzyme
that reversibly converts glucose and glucose-1-phosphate (G1P) into trehalose and inorganic phosphate
(P). (C) The TreY/TreZ pathway consists of a maltooligosyl trehalose synthase enzyme (TreY) and a
maltooligosyl trehalose trehalohydrolase (TreZ). TreY converts maltooligosaccharides, glycogen, and
starch (maltodextrins) into maltooligosyl trehalose, and TreZ releases trehalose from maltooligosyl
trehalose. (D) Trehalose synthase (TreS) changes maltose directly into trehalose. (E) ADP-glucose and
glucose are reversibly converted into trehalose by trehalose glycosyl-transferring synthase (TreT).

plement inhibition of the primary pathway, this must be taken into consideration in
targeting these pathways for therapeutic development.

A third pathway is found in Arthrobacter spp. and Sulfolobus spp. (50-52) and is
related to the maltooligosyl trehalose synthase enzyme TreYp. TreYp changes the
maltooligosaccharides glycogen and starch (maltodextrins) into maltooligosyl treha-
lose. Trehalose is released from maltooligosyl trehalose by the enzyme maltooligosyl
trehalose trehalohydrolase (TreZp) (Fig. 3C). There are some bacteria, e.g., Pimelobacter
sp. (53, 54), that can change maltose directly into trehalose by using a trehalose
synthase (TreSp). The TreSp pathway is the fourth trehalose biosynthesis pathway (Fig.
3D). The fifth pathway was discovered recently in Thermococcus litoralis and other
extremophilic archaea, e.g., Pyrococcus spp. (55, 56). This pathway utilizes a trehalose
glycosyl-transferring synthase (TreTp) to reversibly generate trehalose by using ADP-
glucose and glucose (Fig. 3E) (55, 56). However, the last three pathways have not
been described in fungi. Importantly, the existence of multiple pathways of trehalose
biosynthesis highlights the central role of trehalose production in a variety of organ-
isms capable of causing human disease. This broad importance of trehalose in the
physiology of many microbes may have therapeutic implications that need to be
considered at a deeper level (discussed later in this review).

Trehalose is degraded into two glucose molecules by trehalase enzymes (57). Fungal
trehalases are divided into two groups, namely, nonregulatory and regulatory trehala-
ses (57). Nonregulatory trehalases, found in the ascomycetes and basidiomycetes,
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function under acidic conditions (pH 3.5 to 5.5) and have high heat stability (57). They
do not possess rapid activity changes during periods of fast trehalose mobilization
and are not activated by phosphorylation (57). Regulatory trehalases, found in
Phycomyces blakesleeanus, Mucor rouxii, Pichia pastoris, Piptocephalis spp., and S.
cerevisiae, function under neutral conditions (pH 6.0 to 7.5) and have low heat stability
(57). Unlike nonregulatory trehalases, they are rapidly activated during trehalose mo-
bilization (57). A summary of the known genes encoding proteins important for
trehalose metabolism in fungi is presented in Table 1.

Specific Functions of Trehalose in Fungi

Trehalose has critical functions in fungal biology. There is a hypothesis that trehalose
serves as an alternative carbon source for some fungi, though how this relates to
pathogenesis is unclear (57). One possibility that has not been tested experimentally is
that trehalose produced by the microbiota of the human body provides a carbon
source for fungi under certain pathological or homeostatic conditions. Trehalose is
critically important for filamentous fungal conidium survival and germination, likely due
to its function as a carbon source (57). An energy reserve, i.e., glycogen, usually
accumulates when nutrients are rich (58). In contrast, trehalose accumulates in yeast
after glucose depletion, at the beginning of the stationary phase. In the stationary
phase, yeast cells use glycogen initially, but trehalose is utilized under extreme starva-
tion conditions (58, 59). From these data, it can be concluded that trehalose is less likely
to be a main reserve carbohydrate in S. cerevisiae but rather serves as an alternative
carbon source under severe stress conditions. In human-pathogenic fungi, the role of
trehalose as a reserve carbohydrate or an alternative carbon source is still unclear, and
this area still remains to be explored in depth.

Trehalose has a critical role as a general stress protectant in fungi, especially in
response to dehydration and thermal stress. For example, trehalose is proposed to form
hydrogen bonds with proteins and to interact with the polar head groups of phos-
pholipids to maintain membrane structure under dehydration conditions. Trehalose
also inhibits both fusion and lipid-phase transitions under anhydrobiotic conditions (60,
61). Under these conditions, trehalose may form hydrogen bonds with proteins, but
as discussed above, specific molecular interactions remain elusive and it is unclear
whether these conditions and mechanisms influence fungus-host interactions in vivo.
However, growth at human body temperature may be considered an extreme stress
for many fungi. In S. cerevisiae at suboptimal environmental temperatures, the total
amount of trehalose (e.g., after 1 h of exposure to 40°C) increases dramatically (62, 63).
Under the same conditions, the trehalose phosphate synthase (TPS) and neutral
trehalase enzymes have increased activity to both produce and degrade trehalose
during heat stress and the recovery phase, respectively (62, 63). The trehalose phos-
phate synthase complex accumulates under heat stress conditions, and a tps7 null
mutant of S. cerevisiae has a growth defect in glucose-containing medium at high
temperatures (64).

Consequently, it is perhaps not surprising that trehalose is also important for thermal
stress survival of human-pathogenic fungi, including Candida albicans (15), Cryptococ-
cus neoformans (19), and the rarely pathogenic fungus Aspergillus nidulans (65-67). A
trehalose-deficient mutant (AtpsA/B) of A. fumigatus is sensitive to heat shock, as
suggested by a significant decrease in viability at 50°C (68). However, at normal human
body temperature, loss of TpsA and TpsB in A. fumigatus does not affect viability. Thus,
mechanisms other than trehalose biosynthesis per se appear to support the ability of A.
fumigatus to thrive at human body temperature. Conversely, trehalose biosynthesis-
encoding genes are important for cold shock in Escherichia coli (69). Trehalose also
accumulates in S. cerevisiae after 12 h of exposure to 10°C (late cold response), but a
tps1/tps2 double null mutant still survives at 10°C (70). This result suggests the
existence of an unknown pathway for yeast cold adaptation. Nonetheless, it has been
hypothesized that trehalose may still prevent the aggregation of denatured proteins
under cold conditions and thus keep the cell membrane intact (13).
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Trehalose also plays an important role as a free radical scavenger under oxidative
stress conditions (71). This likely has direct relevance to human fungal pathogen-
esis, as reactive oxygen species (ROS) play a critical role in the immune system
defense against fungi and other pathogenic microbes. A trehalose-deficient mutant
of S. cerevisiae is more susceptible to hydrogen peroxide (H,0,) and accumulates
more oxidized proteins than the wild type (71). A lack of trehalose in human-
pathogenic fungi, e.g., C. albicans (16, 72), C. neoformans (19), and A. nidulans (65),
also affects survival under oxidative stress conditions. For example, the A. fumigatus
tpsA/tpsB null mutant has reduced viability after exposure to 100 mM H,0, (68).
Therefore, prevention of trehalose biosynthesis in vivo may enhance the efficacy of
ROS-dependent host defense mechanisms that are often compromised in the
setting of immune suppression therapies, such as treatment with corticosteroids.
Consequently, a more thorough investigation of the role of fungal trehalose
biosynthesis in immune cell interactions is warranted.

As an important component of the cell wall, trehalose-containing glycolipids, such
as trehalose-dimycolate, are involved in virulence and cell wall homeostasis in Myco-
bacterium species (73, 74). However, to date, there are no robust reports of trehalose
contributing directly to structural components of the fungal cell wall. Nonetheless, loss of
tps2 (called orlA in aspergilli) in A. nidulans and A. fumigatus affects cell wall homeostasis,
likely through a reduction in chitin content leading to cell lysis at high temperatures (21,
75-77). This observation raises a critical point for consideration in identifying promising
drug targets in the trehalose biosynthesis pathway. The canonical trehalose biosynthesis
pathway utilizes substrates, i.e., glucose-6-phosphate and UDP-glucose, that intersect with
glycolysis, the pentose phosphate pathway, and, consequently, cell wall biosynthesis.
Therefore, disruption of this pathway leads to dysregulation of other key metabolic
pathways in the cell, and as such, the overall consequences and impact of trehalose
biosynthesis on each fungal pathogen remain to be fully defined. Given the importance
of the cell wall in host-fungus interactions and fungal survival, the mechanistic con-
nection(s) between the trehalose biosynthesis pathway, trehalose itself, and cell wall
biosynthesis is an important area of ongoing research.

As suggested above, trehalose and associated molecules needed for its synthesis have
impacts on central carbon metabolism. For example, disruption of tps1 in S. cerevisiae
results in a significant growth defect on glucose-containing media (64, 78). Ultimately, loss
of TPS in S. cerevisiae results in altered energy homeostasis at the level of glycolysis, though
the mechanisms remain to be fully elucidated. In C. albicans, loss of tps1 does not affect
growth on glucose at 30°C but does at 42°C (15). In Cryptococcus neoformans and
Cryptococcus gattii, loss of Tps1p function impairs growth on glucose at 37°C (19, 20).
In contrast, no defect in growth on glucose-containing medium was observed for the
A. fumigatus tpsA/tpsB null mutant (68). For a pathogenic filamentous fungus such as A.
fumigatus, accumulation of the signaling molecule T6P inhibits hexokinases and regu-
lates the influx of glucose (21).

As discussed in part above, preliminary molecular genetic analyses have revealed
important and complex roles for the trehalose biosynthesis pathway in fungal biology that
extend beyond the biosynthesis of trehalose itself. However, the specific mechanisms
remain to be elucidated and fully appreciated. Surprisingly, the amino acid sequences of
the proteins involved in trehalose biosynthesis are highly conserved among TPS1, TPS2,
and the regulatory subunits (TPS3/TSL1). In some pathogenic fungi, there is an expansion
of the number of these genes, but their functions remain to be elucidated fully. A
similar situation exists in Arabidopsis thaliana, which contains 11 putative AtTPSs and 10
putative AtTPPs (79-82). These observations highlight the importance of these gene
products in metabolic homeostasis and fitness across a diverse array of organisms and
environments. Consequently, they also provide support for the hypothesis that this
pathway is an attractive antifungal drug target whose inhibition will severely diminish
the fitness and virulence of pathogenic fungi.
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TPS1 (TREHALOSE-6-PHOSPHATE SYNTHASE)

Tps1p, the trehalose-6-phosphate synthase, is found in both bacteria and eukaryotes.
Tps1p converts UDP-glucose and glucose-6-phosphate (G6P) into trehalose-6-phosphate
(T6P). For S. cerevisiae, tps1 mutants were initially characterized in the late 1970s and
were called by many names, e.g., FDP1, CIF1, BYP1, and GLC6 (83-87). Later it was shown
that these mutations are all allelic with the same gene, tps1 (64, 88). fdp1 and cif1
mutants cannot grow on glucose and other fermentable sugars, such as fructose,
mannose, and sucrose. Furthermore, these mutants show a defect in glucose-induced
inactivation of fructose-1,6-bisphosphatase and have very low trehalose levels with a
change in the regulation of glycogen synthesis (84, 85, 89, 90). The bypT mutant was
previously believed to bypass glycolysis, and it shares similar phenotypes with fdp1 and
cifl mutants (86, 91, 92). The bypl mutant displays slow growth and is completely
blocked for growth on both glucose and fructose (86, 91). There is also no growth on
glucose of bypl mutants deficient in pfk1 or pfk2, encoding phosphofructokinase
enzymes catalyzing the phosphorylation of fructose-6-phosphate into fructose-1,6-
bisphosphate or fructose-2,6-bisphosphate, respectively (86, 91). Because of the com-
mon involvement of these alleles in glucose-induced signaling, FDP1 was renamed
GGS1 (general glucose sensor 1) (93).

GLC6 is related to glycogen accumulation and is allelic to CIF1, FDP1, BYP1, and GGS1
(87). While GGS1 was believed to function as a glucose sensor responsible for glucose
influx, the same gene, called tps7, has been characterized as the smallest subunit of the
trehalose synthase complex (64). Tps1p is an important component of trehalose-6-
phosphate synthase, and deletion of tps1 in S. cerevisiae causes a growth defect on
glucose-containing medium similar to those of the fdp7 and cifl mutants (64). More-
over, expression of tps1 restores trehalose production in an Escherichia coli otsA mutant
lacking a T6P synthase enzyme (the gene product of otsA) (88).

The growth defects of tps7 mutants and mutants in associated alleles provide a rich
opportunity to explore the critical role of the trehalose biosynthesis pathway in the
regulation of carbon metabolism. A detailed understanding of the effects of Tps1p loss
on fungal metabolism in each respective organism is critical for evaluating the impact
of targeting Tps1p on therapeutic development. To this end, it seems clear that a
loss of TPS1 has multiple effects on carbon metabolism that are organism specific.
Extensive research with S. cerevisiae has been undertaken to understand the impact
of tps1 loss on regulation of glycolysis. To explain the growth defect on glucose-
containing medium, three non-mutually exclusive hypotheses were initially proposed
(89). The first hypothesis is that Tps1p regulates glucose influx to prevent an accumu-
lation of sugar-phosphate intermediates upstream of glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) (93). In support of this hypothesis, deletion of hxk2 decreased
sugar-phosphate accumulation and restored tps1 mutant growth on glucose (94). The
second hypothesis proposes that trehalose synthesis provides a mechanism for free
phosphate recovery (89). Reductions in intracellular phosphate after addition of glucose
to the tps7 mutant and inhibition of the trehalose synthase complex by free phosphate
support this hypothesis (92, 95, 96). In further support of this hypothesis, stimulation of
glycerol production, which increases phosphate recovery by reducing the accumulation
of sugar-phosphate intermediates, restores the tps7 mutant growth defect on glucose
after a longer lag phase (89, 94). However, a byp1 tps2 double mutant shows increased
growth on glucose compared to that of the single bypT mutant, thereby contradicting
the phosphate recovery hypothesis (97). Intriguingly, the byp1 tps2 double mutant still
accumulates sugar-phosphate intermediates. This observation is similar to data from a
tps1 mutant strain that expresses the E. coli otsA gene (98). These data argue for a
model whereby T6P, trehalose, or Tps1p has additional roles in regulating the second
half of glycolysis (83).

The third hypothesis proposes that T6P controls glucose influx through its inhibition
of hexokinase activity (89). T6P competitively inhibits hexokinases in S. cerevisiae (99).
However, overexpression of hexokinase activity does not result in a glucose growth
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defect in wild-type S. cerevisiae cells (100). Recently, Walther et al. observed significant
acidification of the cytosol in the absence of Tps1p due to loss of a plasma membrane
H* ATPase (101). In summary, the loss of Tps1p has significant effects on the regulation
of glucose influx and glycolysis in yeast cells that affect cell fitness, which bodes well
for targeting this protein for antifungal drug development. However, the complexity of
Tps1p function and loss in yeast highlights a potential challenge in targeting this
pathway for antifungal drug development. This challenge must be met with additional
research to fully define Tps1p function in respective pathogenic organisms.

Importantly, while the function of TpsTp in human-pathogenic fungi is heteroge-
neous across species, studies to date suggest clear roles in fungal pathogenesis that
bode well for therapeutic development. In C. albicans, tps1 encodes a trehalose-6-
phosphate synthase, and the promoter of this gene contains four copies of the stress
response element (STRE). As stated above, the tps1/tps1 null mutant grows normally at
30°C (15). However, at 42°C, the mutant cannot grow on glucose, but it is able to grow
on glycerol or galactose at higher temperatures. The mutant has a defect in hyphal
formation in serum-containing medium at 37°C. It also has decreased intracellular ATP
levels and no trehalose accumulation at stationary phase or after heat shock. Impor-
tantly, the mutant is attenuated in virulence in a mouse model of systemic infection
(15). The tps1/tps1 null mutant displays a severe reduction in cell viability after exposure
to high concentrations of hydrogen peroxide, while the wild type retains high cell
viability associated with an increase in intracellular trehalose (16, 72). However, pre-
treatment of the C. albicans wild type or the tps1/tps1 null mutant with a nonlethal
concentration of hydrogen peroxide (0.5 mM H,0,) or mild heat stress (37°C) protects
both strains against oxidative stress, to the same extent (16). From this result, it can be
inferred that trehalose accumulation plays a major role in protecting yeast cells from an
immediate direct exposure to severe oxidative stress. Direct exposure to oxidative
stress occurs during interactions with immune cells. Other pathways related to the
oxidative stress response, e.g., the HOG-mitogen-activated protein kinase (MAPK)
pathway and enzymatic (catalase and superoxide dismutase) and nonenzymatic (glu-
tathione and thioredoxin) components, may protect cells after mild stress exposure (16,
102). In contrast to oxidative stress, osmotic or heat stress has no effect on cell viability
of the C. albicans tps1/tps1 null mutant (72).

Perhaps consistent with the in vitro oxidative stress phenotype, the tpsi/tps1 null
mutant is more susceptible to macrophage killing than the wild type (103). Intriguingly,
this phenotype is dependent on the culture conditions and cell wall composition.
Electron microscopy reveals a difference in the outer cell wall layer in the mutant
compared to the wild type (103). In liquid culture medium, the mutant increases its
B-mannosylation (overglycosylation) on the outer cell wall, leading to reduced
hydrophobicity and increased resistance to macrophage killing, whereas on solid
medium the mutant has no difference in overglycosylation on the cell wall and is more
susceptible to macrophage killing (104). These observations have direct relevance to C.
albicans Tps1p as a drug target. While the reduction in virulence of the tps1/tpsT mutant
in a systemic murine model is promising, the environment-specific impacts on the cell
wall and phagocyte interactions warrant further investigation in in vivo models. The
latter observation is important given the phagocyte resistance phenotype and altered
cell wall observed under specific in vitro conditions. Importantly, this theme of trehalose
biosynthesis affecting cell wall composition and integrity is found across the human-
pathogenic fungi, although the mechanism(s) remains ill defined.

In C. neoformans, tps1 encodes a 671-amino-acid trehalose-6-phosphate synthase with
eight putative STREs in the promoter region. A tps7 null mutant displays a prominent
growth defect on glucose-containing medium at 37°C, but the growth defect is restored in
a galactose-containing medium, similar to the case with C. albicans (19). The tps1 null
mutant grows in glucose-containing medium supplemented with 1 M sorbitol at
37°C, which suggests an impact on the fungal cell wall (19). Trehalose and T6P are not
detected in the mutant (19). The C. neoformans tps1 mutant is more susceptible to oxidative
stress by hydrophobic peroxides, e.g., t-BOOH, to osmotic stress (1 M sorbitol), and,
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importantly, to antifungal drugs (amphotericin B and caspofungin) (19). The increased
susceptibility of the mutant to current antifungal drugs raises the possibility of a combi-
nation therapy approach targeting trehalose biosynthesis in addition to current antifungal
drugs.

A critical relationship between trehalose and its synthesis through Tps1p and the
virulence of C. neoformans is establishing Tps1p as a potential antifungal drug target in
this important human pathogen (105-107). tps7 was one of the most highly expressed
transcripts in a global transcriptional analysis of yeast cells from cerebrospinal fluid
(CSF) from rabbits with cryptococcal meningitis (107). Nuclear magnetic resonance
(NMR) studies show that trehalose is one of the most abundant metabolites in cryp-
tococcomas (105, 106). To further support the importance of trehalose in the virulence
of C. neoformans, the tps1 null mutant is avirulent in both rabbit and murine models of
infection (19). Moreover, significant attenuation of the virulence of the tps7 null mutant
is also observed in Caenorhabditis elegans and zebrafish models (19, 108). These results
in model organisms with body temperatures approximating room temperature reveal
that the effect of Tps1p loss on C. neoformans virulence goes beyond growth inhibition
at mammalian body temperature (19, 108). Additional research on the C. neoformans
tps1 null mutant in the context of interactions with the immune system is warranted.

Tps1p is also critical in the related pathogenic yeast, Cryptococcus gattii, which
causes disease in immunocompetent hosts. However, there are important aspects of
the tps1 mutants of C. neoformans and C. gattii that differ (20). For example, growth of
the tps1 mutant in C. gattii is not restored at 37°C in galactose-containing media, and
it exhibits significant defects in cell wall integrity and melanin and capsule synthesis
that are not observed in C. neoformans (20). Importantly, the C. gattii tps1 null mutant
possesses profound virulence defects in both invertebrate and mammalian hosts. These
species-specific differences in the trehalose pathway may affect the differences in
disease presentation and/or ecological diversity of the Cryptococcus species complex.
However, more studies are needed to determine the precise mechanisms and causality.
A major future research direction alluded to above is interrogation of these mutants in
vivo in the setting of active host responses under dynamic environmental conditions
that occur in an active infection. Importantly, these data highlight and emphasize the
importance of studying the trehalose pathway and its role in the biology of each fungal
species. This conclusion is emphasized when one turns to studies of this pathway in the
genus Aspergillus.

Unlike the yeast species studied to date, in the genus Aspergillus multiple copies of
the TPST gene exist in several species, with the relatively nonpathogenic species A.
nidulans being an interesting exception. In A. nidulans, which has only one trehalose-
6-phosphate synthase (tpsA), trehalose is found in conidia at high concentrations and
is rapidly used during germination (65). A. nidulans also accumulates trehalose during
conidial differentiation, nutrient starvation, heat shock, and oxidative shock (65-67). A
tpsA null mutant lacks production of trehalose and shows reduced conidial viability
during constant exposure to sublethal stresses, i.e., prolonged high temperature and
oxidative stress (65). In Aspergillus niger, two copies of tps1 exist and are named tpsA
and tpsB (109). TpsA is the most important for trehalose production during conidiation
and has increased expression on derepressing carbon sources (109). tpsA is expressed
constitutively, while tpsB is induced by heat shock and has a role during differentiation
(110). A. fumigatus also contains tpsA and tpsB, and loss of both genes eliminates
trehalose production (68). Intriguingly, in this common human fungal pathogen of
immunocompromised patients, two additional genes encoding proteins with amino
acid sequence similarity to TpsA and TpsB are found in the genome and have been
named tpsC and tpsD (68). However, mRNA levels of tpsC and tpsD are low under the
in vitro environmental conditions examined to date. Consequently, their role in A.
fumigatus pathobiology is not currently clear. Importantly, unlike C. albicans, C. neo-
formans, and S. cerevisiae tps1 null mutants, the A. fumigatus double tpsA/tpsB mutant
grows normally in the presence of glucose at 37°C (68). The ability to grow in the
presence of glucose in the absence of genes encoding catalytic TPS may indicate a
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regulatory or structural role for TpsC and TpsD in regulating glycolytic and/or carbon
flux (68). Alternatively, or in addition, A. fumigatus contains a highly active glucokinase
(glkA) that activates glucose and is likely resistant to inhibition by T6P (111). Despite the
normal growth on glucose of the tpsA/tpsB null mutant, carbon metabolism is signifi-
cantly altered, as clear changes in the cell wall of the mutant are observed (68). From
transmission electron microscopy (TEM) images, the electron-dense outer layer on the
cell walls of both hyphae and conidia of the tpsA/tpsB null mutant is absent, and conidia
of the mutant have an enhanced electrolucent zone compared to that of the wild type
(68). In addition to the abnormal cell wall structure from TEM images, the expression of
ags3, encoding an a-glucan synthase, is significantly reduced in the double null mutant,
and its reduction might contribute to the abnormal cell wall structure (68). Surprisingly,
despite increased sensitivity to oxidative stress, the A. fumigatus tpsA/tpsB null mutant
displays a modest increase in virulence in a cortisone acetate murine model of invasive
pulmonary aspergillosis. While the mechanism behind this hypervirulence is not fully
understood, cell wall changes in the null mutant may promote increased immuno-
pathogenesis through activation of detrimental host immune responses. Alternatively,
enhanced in vivo fitness of the null mutant due to alterations in carbon metabolism
and stress responses cannot be ruled out. Regardless, the virulence persistence of the
tpsA/tpsB null mutant of A. fumigatus is striking in comparison to the results of TPS
studies of other pathogenic fungi and is worth further investigation in the context of
therapeutic development.

On the surface, these results for A. fumigatus appear to argue against targeting
Tps1p for antifungal drug development from the perspective of developing a broad-
spectrum target. However, the latter conclusion must be tempered by the observation
that two additional Tps1p-like proteins exist in A. fumigatus that remain to be charac-
terized. While the loss of TpsA and TpsB is clearly not sufficient to negatively affect A.
fumigatus virulence, elimination of all 4 TPS1-like proteins in a strain has yet to be
investigated. Moreover, one cannot rule out that in vivo, at the infection site microen-
vironment, the tpsA/tpsB null mutant is somehow complemented by host or fungal
factors to produce trehalose and/or other virulence factors. These results in conjunction
with the yeast data suggest that TPS proteins play multiple roles beyond trehalose
biosynthesis that warrant further investigation. In vivo analyses of fungal genetic null
mutants remain a significant technical challenge that is beginning to be met with novel
techniques, such as Nanostring nCounter gene expression analyses and conditional
promoter systems, among other approaches (112-114). Thus, despite the above chal-
lenges, unraveling the differences in the functions of TPSs between A. fumigatus and
pathogenic yeasts has the potential to yield new insights into the Achilles’ heels of
these important pathogens.

TPS2 (TREHALOSE-6-PHOSPHATE PHOSPHATASE)

Tps2p is the trehalose-6-phosphate phosphatase (TPP) that dephosphorylates T6P
into trehalose and inorganic phosphate. The first described TPP was Tps2p of S.
cerevisiae (115). Investigators observed that a tps2 null mutant could not grow at
temperatures above 34°C (116). There are now multiple reports that suggest T6P
accumulation as the cause of the temperature-sensitive phenotype of the tps2 mutant
of S. cerevisiae (115, 117). Furthermore, T6P accumulates in this mutant during heat
shock (115, 116). Thus, under stress conditions, it seems likely that accumulation of T6P
in tps2 mutants is toxic to cells (116). For human-pathogenic fungi, tps2 null mutants
consistently display severe virulence attenuation and other fitness defects that portend
well for Tps2-targeted antifungal drug development.

In C. albicans, Tps2p contains 878 amino acid residues, with two phosphohydrolase
domains, and shares 67% sequence similarity with S. cerevisiae Tps2p and 73% similarity
with A. nidulans OrlA (17, 18). Van Dijck et al. observed that a C. albicans tps2/tps2 null
mutant accumulates T6P with a temperature-sensitive phenotype at 44°C (18). In
contrast to the C. albicans tps1/tps1 null mutant, the tps2/tps2 null mutant does not
have hyphal formation defects on glucose-containing medium at 30°C (18). The tps2/
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tps2 null mutant has a significant decrease in growth rate at 42°C and aggregates in
stationary phase, with a defect in cell wall integrity, when the pH is over 7.0 (17).
Importantly, the mutant has a significant decrease in virulence, highlighted by a
decrease in fungal dissemination to the kidneys and livers, in a systemic murine model
(17, 18). The mechanism(s) for the decreased dissemination and virulence in the
absence of Tps2p is currently unclear but is an important area of research for further
validation of Tps2p as an antifungal drug target.

Along these lines, as mentioned earlier, the importance of trehalose biosynthesis in
fungal stress responses and virulence suggests that therapeutic development of this
pathway should also be considered in the context of combination approaches. For
example, loss of C. albicans Gpr1p, a nutrient receptor activating cyclic AMP-protein
kinase A (cCAMP-PKA)-mediated signaling, results in a significant increase in trehalose levels
and morphological defects on hypha-inducing media (118, 119). However, a C. albicans
gpr1/gpr1 null mutant displays only a slight decrease in virulence in a systemic murine
model (120). In contrast, loss of tps2 in the gpri/gpr1 null mutant completely attenuates
virulence (120). The gpr1 tps2 double null mutant accumulates very high levels of T6P under
stress conditions, with a concomitant growth defect at high temperatures (120). These
results support the observation that an increase in intracellular T6P levels has an
enormous effect on the virulence and fitness of C. albicans under specific conditions,
particularly those that promote TPS activity. Consequently, treatments that promote
increased TPS activity may be synergistic in vivo with a drug targeting Tps2p to drive
accumulation of toxic T6P levels. Given that TPS activity is induced by many host-
associated stresses in vivo, Tps2p-targeting drugs may be expected to have increased
potency in vivo, beyond in vitro MIC testing results.

In C. neoformans, tps2 encodes a predicted 988-amino-acid protein with the pres-
ence of four STREs in the promoter region (19). C. gattii tps2 encodes a 990-amino-acid
protein with 89% sequence similarity to C. neoformans Tps2p (20). The tps2 null mutants
of both C. neoformans and C. gattii accumulate T6P and have severe growth defects at
37°C on glucose-containing medium, and in fact, they die at this temperature (19, 20).
The growth and survival defects are rescued by growth on galactose- or sorbitol-
containing medium at 37°C (19, 20). As in S. cerevisiae, C. gattii has a strong connection
between the trehalose pathway and control of glycolytic fluxes via hexokinases. For
instance, the loss of hxk2 in a tps2 null mutant background suppresses the high-
temperature growth defect, possibly by reducing the pool of glucose-6-phosphate that
is a building block for toxic T6P accumulation (20). From a therapeutic perspective, the
toxic effect of Tps2p loss in Cryptococcus is tremendously exciting and further high-
lights the possibility of therapeutically targeting this important virulence-associated
fungal enzyme. However, the C. gattii tps2 null mutant has only a slight decrease in
virulence in the C. elegans model, though a profound virulence defect in the murine
inhalation model is observed (20). Consequently, the lack of full virulence attenuation
in the C. elegans model warrants further investigation, as specific host conditions may
feasibly inhibit or overcome the loss of Tps2p activity. However unlikely, this hypothesis
can be tested experimentally with the development of Tps2-inhibiting small molecules
in relevant animal models.

For the filamentous aspergilli, the story is somewhat different but no less impactful.
For A. nidulans, the Tps2 gene ortholog has been characterized and was named orlA
(osmotic-remediable lysis strain) (75-77). orlA encodes a 908-amino-acid protein that
shares the same predicted protein domains as S. cerevisiae Tps2p (77). The A. nidulans
orlA null mutant has a defect in chitin production and lyses when grown at 42°C,
whereas growth is partially recovered on osmotic stabilizers or an N-acetylglucosamine-
containing medium (75). Furthermore, glutamine:fructose-6-phosphate amidotrans-
ferase (GFAT), the first step in amino sugar synthesis, has reduced activity in the A.
nidulans orlA null mutant at 28°C (75, 77). It is hypothesized that the lysis phenotype of
the A. nidulans orlA null mutant occurs from a defect in chitin synthesis (76). The orlA
null mutant accumulates significant levels of T6P but, surprisingly, still produces trehalose
at both 32 and 42°C (77). For A. niger, a tppA (tps2) null mutant shows abnormal growth,
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conidiation, and accumulation of T6P (110). The A. fumigatus orlA mutant exhibits
defects in colony morphology and conidiation on glucose minimal medium (GMM) at
37°C (21). However, unlike that of the yeast tps2 null mutants, A. fumigatus growth at
37°C is affected only minimally on GMM. A substantial accumulation of T6P and
significant changes in cell wall integrity are observed in the A. fumigatus orlA mutant,
but similar to A. nidulans and C. albicans, trehalose production is not lost. The mech-
anism behind the persistence of trehalose production in some fungal tps2 null mutants
remains enigmatic. Unlike A. nidulans, A. fumigatus orlA null mutant germlings do
not lyse under temperature stress, possibly highlighting important cell wall differences
between these two species. Importantly for therapeutic considerations, the orlA null mutant
has a striking attenuation in virulence in a leukopenic invasive pulmonary aspergillosis
murine model (21). Initial attempts to characterize metabolic defects in the orl/A null
mutant revealed a reduction in hexokinase activity along with a reduction in pyruvate
decarboxylase activity required for ethanol fermentation (21). Intriguingly, loss of
ethanol production through loss of the alcohol dehydrogenase alcC gene significantly
reduces lung fungal burdens in murine models of invasive pulmonary aspergillosis
(121).

In summary, loss of Tps2p consistently results in severe temperature-sensitive growth
defects and/or attenuated virulence in human-pathogenic fungi. Thus, Tps2p orthologs
in pathogenic fungi are potential broad-spectrum antifungal drug targets that are
absent in humans. However, the mechanisms through which Tps2p mediates growth
and virulence in pathogenic fungi still remain to be fully defined. While loss of Tps2p
in yeast is conditionally lethal, the consequences of Tps2p loss are more nuanced in
molds. For example, it is unclear if the reduction in chitin content in the A. fumigatus
orlA null mutant is compensated by overproduction of the proinflammatory pathogen-
associated molecular pattern (PAMP) beta glucan. If this is so, use of a Tps2p-inhibitory
drug in certain patient populations may unexpectedly promote immunopathogenesis.
These hypotheses remain to be tested experimentally. A major recent advance directly
relevant to targeting Tps2p is the solving of high-resolution protein structures from
three human-pathogenic fungi (discussed more below). The careful assessment of the
germane protein structures, recently completed, is expected to catalyze the discovery
of specific inhibitors of this phosphatase (122).

REGULATORY SUBUNITS
TPS3/TSL1

In S. cerevisiae, two additional proteins with high amino acid sequence similarity to
Tps1p and Tps2p are found (96, 123-125). Tsl1p (trehalose synthase long chain) is
found in the same protein complex as Tps1p and Tps2p (TPS complex) (96, 123), while
Tps3p is also found to be a part of the complex (124). During heat shock, Tsl1p and
Tps3p have similar regulatory roles in the TPS complex of S. cerevisiae (125). However,
Tsl1p and Tps3p have different impacts on trehalose synthase activity under other
conditions (124). While a ts/7 null mutant has reduced trehalose synthase activity,
deletion of tps3 does not affect trehalose synthase activity (124). Tsl1p is important for
TPS complex activity, while Tps3p is a target for phosphorylation that regulates Tps2
activity (126). It has been proposed that Tsl1 might also play a structural role in
formation of the TPS complex, as no TPS activity is detected in the absence of Tsl1p
(126). Consequently, these data strongly support a model in which trehalose-producing
enzymes function as a complex in S. cerevisiae. Whether a similar or identical model
occurs in pathogenic fungi is unclear, as biochemical work on the respective trehalose
proteins in these fungi is thus far sparse. Given some of the divergent phenotypes
associated with TPS/TPP mutants in pathogenic fungi and the presence/absence of
specific genes, alternative models are possible, if not likely. It will be important to define
these mechanisms and structures in the respective pathogenic fungi to maximize
antifungal drug development opportunities. To this end, genetic analysis of regulatory
subunit homologs has been conducted in some human-pathogenic fungi.

June 2017 Volume 81 Issue 2 e00053-16

Microbiology and Molecular Biology Reviews

mmbr.asm.org 16


http://mmbr.asm.org

Trehalose and Pathogenesis of Human-Pathogenic Fungi

For C. albicans, a putative regulatory subunit called Tps3p is found encoded in the
genome by amino acid sequence similarity searches, with 41% identity to S. cerevisiae
Tps3p. However, it is still unclear how or whether C. albicans Tps3p regulates trehalose
production in this important human-pathogenic yeast. The tps3 promoter may contain
a binding site for Cap1p, which is a transcription factor related to oxidative stress
tolerance in C. albicans. tps3 mRNA levels are induced significantly when C. albicans is
exposed to hydrogen peroxide (127). C. albicans tps3 is positively regulated by Efg1p,
which is an APSES (Asm1, Phd1, Sok2, Efg1, and StuA family) transcriptional regulator
involved in the yeast-to-hypha transition and cell shape during white-opaque switch-
ing, among other important phenotypes (128). A cell wall protein in hyphal cells, Tsa1p,
is related to oxidative stress resistance and hyphal cell wall integrity, and a tsa7 null
mutant contains reduced tps3 mRNA levels under oxidative stress conditions (129).
Furthermore, tps3 mRNA levels are reduced in C. albicans during biofilm formation
(130). To date, a potential C. albicans Tsl1p homolog has not been identified by
sequence comparison with BLAST algorithms. For Cryptococcus gattii, a putative
Tps3p (CGB_14320W) homolog has been identified by BLAST searches, with 33%
identity to S. cerevisiae Tps3p, but it has not been characterized. Interestingly, a Tps3p
homolog has not been identified in C. neoformans by sequence analyses.

In A. niger, TppB and TppC are the homologs of Tps3p and Tsl1p, respectively. The
tppB null mutant is more susceptible to thermal stress and has reduced internal
trehalose levels, but it does not show increased sensitivity to oxidative stress, osmotic
stress, or acidic stress (110). Because TppB and TppC share significant amino acid
sequence similarity with the TPP TppA (Tps2/OrlA), it has been hypothesized that they
may function as alternative phosphatases in the absence of TppA, which would explain
the persistence of trehalose production in tps2 null mutants (110). Importantly, how-
ever, the potential TPP activity of both TppB and TppC remains to be investigated to
support this hypothesis. In A. fumigatus, as in A. niger, two proteins encoded in the
genome share protein domains similar to those in OrlA and are the likely A. fumigatus
Tps3p and Tsl1p homologs. The functions of these two proteins in trehalose biosyn-
thesis and fungal metabolism are currently unknown but are under investigation in our
laboratory (our unpublished data).

The catalytic residues required for TPP activity have been defined for the archaeon
Thermoplasma acidophilum (TaT6PP) (aspartates 7, 9, 179, 180, and 183, threonines 11,
45, and 182, arginine 47, and lysine 161) (131) and the filariasis-causing parasite Brugia
malayi (motif | active sites, aspartates 213 and 215; motif Il active site, threonine 253;
motif Il active site, lysine 398; and motif IV active sites, aspartates 424 and 428) (132).
These amino acid residues are found in the Mg2"-dependent haloacid dehalogenase
(HAD) phosphatase domain superfamily (131). S. cerevisiae Tps3p and Tsl1p have a
HAD-like domain but no known catalytic activity (133). In the plant A. thaliana, Tps3p
also contains the HAD domain but also has no TPP activity (133, 134). Consequently,
additional biochemical experiments are needed to clarify the roles of HAD domains
and specific amino acid residues in regulatory-like proteins in the aspergilli and other
human-pathogenic fungi. In summary, much remains to be learned about the functions
of trehalose biosynthesis and associated proteins in human-pathogenic fungi. Addi-
tional genetic and biochemical investigations into potential complex formation and the
function(s) of the putative regulatory proteins previously characterized for S. cerevisiae
are needed to further our understanding of these proteins in human fungal pathogen-
esis. A particularly important area of future investigation is exploration of the so-called
moonlighting roles of these proteins outside canonical trehalose biosynthesis that may
directly affect virulence-associated functions, such as cell wall biosynthesis and stress
responses to host defense mechanisms.

NONCANONICAL TREHALOSE BIOSYNTHESIS IN FUNGI

The persistence of trehalose production in the absence of TPP function in patho-
genic fungi remains an enigma and potentially suggests the existence of a noncanoni-
cal trehalose biosynthesis pathway in some species. As discussed above, one hypoth-
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esis is that other proteins with shared domains in the trehalose pathway contribute to
dephosphorylation of T6P to produce trehalose. Van Dijck and colleagues suggested
that nonspecific phosphatase activity may account for the persistence of trehalose in
tps2 null mutants (18). Yet there are hints that additional biosynthetic routes may exist
in fungi that do not depend on the canonical TPS-TPP-mediated pathway. For example,
in the model filamentous fungus Neurospora crassa, clock-controlled gene 9 (ccg-9)
functions as a gene important for trehalose production and stress protection (48). The
ccg-9 gene product has high sequence similarity to a novel trehalose synthase (TSase)
in the basidiomycete mushroom Grifola frondosa. The G. frondosa TSase functions as a
trehalose phosphorylase that reversibly catalyzes glucose-1-phosphate and glucose
into trehalose and inorganic phosphate (135). Sequence similarity is observed with
trehalose phosphorylases in other basidiomycetes, including the mushrooms Agaricus
bisporus (40) and Schizophyllum commune (42). Consequently, trehalose phosphorylase
activity is found in many fungi within the Basidiomycota, Zygomycota, and Ascomycota
(135). However, in the ascomycete yeasts, e.g., S. cerevisiae and C. albicans, TSase
homologs have not been found by sequence-based comparisons to date. Based on
the identification of two putative TSase proteins encoded in the A. fumigatus genome
sequence, it has been proposed that this noncanonical pathway may be induced in this
pathogen upon phosphate depletion caused by T6P accumulation in the absence of
TPP activity to help to mitigate the accumulation of potentially toxic sugar phosphates
and also to resupply the cell with inorganic phosphate (21). This model remains to be
tested experimentally in A. fumigatus. Another potential explanation for trehalose
production in the absence of detectable TPP activity is the presence of an unknown
pathway for trehalose biosynthesis in these fungi. The pathway would be activated by
loss of Tps2 and/or T6P accumulation but not in the absence of trehalose per se because
tps1 mutants remain deficient in trehalose. These data illustrate a main theme of this
review in that much remains to be learned about the complexity of the trehalose
biosynthetic pathway and its impact on pathogenic fungal biology. Yet these studies
are critical to realize the full therapeutic potential and challenges facing any attempts
to target this pathway.

TREHALASES

Fungi utilize trehalose through trehalase-mediated degradation. In S. cerevisiae,
there are three different trehalases: Nth1p, Nth2p, and Ath1p (136). Nth1p, the neutral
trehalase, is located in the cytoplasm and functions at pH 7.0 (13, 136-138). Nth2p is
also found in the cytoplasm but has no significant trehalase activity under conditions
examined to date (137, 138). Nth1p has maximal activity during early growth stages.
NTHT expression increases under stress conditions due to the presence of three STREs in its
promoter (139). Nth1p is also regulated by PKA-mediated posttranslational modification
(phosphorylation) (140, 141). Furthermore, Nth1p also needs Bmh2p (a 14-3-3 protein
family member) and a Ca2?*/calmodulin-dependent kinase Il (Dsclp) to control its
activity (141). In contrast, the acid trehalase, Ath1p, functions at pH 5.0 and is important
for utilizing trehalose as the sole carbon source (142). Both trehalose levels and its
transport activity increase during glucose starvation, which suggests that trehalose
transport and utilization are important under stress conditions that perturb carbon
utilization. Crowe and Crowe (60) and Eleutherio et al. (143, 144) observed that trehalose is
necessary at both intracellular and extracellular sites. The complexity of trehalase
activity regulation in fungal cells is striking and further illustrates the central role of
trehalose in fungal biology.

Similar to the situation for regulatory subunits, there are unfortunately, to date,
relatively few studies on trehalases in pathogenic fungi. In C. albicans, there are two
trehalase enzymes: Ntc1p (cytosolic trehalase) and Atc1p (cell wall-linked trehalase) (57,
145, 146). Ntc1p activity is not dependent on pH and is strongly inhibited by high ATP
levels associated with glucose-replete conditions (145). Ntc1p activity is weakly acti-
vated by divalent cations (Ca2*™ or Mn2™) but does not change in the presence of cAMP
(145). While Ntc1p activity decreases during stationary phase, with growth on glycerol
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media being an exception, Atc1p activity increases in resting cells and/or in trehalose- or
glycerol-containing media (145). Atc1p activity is not increased in the absence of glucose
and is not dependent on ATP, cAMP, divalent cations, or pH (145, 146). Importantly, the C.
albicans ntc1 null mutant has no virulence defect in a systemic murine model (147).
However, in contrast to the C. albicans Ntc1p mutant, an atcl null mutant has a
significant virulence defect in a systemic murine model that is associated with Atc1p
roles in dimorphism and stress resistance (148). This promising result in the context of
Atc1p loss warrants further investigation in C. albicans and perhaps other pathogenic
yeast species.

For C. neoformans, only nth1, encoding an 826-amino-acid protein with identities to
other fungal species proteins of between 45 and 62%, has been characterized (19).
Nth1p in C. gattii has also been characterized and has approximately 89% sequence
similarity to C. neoformans Nth1p (20). As with the C. albicans ntc1 null mutant, the nth1
null mutants of both C. neoformans and C. gattii have no apparent phenotypes related
to virulence or in vivo fitness (19, 20).

In A. nidulans, an acid trehalase (treA) is essential for growth on trehalose but is not
related to intracellular mobilization of the trehalose pool (67). However, the S. cerevisiae
homolog of neutral trehalase in A. nidulans is involved in the mobilization of the
intracellular trehalose pool (67). No studies to date have characterized the putative
trehalases present in the A. fumigatus genome sequence and their potential role in
host-pathogen interactions. Thus, with the exception of C. albicans Atclp, fungal
trehalases remain unclear as potential drug targets. Importantly, however, a trehalase
inhibitor, validamycin, does exist and has been used to uncover a role for trehalose in
the regulation of HSP90 function in C. albicans (149). As a critical chaperone involved
in antifungal drug resistance, HSP90 is under active investigation as a therapeutic target
(150, 151). Additional studies on the role of Atc1p in C. albicans-host interactions and
in the context of HSP90-mediated drug resistance seem warranted. Along these lines,
the role of fungal trehalases in shaping interactions with the microbiota and the
subsequent impact on host immunity is still completely unexplored.

TREHALOSE TRANSPORTERS

In S. cerevisiae, Agt1p (also called Mal11p) is a high-affinity H"-trehalose symporter
(152). The deletion of this gene causes decreased tolerance to peroxide and heat shock
(153). Agt1p exports cytosolic trehalose to the extracellular space, and Ath1p degrades
this trehalose pool during stress recovery (136). For pathogenic fungi, the trehalose
transporter(s) has yet to be identified and characterized. However, from sequence-
based analyses with BLASTp searches, many maltose permease transporters and other
major facilitator superfamily (MFS) transporters that may potentially function as treh-
alose transporters are found in C. albicans, C. neoformans, C. gattii, and A. fumigatus. The
relevance of trehalose transport in human invasive fungal infections is unclear but may
conceivably affect potential interactions with the microbiota, where trehalose is pro-
duced by other resident microbes.

REGULATION OF THE TREHALOSE PATHWAY

Another viable strategy for targeting trehalose biosynthesis in pathogenic fungi is to
identify conserved critical regulatory mechanisms. Studies examining the regulation of
trehalose biosynthesis and its associated genes and encoded proteins remain in their
infancy for pathogenic fungi. While early studies on trehalose biosynthesis in patho-
genic fungi clearly revealed differences in model organisms, such as S. cerevisiae, we
briefly review here what is known for this model system as a basis for future investi-
gations of these pathogens.

The HOG-MAPK pathway in fungi consists of two important components: a two-
component phosphorelay system and a MAPK module. The phosphorelay system
contains hybrid sensor kinases, a histidine-containing phosphotransfer (HPt) protein,
and response regulators that can sense and send an environmental signal to activate
the MAPK pathway (154-156). For S. cerevisiae, there are many studies on the HOG-
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MAPK cascade response to osmotic, oxidative, or heat stress (154, 155). Under these
stress conditions, especially osmotic stress, the HOG pathway is important for yeast
cells to grow and survive. The Hog1 MAPK is conserved in pathogenic yeasts and molds,
i.e., C. albicans (Hog1p), C. neoformans (Hog1p), and A. fumigatus (SakA). While hog1
mutants of S. cerevisiae and sakA mutants of A. fumigatus do not show decreased
trehalose levels (157, 158), a Cryptococcus hog1 mutant contains less trehalose than that
in wild-type yeast cells (J. R. Perfect and R. G. Brennan, unpublished data). However, a
clear link between trehalose metabolism and the SakA/MpkC pathway has been
suggested for A. fumigatus and remains to be explored further (159).

S. cerevisiae requires the Msn2/4 transcription factors to express tps1 and tps2 at low
temperatures (below 10°C) (160). These transcription factors are regulated via phos-
phorylation by the cAMP-PKA pathway, which plays an important role in the regulation
of a wide range of stress conditions in addition to glucose signaling (161-166). Under
stress conditions, e.g., heat and cold stresses, the Msn2/4p proteins localize to the
nucleus and activate stress response genes that contain the canonical STRE sequence
in their promoters, e.g., tps1, tps2, and hsp12/26 (167). In the recovery stage or under
nutrient-replete conditions, PKA-dependent phosphorylation of Msn2/4p restricts these
proteins to the cytosol and prevents them from activating stress response genes (168).
The PKA pathway also regulates the transcriptional repressor Sok2p, and intriguingly,
trehalose-related genes also contain a binding site for Sok2p in their promoter regions
(169). In addition, PKA can repress trehalose production through phosphorylation of the
Rim15-Gis1p pathway, which binds to an upstream activating sequence (UAS) in
most trehalose-related genes (Fig. 4) (169).

In C. albicans, Msn2/4-like transcription factors do not appear to be directly related
to stress responses (170). However, C. albicans Sko1p is involved in the osmotic stress
response regulated by Hog1p and is also critical for the cell wall damage response (Fig.
4) (171, 172). A connection between the trehalose pathway and Sko1p or Msn2/4p is
uncharacterized for C. albicans. Similarly, both C. neoformans and A. fumigatus lack
apparent Msn2/4 and Sko1 homologs encoded in their genomes, though functional
analogs may remain to be identified (173). C. neoformans does have the Atf1p tran-
scription factor, which is not found in C. albicans (173, 174). C. neoformans Atf1p is
transcriptionally regulated by Hog1p and is important for the oxidative stress response,
in part through its regulation of thioredoxin expression (Fig. 4) (173, 174).

In A. nidulans and Aspergillus oryzae, the ATF/CREB-type transcription factor AtfA is
a critical regulator of the conidial stress response (175-178). In A. nidulans, AtfA protects
the fungus from oxidative and heat stresses (175). The expression of tpsA and a conidium-
specific catalase gene, catA, in conidia is regulated by A. nidulans AtfA (Fig. 4) (175). A.

June 2017 Volume 81 Issue 2 e00053-16 mmbr.asm.org 20


http://mmbr.asm.org

Trehalose and Pathogenesis of Human-Pathogenic Fungi

oryzae contains three ATF-like proteins, two of which (AtfA and AtfB) have been studied
(177, 178). Conidia of atfA and atfB null mutants are susceptible to oxidative, UV, and
heat stresses. Trehalose levels in conidia and the expression of tpsA and tpsC, which are
homologs of Sctps? and Sctps3, respectively, are lower in both atfA and atfB null
mutants than in the wild type (177, 178). Recently, Hagiwara et al. observed that AtfA
in A. fumigatus is important for the fungus to survive under heat and oxidative stress
conditions (158). As in other aspergilli, AtfA is involved in trehalose accumulation in the
conidia of A. fumigatus (Fig. 4) (158). However, connections between AtfA and the
virulence of A. fumigatus remain to be studied in an in vivo model.

TOR and TORC1 complexes in S. cerevisiae play a critical role in carbohydrate storage
and metabolism in part by increasing the expression of glycogen- and trehalose-related
genes (179, 180). TORC1 inhibits the Ser/Thr protein phosphatase 2A (PP2A) via
phosphorylation of Tap42p. Therefore, inhibition of PP2A prevents dephosphory-
lation of Msn2p, which consequently remains in the cytosol in the phosphorylated
form. While TORC1 can inhibit PP2A, it can also inhibit the Rim15-Gis1p pathway via
activation of Sch9p to phosphorylate and sequester Rim15 in the cytosol (181).
There is a connection between the PKA and TOR pathways through Msn2p, but the
mechanisms that regulate and control the balance of these two pathways are
unclear (168). Moreover, Pho85p and Snflp also regulate trehalose and glycogen
levels through transcriptional and posttranslational mechanisms (182, 183). It has
been proposed that the Snfl kinase regulates the transcription of Adr1p or Mig1p
(a carbon catabolite repressor). However, the regulation of trehalose gene expression
through Pho85p is unclear (Fig. 4). Determining the connections between these critical
metabolism and fungal fitness regulatory pathways and trehalose biosynthesis in
human-pathogenic fungi is a promising future research direction.

One family of regulatory proteins tied mechanistically to trehalose biosynthesis that
is conserved in the pathogenic fungi is the velvet domain family. The velvet family
proteins are conserved throughout the fungal kingdom, especially in the ascomycetes
and basidiomycetes (184). This family is well characterized in A. nidulans and consists of
four members, i.e., VelA, VelB, VosA, and VelC. VosA (viability of spores A) is a regulator
of asexual development and is necessary for trehalose accumulation in A. nidulans
conidia (184). Conidia of a vosA null mutant of A. nidulans display increased sensitivity
to heat and oxidative stresses and lack trehalose (Fig. 4) (184). A. fumigatus velvet family
vosA or velB null mutants also have reductions in conidial trehalose levels and a
subsequent loss of conidial tolerance of oxidative and UV stresses (185). However, in
contrast to those of A. nidulans, conidia of the A. fumigatus vosA mutant are not
completely depleted of trehalose (Fig. 4) (184, 185). Further research is needed to
investigate the impacts of velvet family-mediated trehalose biosynthesis and stress
responses in the context of fungal pathogenesis.

In summary, the regulation of trehalose production in fungi is complex and involves
multiple pathways, many of which remain to be investigated fully for human-pathogenic
fungi. This complexity further reflects the importance of trehalose in the survival and
adaptation of fungi in response to a wide variety of stresses. It is unclear if specific
regulatory mechanisms that affect trehalose biosynthesis are promising antifungal drug
targets, but it is clear that additional research into these mechanisms is warranted, with
the potential to yield new insights into drug development.

FUTURE RESEARCH DIRECTIONS AND CLINICAL POTENTIAL

A brief review of the development of antifungal drugs highlights the challenges
and paucity of current antifungal drug development. In the 1950s, the first systemic
antifungal drug, amphotericin B deoxycholate, was licensed for clinical use (186, 187).
After that important event, it took more than 2 decades to discover and use additional
antifungal drug classes, including the azoles and echinocandins. In the 1980s, the
discovery and development of the triazoles dramatically improved the treatment
of invasive fungal infections, especially for polyene-refractory infections (188). In the
1990s, triazoles and amphotericin B formulations were further developed (188). Even
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though the newest antifungal drug class, the echinocandins, was discovered in the
1970s, it took almost 30 years for these drugs to be used in the treatment of invasive
fungal infections (approved by the FDA in 2002) (187, 188). The latest FDA-approved
antifungal drugs are posaconazole (2006), anidulafungin (2006), and isavuconazole
(isavuconazonium sulfate) (2015) (http://www.accessdata.fda.gov/scripts/cder/daf).

From this brief history of antifungal drug development, it is clear that there are
many gaps in time between drug class discovery and development of a usable drug
(189-192). Given the increasing number of fungal infections and the emergence of
drug resistance and innate resistance of select fungal pathogens to some drugs, a
potential shortage of effective antifungal drugs in the near future is a very real cause
for concern. It remains a great challenge to identify and develop new fungicidal drugs
that target these eukaryotic pathogens effectively, with minimal adverse host side
effects.

A current approach for antifungal drug development is to identify and target
essential processes in fungi. However, it is very difficult to discover targets that, when
inhibited, have a killing effect only in the fungi, not against human cells. In addition to
these challenges, it is argued that targeting essential genes may lead to rapid emer-
gence of drug resistance, though this remains a topic for robust conversation (193).
Another perspective is that organisms will be pathogens when they express virulence
attributes that function to induce disease (194). Therefore, instead of targeting essential
genes, targeting attributes involved in virulence is an alternative approach to the
development of novel antifungal drugs specific to fungi but safe for humans (195).
Additional approaches to drug development must be encouraged, as we need a
continuous discovery of new agents to ensure that current antifungal drugs reach their
full therapeutic potential against human fungal pathogens. Therefore, to keep up with
drug resistance and new emerging causes of disease, we need to fully consider and
appreciate a pathogenesis-based approach as an additional option for antifungal drug
development (195).

Several reports suggest that targeting virulence factors can serve as a viable approach
to the development of novel antifungal agents (195-197). For instance, an inhibitor of
glycosylphosphatidylinositol (GPI) biosynthesis, which is important for GPl-modified
proteins that provide cell wall integrity and membrane homeostasis (198), was discov-
ered and developed into the oral broad-spectrum antifungal inhibitor E1210 (199, 200).
E1210 is effective in murine models of oropharyngeal and disseminated candidiasis,
pulmonary aspergillosis, and disseminated fusariosis (200). It has activities against
fluconazole-resistant Candida strains, Pseudallescheria boydii, Scedosporium prolificans,
and Paecilomyces lilacinus (201-203). While the GPI biosynthesis target is not a canon-
ical virulence factor in the traditional definition of the term, and its inhibition directly
affects fungal growth, its use highlights that studies on virulence-associated processes
can identify targets that ultimately affect fungal fitness in vivo.

Along these lines, unique metabolic pathways that exist only in fungi and function
when saprophytes cause disease should be a point of focus for therapeutic develop-
ment. The trehalose pathway is one of these unique metabolic pathways. As discussed
throughout this review and elsewhere, proteins involved in trehalose biosynthesis are
critically involved in many aspects of the biology and virulence of pathogenic fungi (15,
18-21, 68, 204). Importantly, we are now beginning to develop the preliminary infra-
structure in these major fungal pathogens to make insightful discoveries with thera-
peutic potential, with the trehalose pathway serving as one potential model (122). The
search for inhibitors of this pathway as potential antifungal drugs has begun and
represents both the synthesis and degradative portions of trehalose biology (205).
There are already inhibitors of the trehalase enzymes, such as validamycin A, that have
been identified (206). Many studies of plants and parasites have characterized the
structure of trehalose-related enzymes to screen for small-molecule inhibitors (132,
207). For example, Xue et al. (207) characterized the structure of TPS1 from the plant
pathogen Magnaporthe oryzae and screened for potential small-molecule inhibitors
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by using a chemical database in silico. These studies are now possible for human-
pathogenic fungi.

Recently, Miao et al. provided a new level of understanding of the major enzymes
within the fungal trehalose pathway (122). In their studies, structures of the trehalose-
6-phosphate phosphatase (Tps2) at different stages of the catalytic process were
solved. These structures unveil the specific conformational changes and enzymatic
components needed for substrate recognition and subsequent phosphate removal.
Moreover, they reveal the essentially identical catalytic pockets, and therefore identical
substrate recognition and enzyme mechanisms, of the Candida albicans, Cryptococcus
neoformans, and Aspergillus fumigatus Tps2 proteins. Biochemical, in vivo, and structural
investigations show how these enzymes are substrate specific (Fig. 5), thereby protect-
ing the fungal cell from the potential cytotoxicity of T6P. The finding that fungal Tps2
proteins possess extreme substrate specificity as phosphatases for T6P bodes well for
the creation of a specific inhibitor with limited “off target” phosphatase-inhibitory
activity and thus toxicity. As an added “bonus” to this substrate specificity, structure-
guided mutagenesis of residues involved in T6P binding and the very poor T6P
phosphatase activity of the single-site mutants suggest that simple single-site Tps2
mutations within the catalytic pocket will not allow the generation of resistant strains.
Although Tps2 mutants with changes within the catalytic pocket might avoid drug
binding, they will not be able to produce trehalose from T6P, resulting in high levels of
cytotoxic T6P. Finally, the structures of Tps1 proteins of several pathogenic fungi have
been determined in complex with substrates and substrate analogs (Y. Miao, J. R.
Perfect, and R. G. Brennan, unpublished data). Therefore, the high-resolution structures
of the core targets of canonical fungal trehalose biosynthesis are now available such
that aggressive drug discovery programs to identify novel inhibitors, and ultimately
drugs, are able to commence, with the goal of disrupting this key pathway and thereby
leading to novel, broad-spectrum fungicidal drugs. At minimum, the expected discov-
ery of small-molecular inhibitors of these proteins will allow rigorous hypothesis testing
in relevant animal models of infection to address many of the challenges facing
therapeutic targeting of this pathway that are discussed throughout this review.

Consequently, the future of the trehalose biosynthesis pathway as a highly desirable
antifungal drug target seems bright. Further mechanistic investigations into the func-
tions of key proteins in the pathway are needed for the respective human fungal
pathogens to help in determining additional therapeutic leverage points and to
address concerns about the potential limitations of inhibitors of this pathway. With
regard to the latter, in addition to some of the issues addressed throughout this review,
because this pathway is found in a wide variety of organisms, inhibitors of this pathway
may affect other human commensals, which should be investigated further. In fact, the
role of trehalose biosynthesis in microbe-microbe interactions is an intriguing area of
investigation. Depending on the specificity of the inhibitors’ structural design and
routes of administration, it seems, however, that this potential limitation is addressable
if needed. In addition, in filamentous fungi, such as A. fumigatus, redundant protein
functions, including other alternative pathways or unknown phosphatases (21), may
affect the efficacy of inhibitors, and this simply requires more investigation as high-
lighted by the example of the A. fumigatus tpsA/B null mutant (68).

One additional concern that is receiving more attention in the field is the efficacy of
a given agent in the context of an established infection microenvironment. While the
data discussed in this review suggest that trehalose biosynthesis proteins likely have
roles in established infections, this remains to be fully validated experimentally. The use of
conditional promoter systems in vivo may be a viable approach to confirm the role of
these proteins in established infections, as will the identification of small-molecule
inhibitors. All of these concerns emphasize one of the main themes of this review, i.e.,
that further studies are essential to move drug discovery forward to meet the chal-
lenges that await. A particularly attractive area worth further emphasis is the link
between trehalose biosynthesis and fungal cell wall homeostasis given the critical
importance of this fungus-specific structure to virulence and host immune responses.
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FIG 5 Structure of Tps2 in complex with its substrate, trehalose-6-phosphate. (A) Structure of Crypto-
coccus neoformans Tps2 (CnTps2), depicting the cap domain in magenta and the core domain in cyan.
Substrate-bound Tps2 takes a “closed” conformation, bringing the cap and core domains closer, whereas
substrate-free Tps2 assumes an “open” conformation whereby the cap and core domains are more
splayed. Trehalose-6-phosphate (T6P) and residue N24 are labeled and depicted as atom-colored sticks,
and the catalytically important magnesium ion (Mg2*) is shown as a yellow sphere and labeled. In
wild-type CnTps2, residue 24 is an aspartate and is responsible for the nucleophilic attack on the
phosphate group of T6P. (B) View of the active site of Tps2 bound to T6P. All residues that interact with
either T6P or the Mg?* ion or play a key part in forming the substrate-binding pocket are shown as
atom-colored sticks and labeled. The carbon atoms of residues from the cap domain are colored
magenta, while those from the core domain are colored cyan. T6P is shown as atom-colored sticks, with
its carbon atoms colored white, and the catalytically important Mg2* ion is shown as a yellow sphere.
All solvent molecules and dashes indicating protein-substrate or protein-Mg?* interactions have been
omitted for the sake of clarity. Note the tripartite stacking of the side chains of residues F70 and R66 and
the glucose-6-phosphate ring of the T6P disaccharide.

In this arena, inhibitors of trehalose metabolism may prove to be highly effective
adjunctive therapeutics in combination with existing cell wall-targeting drugs. These
hypotheses and associated key in vivo experiments are on the cusp of being realized,
as emphasized by the determination of key biosynthesis protein structures and the
associated search for small-molecule inhibitors.
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