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Antidepressant medications are commonly used to treat depression, but only about 30% of patients reach
remission with any single first-step antidepressant. If the first-step treatment fails, response and
remission rates at subsequent steps are even more limited. The literature on biomarkers for treatment
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response is largely based on secondary analyses of studies designed to answer primary questions of
efficacy, rather than on a planned systematic evaluation of biomarkers for treatment decision. The lack of
evidence-based knowledge to guide treatment decisions for patients with depression has lead to the
recognition that specially designed studies with the primary objective being to discover biosignatures for
optimizing treatment decisions are necessary. Establishing Moderators and Biosignatures of Antide-
pressant Response in Clinical Care (EMBARC) is one such discovery study. Stage 1 of EMBARC is a ran-
domized placebo controlled clinical trial of 8 week duration. A wide array of patient characteristics is
collected at baseline, including assessments of brain structure, function and connectivity along with
electrophysiological, biological, behavioral and clinical features. This paper reports on the data analytic

strategy for discovering biosignatures for treatment response based on Stage 1 of EMBARC.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author. New York University , New York, NY, USA.

E-mail addresses: eva.petkova@nyumc.org (E. Petkova), to166@cumc.columbia.
edu (RT. Ogden), thaddeus.tarpey@wright.edu (T. Tarpey), adam.ciarleglio@
nyumc.org (A. Ciarleglio), beil@ualberta.ca (B. Jiang), zhe.su@nyumc.org (Z. Su),
thomas.carmody@utsouthwestern.edu (T. Carmody), adamsp@nyspi.columbia.edu
(P. Adams), hck@leland.stanford.edu (H.C. Kraemer), bruce.grannemann@
utsouthwestern.edu (B.D. Grannemann), oquendo@nyspi.columbia.edu
(M.A. Oquendo), ramin.parsey@stonybrookmedicine.edu (R. Parsey), weissman@
nyspi.columbia.edu (M. Weissman), pjm5@cumc.columbia.edu (PJ. McGrath),
mfava@mgh.harvard.edu (M. Fava), madhukar.trivedi@utsouthwestern.edu
(M.H. Trivedi).

http://dx.doi.org/10.1016/j.conctc.2017.02.007

1. Introduction

Major Depressive Disorder (MDD) is a highly prevalent chronic
and recurrent disorder predicted to be the leading cause of disease
burden in the year 2030. Despite the advent of effective pharma-
cological, psychotherapeutic and brain stimulation interventions,
we still lack tools to predict treatment response and remission. For
example, the Sequenced Treatment Alternative to Relieve Depres-
sion project (STAR*D) attempted to determine the best treatment
for patients who did not remit with a standard Selective Serotonin
Reuptake Inhibitor (SSRI). Disappointingly for purposes of pred-
iction, patients were equally likely to respond to a second SSRI,
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venlafaxine-XR or bupropion-SR, suggesting that the pharmaco-
logic profile of prior failed treatments is insufficient to guide sub-
sequent treatment decisions. This finding, based on the
comparisons of groups of patients, raises the question of whether
individual characteristics, biological or clinical, might more accu-
rately predict the likelihood of remission with a given intervention.
Prediction of outcome with commonly used interventions, namely
pharmacotherapy with drugs having distinct mechanisms of action,
appears a rational first step in this quest. Response to antidepres-
sant medication in depressed patients is unpredictable, with a 30%
remission rate after 12 weeks of treatment and 30—40% fail to have
an adequate response even after several trials of medication or
psychotherapy over a year [13,35,47]. The search for biomarkers
predicting overall or specific medication response is still in its in-
fancy [18] and, while many studies of potential biomarkers for
treatment outcome have been published (e.g., Refs. [4,15,16,21,25,
26,48,51]), systematic examination of the joint effects of several
biomarkers together with clinical phenotypes has never been done
and little practical progress has been made. The most promising
biomarker strategy to date, individual pharmacogenetic profiling,
has not uncovered any strongly predictive alleles, although there
are now multiple single nucleotide polymorphisms (SNP) sug-
gesting genetic variants of relatively small effect, see e.g.,
Refs. [4,15] among others.

While predicting treatment outcome remains an essential,
though elusive research goal, the question of immediate practical
importance is how to select the best treatment for each individual
patient, a fundamental component of precision medicine. It has
long been recognized that features that are important for predict-
ing outcome might not be necessarily be useful for making treat-
ment decisions (e.g. Refs. [39,50]). Interest in discovering optimal
treatment decisions for individual patients is growing rapidly, both
in clinical research and in statistical methodology. Optimal treat-
ment decision for a patient was first formalized by Murphy [27] and
Robins [33]. A treatment decision is a function d that maps the
baseline covariates, say X, to a treatment indicator {0,1}, such that a
participant with covariates X = x will receive treatment 1 if d(x) =
1 and will receive treatment O if d(x) = 0. The value of a treatment
decision is the average outcome, if the decision were to be applied
to the entire target population. The best treatment decision is the
one that optimizes the value. Using the concept of “potential
outcome” [34], let Y*(0) and Y (1) denote the potential outcomes
that would be observed if a participant was assigned treatment 0 or
1, respectively. Note that only one of the potential outcomes is
observed in practice and the observed outcome under a decision
d(X) can be expressed as follows

Y(d) = Y (1)d(X) + Y*(0)[1 — d(X)].

That is, the observed outcome is the potential outcome under
treatment 1, if the treatment decision d(X) is to give treatment 1,
and it is the potential outcome under treatment O, if the treatment
decision is to give treatment 0. Thus, the value of a decision d is the
observed outcome averaged over the distribution of X and, from
Qian and Murphy [31]; equals E4[Y], where the expectation E¢ is
taken with respect to the joint distribution of (X,A,Y) when d is
used to assign treatments.

The NIMH funded multi-site clinical trial Establishing Modera-
tors and Biosignatures of Antidepressant Response in Clinical Care
(EMBARC) was designed to systematically explore promising clin-
ical and biological markers of antidepressant treatment outcome
that would lead to personalized treatment. This paper describes the
statistical analysis plan for the EMBARC study. The EMBARC study is
a collaborative investigation to discover biomarker moderators and
mediators of response to treatment of MDD with antidepressant

medication (for full methods description see Ref. [46]. The four
study sites used identical recruitment and assessment procedures
and have recruited 309 participants in total with MDD. Participants
had recurrent, early onset MDD (prior to age 30 years). During the
8-week first stage, patients receive either sertraline or placebo
under randomized double-blind conditions in 1:1 ratio. The
randomization was stratified by site, depressive symptom severity,
and depression chronicity. During the second 8-week stage, non-
responders to sertraline receive bupropion, non-responders to
placebo receive sertraline, and responders remain on their original
treatment. The study is unique in that it systematically collects a
comprehensive array of carefully selected clinical, behavioral, and
biological biomarkers at baseline and at one week post treatment
initialization. Clinical measures include anxious depression, early
trauma, gender, melancholic and atypical depression, anger attacks,
Axis II disorder, hypersomnia/fatigue, and chronicity of depression.
Behavioral measures result from a battery of cognitive and behav-
ioral tasks. Biological measures include cerebral cortical thickness
via structural magnetic resonance imaging (MRI), task-based
functional MRI (fMRI), resting state brain connectivity, diffusion
tensor imaging (DTI, collected only at baseline), arterial spin la-
beling (ASL), electroencephalography (EEG) and cortical evoked
potentials.

One goal of the study is to quantify the effect of a selected set of
candidate biomarkers as moderators of the effect of treatment (SSRI
versus placebo). A major challenge in precision medicine, however,
is that most baseline measures typically have small moderating
effects and individually contribute little to informed treatment
decisions. Thus, a key goal is to investigate possible combinations of
biomarkers and clinical characteristics to generate biosignatures for
making a personalized medication treatment prescription. A bio-
signature index can be based on patient characteristics at baseline
(e.g., moderators of treatment effect). Additionally, since the study
also collects biological data one week after randomization, early
indicators of whether a patient will respond to the treatment (i.e.,
potential mediators of treatment effect) can also be identified.
These early indicators could be used to refine the prediction
regarding response to treatment that is solely based on pre-
treatment patient characteristics, by capturing early biomarker
changes in response to treatment. This paper describes the statis-
tical analysis plan only for Stage 1 of EMBARC. Finally, in addition to
being the first to institute protocols for standardizing assessment,
quality control, data collection, transfer and integration of a
multimodal database for depression biomarkers, the EMBARC study
also aims at establishing strategies for discovery of biosignaures
within such a rich and complex source of information.

2. Methods
2.1. Background

Given the sheer complexity of the brain and the fact that,
despite decades of research, the causality of depression is still
largely unknown, the identification of biomarkers for treatment
response is a formidable challenge. Neuroimaging technologies
such as structural MRI, fMRI and DTI are widely used to indirectly
estimate cortical and subcortical volumes, brain activation in
response to different tasks and functional and physical connectivity
in the brain. Current mental health research explores the hypoth-
eses that depression is due to the loss of cortical tissue, or due to
deficient brain activation in response to stimuli, or altered con-
nectivity in the brain, i.e., reduction in the temporal lobe volume, or
aberrant connectivity within the default mode network, respec-
tively. Correspondingly, it is hypothesized that treatments for
depression work by normalizing brain structure, function, and/or
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connectivity.

While insightful, this direction of research has yielded little in
the way of conclusive results about causal factors for depression or
the mechanisms of action of various treatments. This is likely due to
several well-known challenges. First, depression is highly hetero-
geneous, i.e., patients tend to have widely varying combinations of
symptoms and can also have vastly different underlying biology,
and thus the biomarkers for treatment response among one sub-
group might not apply to another. Second, the complexity of MDD
makes it unlikely to find meaningful biomarkers for treatment
response by focusing only at individual factors and neglecting the
interrelationships between them. Finally, the intricacy of the brain
and the multidimensionality of the data collected by ever evolving
technologies for measuring its structure, function and connectivity,
make the discovery of the treatment implications available in the
collected information a daunting analytic task.

To address those challenges, the EMBARC study systematically
assessed study participants over two days using several measures
and characteristics that have been suggested by diverse theories
and hypotheses about causes and effects of depression as well as
about possible mechanisms of action of drug treatment. Suggested
by studies indicating differences between patients with MDD and
healthy controls with respect to a range of structural brain mea-
sures and resting state functional connectivity, the EMBARC study
also collected data on structural and functional brain attributes via
structural EEG MRI, DTI and resting state fMRI. Based on theoretical
considerations regarding the neural circuits modulated by seroto-
nin and dopamine, such as emotion regulation circuitry and reward
circuitry, subjects were assessed with fMRI during both a specific
emotion recognition task and a reward task. Since we anticipated
that some of the characteristics assessed at baseline may change
with the onset of treatment, they were measured again at week 1,
to allow investigation as to whether early changes might contribute
to improved outcomes. The use of week 1 assessments for
improving the predictions and treatment decisions rules is a sec-
ondary goal and is not addressed here. For justification and details
regarding all assessments, as well as alternatives that were
considered, see Ref. [46].

2.2. Sample size determination

For the reasons laid out above, the EMBARC study was designed
as a discovery, rather than a hypotheses-driven investigation. The
sample size of the study was determined by the need to develop
and validate a limited set of summary indices (i.e., composite bio-
signatures) for treatment response, that, if warranted by the results,
would be further studied in a hypotheses-driven confirmatory
investigation. Although several approaches have been proposed for
developing individualized treatment decision rules (i.e. a mapping
from baseline predictors to one of the treatment options, see Sec-
tion 6.3, e.g., Refs. [7,14,31,53]), there are no sample size formulae
for identifying composite biosignatures and constructing treatment
decision rules from high-dimensional data. The necessary sample
size depends on the signal to noise ratio, the complexity of the
proposed models, the size of the model space to be searched, as
well as the specific analytic method used. Since a careful validation
is necessary for any treatment decision based on selecting and
combining biomarkers, we plan to use a training set to construct a
summary index and a treatment decision rule based on it. A
separate test data set will then be used for validation. A 2-to-1 split
of the total sample size into a training (n = 200) and testing set
(n = 100) will be used. This will be a random split, stratifying for
site; treatment assignment; severity and chronicity (which were
used as randomization strata); and year of study entry, to control
for possible secular effects. The issue of sample size and power,

when testing one treatment decision rule against another, in a
randomized clinical trial is discussed in Section 8.

2.3. Analytic samples
The analyses would be conducted on two overlapping samples:

2.3.1. Adequate treatment exposure sample

This sample will include only Stage 1 participants who received
8 weeks of treatment. The sample would allow identification of
moderators and mediators of treatment response among those
who have had full exposure to the treatment. This sample may be
more likely to reflect biological changes that are related to the
exposure to antidepressant therapy and to allow a more meaningful
exploration of potential moderators of treatment response. It is
anticipated that biomarkers identified with this sample would be
more related to physiologic response to the medication compared
with biomarkers identified using participants without adequate
antidepressant exposure.

2.3.2. Modified intention-to-treat sample

This sample will include all randomized Stage 1 participants
who took at least one dose of study medication. Participants who
were randomized, but dropped out prior to taking their first dose
will be excluded, as will those who were randomized but subse-
quently revealed to be ineligible for the study. This definition of the
study sample is in line with standards used in efficacy research,
where from a public health perspective, the goal is to estimate the
effect of assigning treatment.

3. Defining treatment outcomes

The primary outcome measures that we consider are based on
the Hamilton Depression scale (HAMD17). Per the study protocol,
assessments of HAMD17 are scheduled for the time of randomi-
zation, i.e., at baseline (t = 0), weekly for 4 weeks (t = 1,...,4) and
bi-weekly for the last month of treatment, t = 6 and 8 weeks. Let
Y = (Y;,tet=1{0,1,2,3,4,6,8}) denotes the vector of HAMD17
scale observations during the Stage 1 clinical trial. The time points
of the observed outcomes for the ith participant will be denoted
t; =t (note that t; must contain 0). To enhance clinical relevancy and
interpretability, we shall consider several definitions of the
outcome measure.

3.1. Course of depression symptoms

In order to obtain a scalar value to summarize an individual's
outcome, the following mixed-effects model for the HAMD17
outcome, fit separately for each treatment group, will be used:

(1) Yit., =op + gt + I?iteaz + tijlfi[elxg + doi + qitij + &,

where Y is the ith participant's HAMD score at time t; I is a 4-
dimensional vector of indicators for the ith participant's site (uti-
lizing zero-sum constraint), and a, and a3 are regression coeffi-
cient vectors for the vector of indicators; agp; and a;; are the random
intercept and slopes, respectively, for the ith participant, and ;; are
independent random errors with variance ¢2. An overall measure
that summarizes the ith individual's course of depression symp-
toms is his/her random slope plus the fixed-effect slope co-
efficients, i.e., (aq; + o7).

Note, that if the true symptom trajectories are arbitrary smooth
functions of time, rather than strictly linear, as postulated by (1), an
appropriate scalar measure is the average rate of change (i.e., the
average tangent slope) over the course of treatment. If the true
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trajectory is quadratic, the average tangent slope is equal to the
slope of the best-fitting line, i.e., the slopes from model (1). From
extensive previous work with HAMD17 symptom trajectories dur-
ing 6—8 weeks of treatment [28,41-43], we expect that the tra-
jectories will be well approximated by quadratic polynomials of
time. In Petkova et al. [29] we show that when missing data due to
dropout is not too severe, as is in the EMBARC study, the slopes
estimated with model (1) would be unbiased estimates for the
average tangent slope. The reason for including the site in (1) is to
eliminate any between-site differences with respect to course of
symptoms over time.

This outcome will be available on all study participants with at
least one post-randomization assessment of HAMD17. Smaller
values of (ay; + «1) are desirable, as they indicate a faster rate of
decline of depression symptoms severity.

3.2. Remission

A binary remission status will be available on all study partici-
pants. A participant is considered to have achieved remission if
their last observed HAMD17 score is less than or equal to 7 (Tivedi
et al. 2006) [47].

4. Identifying baseline patient characteristics for evaluation
as moderators of treatment effect

The EMBARC study distinguishes two tiers of baseline patient
characteristics that were prespecified a priori by the study team to
be investigated as potential treatment effect modifiers based on
published evidence supporting their relationship with treatment
outcome. The First Tier and a Second Tier of variables are those that
have been identified as having strong (multiple reports in the
literature) and moderate (only incidental reporting) evidence for
association with response to treatment. Additionally, a Third Tier of
variables was identified that were not pre-specified due to lack of
evidence to justify their inclusion in the First or Second Tier.

4.1. First tier prespecified variables

At the time of planning this study, a set of baseline demographic,
clinical, behavioral and biological patient characteristics were
identified as having evidence supporting their role as predictors of
antidepressants' effect on depression. We emphasize that these
variables have generally been evaluated as predictors of outcomes,
not as potential moderators of the effect of several treatments. A list
of 48 characteristics was generated from a review of the antide-
pressant treatment response literature by the study psychiatrists.
These variables include: presence of melancholic depression, re-
action time in the Choice-Reaction-Time task, rostral anterior
cingulate cortex (ACC) theta current source density derived from
EEG and thickness of the precentral cortex. The full list of First Tier
variables is given in the Appendix.

Let X = (Xj,...,Xp,) denote the set of these baseline variables.
Each of these variables will be evaluated in turn as a potential effect
modifier based on the following model:

(2) g(E(YIA, X) = Bo + B1Xk + B2A + B3AXy,

where Y is one of the outcomes defined in Section 3; A is an indi-
cator for the treatment to which a participant was randomized
(A =1 for sertraline and A = 0 for placebo); g is the logit function
when the outcome is a binary remission status, and g is the identity
when the outcome is the random effect slope from (1). The vari-
ables X, will be ranked based on the magnitude of their effect size

as moderators, as per Ref. [17] rather than by the p-value for sig-
nificance of the interaction term f3. This eliminates the effect of the
number of participants used in the analyses, as we expect that some
of the baseline characteristics might be missing for more partici-
pants than other baseline measures. Additionally, with this
approach, we emphasize the importance of the magnitude of the
effects, rather than their statistical significance, which is in line
with the discovery nature of the study.

4.2. Second Tier prespecified variables

The variables in this set are patients' biological characteristics
that were identified by EMBARC investigators as having a potential
for being important in making treatment decisions, although less
evidence supporting their relationship with treatment outcome
was available at the time of the EMBARC study planning, compared
to First Tier variables. The variables (total 243) are denoted by W =
(W1, ...Wp,,) and will be analyzed using the same approaches used
for the First Tier variables, X. These Second Tier variables are pri-
marily biological brain measures of different modalities (e.g., EEG,
structure, function, connectivity).

4.3. Third Tier variables

The Third Tier consists of variables that were not pre-specified,
but can be computed from the collected data. For example, the
Third Tier will include biological brain measures that have been
identified and reported in the literature after the EMBARC study
was initiated. These variables are denoted by U = (Uy, ..., Up,) and
will be analyzed using the same approaches used for variables in
the other two tiers.

5. Composite indices for personalized treatment decisions

A major goal of the EMBARC study is to develop new constructs,
not previously established that could be used to decide which
treatment should be given to an individual depressed patient.
These are called “moderators of treatment effect”, “effect modi-
fiers” and “tailoring” variables in statistical terminology, or also
“prescriptive” measures or variables in medical parlance. A Differ-
ential Treatment Response Index (DTRI) is conceived of as a
combination of patient biological, behavioral and clinical charac-
teristics, which would be used to decide which treatment would be
more beneficial to a particular patient. The idea for such index is
motivated by the Framingham Risk Score (see e.g., Ref. [2]), how-
ever, rather than measuring individual subject's “risk” (i.e., proba-
bility) for, say, response to a given treatment, the DTRI is required to
measure the relative benefit of one treatment compared to another.
In other words, the index should indicate the ranges where
“treatment 1 is better than treatment 0”, to where “no difference in
response to treatments 1 and 0”, to where “treatment 0 is better
than treatment 1”. Such an index, constructed as a linear combi-
nation of baseline characteristics, is proposed in Cloitre et al. [10] in
the context of selecting treatment for subjects with post-traumatic
stress disorder. In the current setting, a DTRI can be used to
determine if a patient would benefit more from the active treat-
ment (sertraline) compared to a placebo treatment. Given the
numerous adequately conducted randomized placebo controlled
antidepressant clinical trials that failed to show efficacy against
placebo, the question of whether or not to prescribe a medication to
a specific patient with MDD is of utmost importance. One major
benefit of this comprehensive approach is to ensure that all
possible variables are considered together. This also allows us to
account for the inter-relationships among all variables.
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To develop DTRIs for making treatment decisions, the analytic
sample will be split into a training set and a test set as described in
Section 2.2. This will be done for both the modified intent-to- treat
and the adequate treatment exposure samples, see Section 2.3. The
DTRIs developed on the training data will then be applied and
evaluated on the test data set. DTRIs developed through the
application of different analytic approaches and using data of
different modalities will be selected based on their performance in
the test set. This approach (development on the training set fol-
lowed by validation on the test set) will provide evidence of sta-
bility of the index within the same study and reduce the likelihood
of a spurious finding.

5.1. Analytic methods for making optimal treatment decisions

It has long been recognized that baseline features that are
important for predicting outcome might not necessarily be useful
for making treatment decisions (e.g. Refs. [39,49,50]). Much recent
research has focused on identification of baseline covariates that
are specific to the treatment effect (i.e., variables that exhibit in-
teractions with the treatment indicator in predicting treatment
outcome), rather than being important in the baseline model (i.e.,
prognostic of outcome under either treatment, or prognostic of
outcome under the standard treatment), see e.g., Refs. [6,14,
22,24,31]. Thus, we differentiate between “prescriptive” variables
(that can inform clinicians in prescribing treatment to a particular
patient) and “prognostic” variables that can help forecast a patient
outcome but do not aid in treatment selection.

A major challenge in precision medicine is that most baseline
patient measures typically have small moderating effects and thus
individually contribute little to informed treatment decisions. Un-
constrained regression models with p predictors that may also
include the treatment variable and predictor-by-treatment in-
teractions become unwieldy, unstable and difficult to interpret
when p is large, or even moderate. Various strategies have been
proposed to deal with the problem identifying prescriptive vari-
ables and estimating decision rules when several baseline mea-
sures are available. Gunter et al. [14] propose a ranking procedure
to be applied to the individual baseline measures, after which a
forward variable selection algorithm is employed with the restric-
tion that a main effect of a variable be included when the interac-
tion between a variable and treatment is selected in the model.
Qian and Murphy [31] on the other hand, consider a least absolute
shrinkage and selection operator (LASSO; Tibshirani [45]) penalty
for choosing baseline predictors with a focus on choosing a model
for the outcome that ensures good performance with respect to the
value of the estimated treatment decisions, see Section 1. Lu et al.
[24] propose a method for obtaining a good model for the treat-
ment effect that is robust to misspecifying the baseline model.
Ciarleglio et al. [7] extend that methodology to allow functional
data objects (such as spectra estimated from EEG assessments) to
be incorporated as baseline features. Recognizing that estimation
based on minimizing the prediction error may not necessarily
result in a decision that maximizes the clinical benefit, Zhao et al.
[53] proposed an alternative method, using support vector ma-
chines [11], for developing treatment decision rules that are based
on directly maximizing the clinical benefit. Petkova et al. [30] de-
velops a methodology for combining several baseline measures for
the specific purpose of finding a single powerful treatment effect
modifier in the context of the classic linear model, which is called a
generated effect modifier (GEM).

Based on available methodology at the time of writing this
manuscript, we have identified the following approaches summa-
rized in Table 1 that are applicable to the EMBARC study. They were
selected based on the criteria that (i) the methods should be able to

estimate optimal treatment decisions when the outcome variable is
either continuous (e.g., rate of symptoms improvement) or binary
(e.g., remission status), and (ii) there should be a variable selection
algorithm embedded in the method.

Each of these methods has been shown to be useful in particular
situations, but to our knowledge, there are no studies that compare
them directly and make recommendations for their utility in
different situations. In a preliminary simulation study, the results of
which are not shown here, these methods were compared in terms
of value of the treatment decision rule across (i) varying numbers of
“true” and “noise” predictors; (ii) different true data generating
models; and (iii) a range of magnitudes of the error variances. The
results indicated that the comparative advantages of one method
versus another depended on the true data generating model with
no method uniformly dominating the rest. For this reason, all
methods in Table 1 will be employed to determine treatment de-
cision rules based on the training data set, and these rules after-
wards will be applied to the test data set. In this way, the methods
will be compared based on their performance in the test data set
with respect to value of the treatment decision. Based on the
comparison of the rules in the test data set, the best-performing
treatment decision rules will be nominated for further validation
in a future randomized clinical trial.

5.2. Extension to functional predictors

The methods described in the previous section are focused on
making patient-specific treatment decisions based on a set of
scalar-valued predictor variables. In the EMBARC study, many of
these variables are derived from the biological brain data of various
modalities collected at baseline. To supplement the analysis based
only on scalar variables, a potentially more powerful approach
would take advantage of the natural spatial and/or temporal
structure of the imaging data using methods adapted from the
general field of functional data analysis [32]. Rather than use some
average of the functional brain modality data over a particular re-
gion of interest, for instance, we could instead use the entire image
as a functional predictor, for example, 1-, 2- or 3-dimensional data
object.

The analysis of functional data, like those described here, has
been a topic of great interest in the past decade. Spurred in part by
the increasing rate of generation of such data in diverse scientific
fields, methods for functional data analysis are being developed at a
rapid pace. We are developing and employing new methods for
identification of treatment effect modifiers when the predictors are
functional data objects, as well as for combining scalar and func-
tional predictors, see, for example, Refs. [7—9].

6. Strategy for developing indices for personalized treatment
decisions

6.1. Overview

The set of potential baseline moderators are gathered from six
data sources/modalities: clinical, behavioral, EEG, DTI, structural
MRI and fMRI. We will approach the identification of a DTRI using
both scalar and functional moderators for making treatment de-
cisions first within a data modality and then we will combine the
modalities. Within a data modality, the set of predictors employed
will progress from the most exclusive (First Tier only), through First
and Second Tiers combined, to least restricted (First, Second and
Third Tiers combined). The goal of such a progression is to be able
to evaluate the values of treatment decisions based on known or
anticipated patient characteristics and to quantify the improve-
ments in value when new patient features are added, thus moving
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Table 1
Methods for developing treatment decision rules.
Abbreviation Description Citation Comment
Q Q-learning [31] Performs variable selection using a LASSO penalty, but chooses
the tuning parameters based on maximizing the value of
the treatment decision resulting from the selected model. Extended to
a generalized linear model (GLM)
OWL Outcome Weighted Learning [23,38,53] Uses the method of Ref. [38] for variable selection and the modified
estimation of the weights of Ref. [23]
QT Estimating interactions based on [44] While the Tian et al. [44] performs variable selection using a LASSO

the modified covariates approach

ZQT General weighted classifica- tion method [52]
ZQT-SVM ZQT with support vector machine [11]
ZQT-CART ZQT with classification and regression trees [3]

penalty with tuning parameters selected to minimize the prediction
error, we choose the tuning parameters to optimize the value of
the treatment decision rule, as in Q-learning

Uses QT to estimate classification weights and combines this

with a classification algorithm

ZQT with SVM for classification

ZQT with CART for classification

from least to most exploratory investigations. The analyses will be
conducted in the following order:

1. Combine scalar predictors within a given data modality, e.g.,

EEG.

2. Identify a best treatment effect modifier based on

e A single functional data object from a given data modality,
such as, for example from EEG, the current source density over
the frequency range 3—16 Hz at a given electrode using a
functional linear model.

e A combination of all functional data objects from a given data
modality, such as, for ex- ample from EEG, the current source
density over the frequency range 3—16 Hz, measured at all 72
electrodes.

3. Combination of scalar and functional variables from a given
imaging modality and the clinical and demographic data, see

Section 6.2 for justification.

To address potential issues regarding multicollinearity, we first
note that the variables in the first tier were carefully vetted by
experts in the respective data modalities and a single measure was
nominated from possibly multiple ways of measuring the same
construct. Thus, gross multicollinearity due to multiple measures of
the same construct is eliminated by the expert preselection of
variables and the remaining variables truly correspond to different
characteristics. We also note that the clinical and demographic data
are only modestly related to the imaging, EEG and behavioral data.
The methods for developing treatment decision rules specified in
Section 5.1 all incorporate some variable selection mechanism,
which is often an effective means of dealing with multicollinearity.
Since the primary objective of the analysis is in terms of prediction,
methods like Q-learning [31] that use the LASSO will tend to select
predictors from among a set of correlated predictors in order to
optimize the value of a decision and hence will mitigate multi-
collinearity problems. Second, among the 2nd and 3rd tier vari-
ables, multicollinearity within a given imaging or EEG modality can
happen (i) if there are several measures that represent the same
construct (as noted for tier 1), such as for example, when different
filters are applied prior to computing alpha band amplitudes for
EEG data; and (ii) when measurements on adjacent locations in the
brain are correlated. This will be dealt with by not including mul-
tiple measures of the same construct together in the models, and by
treating the EEG and imaging data as functional when possible. The
variables in the 3rd tier, which are most numerous and consist of
everything that can be computed from the exhaustive baseline
assessments and about which no hypotheses have been postulated,
will be subjected to sure independence screening [12], based
on model (2), prior to combining them within or between

modalities.

The main analysis will only include scalar variables, unless
methods for analysis of functional data are available. Different ap-
proaches will be developed and tested on the training data set. The
development will involve evaluations of the statistical stability of
the models defining the DTRIs using cross-validation with the
training data to obtain an assessment of how well the DTRIs are
likely to perform using the test set [5,19]. The approaches that
perform well in terms of cross-validation with the training data,
will be evaluated on the hold-out test data set. A small number (e.g.,
one or two) DTRIs will be nominated from each data modality to be
studied further if warranted.

6.2. Dealing with missing data in the covariates

Due to potential problems with processing imaging data, it is
expected that some of the brain imaging data will not be useable. In
addition, some study participants might not be able to complete the
entire sequence of assessments specified in the study protocol.
Therefore, only a subset of all study participants is expected to have
complete baseline and week-1 data. For an individual participant,
the typical missing data pattern is expected to involve all measures
from one or more modalities, while all measures from the
remaining biomarker modalities may be complete for that partic-
ipant. For example, a study participant might not have any imaging
data under the Emotion Recognition task because of excessive head
motion during the scan, but if s/he has a good fMRI scan under the
Reward task, all measures related to that task would be observed.
This typical pattern of missing data is one reason that we plan to
develop biosignatures within each modality separately and initially
consider only combining each biomarker modality with the clinical
and demographic data, which are expected to have minimal mis-
singness.We will also attempt to impute the missing covariate data.
Multiple imputations will be employed and thorough diagnostics of
the results from the imputations will be conducted [1,36]; Su et al.
[40]. The diagnostic step will be particularly important given that
the most common pattern of missingness is for all variables from a
particular modality to be simultaneously missing. Hence all vari-
ables from a given modality (e.g., fMRI) will need to be imputed
based on the other modalities (e.g., clinical and demographic, EEG,
DRI and behavioral phenotyping). In these cases, data from the
other modalities might not be sufficient for a quality imputation.
The analyses outlined in Section 6.1 will be repeated using the
imputed data sets and combined inferences will be performed,
following Ref. [37]. Results from applying the DTRIs obtained using
the complete training data only and the multiple imputed training
data, on the test data set will inform further whether it is useful to
impute baseline data in studies designed to discover biosignatures
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for treatment response. If the quality of the imputations is unsat-
isfactory, results from only complete case analyses will be reported.

6.3. Validation

The validation of the proposed biosignatures (both those
resulting in a DTRI and those that do not explicitly produce such
indices) will be based on the value of each treatment decision rule
corresponding to each of the proposed biosignatures, as stated in
Section 1. For example, suppose a nominated DTRI is Z, defined as a
linear combination of baseline predictors. Furthermore, suppose Z
has been obtained by maximizing its effect as a moderator in the
training data set, based on the following linear model:

(3) E[Y|A, Z] = o + B1Z + B2A + B3AZ.

If higher values of Y are preferred, the treatment decision
formulated based on Z and (3) is:

if 85 + 63Z>0, or equivalently Z> — g—j, give treatment 1.
if B, +63Z<0, or equivalently Z < —g—;,give treatment 1,

assuming 3 > 0 (with the inequalities switched if 3 <0). The value
of each of the decision rules based on biosignatures, derived using
the training data, will be computed on the validation data set and
will be compared against the values of the following decisions:

dR: Random assignment of sertraline or placebo in a ratio 1:1;

d®: All patients are assigned sertraline;

dP: All patients are assigned placebo.

Confidence intervals for the differences in the values between
the derived biosignature and each of the three decisions d¥, d° and
d” will be obtained using a bootstrap procedure (see e.g.,
Refs. [20,31,38]). In a similar way we will compare the biosignatures
obtained from different data modalities.

6.4. Final DRTIs

Of the set of DTRIs nominated based on analyses of the training
data, we will select a handful that show the best performance in the
validation using the test set. As a final step, the methods for
developing the “optimal” DTRIs will be applied to the entire study
sample (training and validation sets). The resulting DTRIs and the
methods used in their development will be reported.

7. Patient characteristics one week post randomization

In EMBARC, study participants are assessed one week after
randomization with the entire baseline battery except the clinical
and structural MRI measurements. Of interest here is whether we
can identify early correlates of treatment response and whether any
early biological changes can help inform treatment decisions. The
data objects here will be changes from baseline to one week post-
randomization. There are no specifically identified measures prior
to study completion. The analyses will follow the outline in Section
5 for developing indices for personalized treatment.

8. Discussion

Here we have presented the plan for analyses to address the
major goals of the EMBARC study. This plan will be followed in the
reporting of the major results from this study. The EMBARC study is
generating an unparalleled resource for discovery of patient char-
acteristics related to response to antidepressant treatment. While
the main analysis will follow the outlined plan, we envision a long
and extended use of this data resource. No uniformly best method

for developing optimal treatment decisions is known to date and
the performance of such methods depend on the size, complexity
and signal to noise ratio of the true biological model. Therefore, as
new methods for combining biomarkers, and estimating optimal
treatment decisions with variable selection are being developed,
they will be applied to the EMBARC data. The results from those
later analyses will be assessed and validated in a similar way as
described above and also according to new measures of perfor-
mance when such measures are introduced. Furthermore, the
EMBARC data collection will be used to address numerous other
important research questions, such as for example, predicting
treatment outcome (as opposed to finding covariates that predict
differential treatment effect) and better understanding the placebo
effect.

The present study is the first large scale study of its kind that has
obtained clinical and extensive biological variables across multiple
sites in a randomized placebo controlled trial specifically designed
to evaluate the differential depression treatment response index for
patients with early onset, recurrent major depressive disorder. The
depth and breadth of clinical and biological variables collected af-
fords a unique opportunity to evaluate potential biomarkers based
on multi-modal baseline and week 1 assessments. These bio-
markers serve as potential DTRIs, which are first developed on a
training set and then validated on an independent test set. If suc-
cessful, these findings will: 1) provide an index that could readily
be used in clinical practice to match patients with treatment; and 2)
provide a proof-of-concept for future studies to prospectively
assess these and other indices in a hypothesis testing study.
Furthermore, this will be the first evaluation of such an approach in
developing and validating a DTRI for placebo response.

We emphasize, however, that as in all studies intended to
determine an optimal treatment regime, any selected decision rule
should be validated in a randomized clinical trial. In the case of
EMBARC, the treatment decision is either sertraline or placebo. A
randomized clinical trial to evaluate the selected decision rule
might be a two parallel arms study, where in one of the arms the
treatment will be assigned according to the selected treatment
decision rule and, in the other arm, treatment would be assigned at
random, e.g., either setraline or placebo. Alternatively, a similar
design would be a three parallel arms design where in the first arm,
treatment will be assigned according to the selected rule, subjects
in the second arm will all be assigned to setraline and subjects in
the third arm all will be assigned placebo. While the two arms
design emphasizes a comparison of the selected treatment decision
rule to the decision to treat depressed subjects with either the drug
or placebo assigned at random, the three arms design underscores
the interest in the comparison between using the selected decision
rule versus treating everyone with the drug, which is a more
realistic treatment strategy. Perhaps a more clinically relevant three
arms study design would replace the placebo with an alternative
active treatment, say an antidepressant of different class or a psy-
chotherapy. Such a study would allow not only a direct comparison
of the selected treatment decision rule with the alternative treat-
ment, but also would generate data that might be used to develop
rules for deciding between sertraline and an alternative active
treatment. The follow up studies for confirming the utility of the
treatment decision rules developed in the EMBARC study are
standard efficacy trials and are subject to the sample size and po-
wer considerations appropriate for such investigations.
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Appendix. First Tier baseline characteristics

This appendix provides a brief description of the First Tier
baseline characteristics.

e Clinical: includes anxious depression, melancholic depression,
anger attacks, probable Axis Il diagnosis, hypersomnia/fatigue,
childhood trauma, family history of MDD or Bipolar disorder and
chronicity
Behavioral Phenotyping: includes number of letters reported in
the Controlled Oral Word Association Test, reaction time in the
Choice RT task, number of correct responses in the “A not B”
Working memory task, response time in the “A not B” Working
memory task, accuracy and reaction time in post-correct vs.
post-incorrect trials in the Flanker task, accuracy and reaction
time in incongruent vs. congruent trials in the Flanker task,
reward learning (Response Bias in Block 3 - Response Bias in
Block 1), response Bias in Block 3 in the Probabilistic Reward
Task, total words on the Word Fluency Test and reaction time on
correct responses in “A not B” Working memory task
EEG: includes resting EEG Alpha current source density mea-
sures of condition-dependent EEG alpha, Auditory Evoked Po-
tentials (N1 Amplitude), loudness dependency of auditory
evoked potential from tone loudness of 60, 70, 80, 90, 100 dB
and rostral anterior cingulate cortex theta current density
DTI: includes fractional anisotropy of Superior Temporal Cortex
e Structural MRI: includes cortical thickness of left later-
alorbitalfrontal and left precentral regions
e fMRI: includes from the Emotion recognition task, difference
between activation under congruent and incongruent condi-
tions in the pregenual anterior cingulate, dorsal anterior
cingulate and pregenual cingulate/right amygdala psychophys-
iological interaction; from the Reward task, Beckmann Region
(BR) 3 in anticipation, left ventrolateral prefrontal cortex in
anticipation and right ventral striatum in outcome; from resting
state fMRI functional connectivity between left amygdala and
BR 2 at Time 1, left amygdala and BR 2 at Time 2, left ventral
striatum to BR 3 at Time 1 and left ventral striatum to BR 3 at
Time 2.

Second Tier baseline characteristics will include: Cerebral blood
flow derived variables from imaging data under emotion recogni-
tion task, Reward task and resting state connectivity.
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