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Cholecystokinin-induced satiety, a key gut servomechanism
that is affected by the membrane microenvironment of this
receptor
AJ Desai, M Dong, KG Harikumar and LJ Miller

The gastrointestinal (GI) tract has a central role in nutritional homeostasis, as location for food ingestion, digestion and absorption,
with the gut endocrine system responding to and regulating these events, as well as influencing appetite. One key GI hormone with
the full spectrum of these activities is cholecystokinin (CCK), a peptide released from neuroendocrine I cells scattered through the
proximal intestine in response to fat and protein, with effects to stimulate gall bladder contraction and pancreatic exocrine
secretion, to regulate gastric emptying and intestinal transit, and to induce satiety. There has been interest in targeting the type 1
CCK receptor (CCK1R) for drug development to provide non-caloric satiation as an aid to dieting and weight loss; however, there
have been concerns about CCK1R agonists related to side effects and potential trophic impact on the pancreas. A positive allosteric
modulator (PAM) of CCK action at this receptor without intrinsic agonist activity could provide a safer and more effective approach
to long-term administration. In addition, CCK1R stimulus–activity coupling has been shown to be negatively affected by excess
membrane cholesterol, a condition described in the metabolic syndrome, thereby potentially interfering with an important
servomechanism regulating appetite. A PAM targeting this receptor could also potentially correct the negative impact of
cholesterol on CCK1R function. We will review the molecular basis for binding natural peptide agonist, binding and action of small
molecules within the allosteric pocket, and the impact of cholesterol. Novel strategies for taking advantage of this receptor for the
prevention and management of obesity will be reviewed.
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INTRODUCTION
The prevalence of obesity has been progressively increasing
throughout the United States and around the world, contributing
to a parallel increase in the prevalence of type 2 diabetes mellitus
and its associated comorbidities.1 These problems have been
responsible for extraordinary morbidity, suffering, loss in produc-
tivity and premature mortality. In spite of major efforts to develop
effective weight reduction diets, diet aids, medications, medical
devices and surgical procedures, the trajectory for this continues
in the wrong direction. Bariatric surgery has proven to be quite
effective in patients with morbid obesity;2 however, this is quite
expensive and not scalable, certainly not keeping up with the
increasing prevalence of the most severe end of this clinical
continuum. The activity of acute dieting and exercise has been
similarly effective in inducing weight loss; however, it has not
been durable, with an extremely high incidence of regaining
weight to or even beyond the starting point. After a long hiatus in
approved drugs, three new diet medications have recently been
approved,3–5 but all carry concerns about safety, and there are
requirements for registration and careful clinical follow-up,
resulting in use for highly selected subjects who are not surgical
candidates and in whom the risks associated with their level of
obesity are greater than the risks associated with these agents.
There is clearly a need for new, safer and more effective

medications that can effectively reduce appetite and the quantity
of food ingested. As this is such a pervasive problem affecting so

many people and often providing life-long challenges at weight
control, there is a very high bar for regulatory approval, with such
drugs needing to be extremely safe and highly effective. One
place to look for clues to such agents is in normal physiology. The
gastrointestinal (GI) tract is an important source of bioactive
agents that have various roles in nutrient assimilation, coordinat-
ing the regulation of digestive processes, motility, absorption and
even appetite control. GI hormones and neuronal transmitters
have even been implicated in some of the successful outcomes of
bariatric surgery.6

CHOLECYSTOKININ PHYSIOLOGY
One GI hormone that was recognized as having a role in appetite
control is cholecystokinin (CCK).7 This is a peptide hormone
synthesized and secreted from neuroendocrine I cells scattered
along the proximal two-thirds of the small intestine.8 It is released
in response to luminal nutrients, with fat and protein most potent.
Physiological effects of this hormone are to stimulate pancreatic
exocrine secretion and gall bladder contraction that are so critical
for digestion of these nutrients, regulation of gastric emptying and
bowel transit to titrate the delivery of nutrients so as not to
overwhelm the gut digestive and absorptive machinery, and even
stimulation of satiety centers in the brain as a result of acting on
receptors expressed on vagal afferent neurons.9,10
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CHOLECYSTOKININ AND SATIETY
In a classical series of studies by Gibbs et al.11 in 1973, CCK was
shown to reduce food intake when administered to rats. This
observation was subsequently reproduced in various species,
including humans.12 In addition, this effect was also observed for
peptoid13 and non-peptidyl CCK-like agonists.14 The type 1 CCK
receptor (CCK1R), a class A G protein-coupled receptor, became a
very popular target for the pharmaceutical industry to focus on for
the development of non-caloric satiety agents in the form of CCK-
like agonists.10,15,16 Indeed, multiple companies were successful in
developing small-molecule CCK agonists, with some of these
agents entering into clinical trials.17–20 Whereas those candidates
that had been shown to be quite active in vitro in cell studies and
in vivo in animal studies were also shown to reduce food intake in
human clinical trials, these drugs were no better than acute
dieting, the requirement that the Food and Drug Administration
had in place for the approval of a diet drug. None of these agents
advanced to being approved for clinical use. This decision was
probably also contributed to by concerns about on-target side
effects and potential toxicity for CCK1R-active agonists, particu-
larly associated with the most potent and long lasting of these
agents. Some of these drugs had a tendency to induce abdominal
cramping, nausea and diarrhea, all explained by physiologic
effects of this hormone. In addition, there has been a concern
about potential induction of pancreatitis, with CCK (caerulein)
hyperstimulation being a prominent investigative strategy to
induce experimental pancreatitis in rodents,21 and the trophic
effect of this hormone to stimulate pancreatic cell growth,22,23

with concern about induction and/or progression of pancreatic
cancer. These toxic effects have not been observed in clinical trials
with these drugs. The pancreatitis is likely species-specific, as the
rodent pancreatic acinar cells express large numbers of CCK1Rs,
whereas the human pancreatic acinar cells express few, if any, of
these receptors.24–26

ALLOSTERIC MODULATION OF RECEPTORS
A different pharmacologic strategy that may overcome all of these
concerns has come into popularity recently. This involves
receptor-active drugs acting via allosteric modulation,27 rather
than acting at the orthosteric site of action of the natural agonists
of specific receptor targets. This approach has the advantage of
increased selectivity, as allosteric modulators act at evolutionarily
less well-conserved sites within the receptor.28 They also can
possess a subset of biological actions of the natural agonist,28 and
can even exhibit no intrinsic agonist activity at all.29 Their
modulatory role can be positive, negative or even neutral as
well.27,28 In thinking about this broad spectrum of activity, it is
intriguing to imagine the unique utility of a positive allosteric
modulator (PAM) of the CCK1R with no intrinsic agonist activity.
Such an agent would only act for a short and finite period of time
after ingestion of a meal, when nutrients start to empty into the
duodenum and are able to stimulate an increase in CCK levels.
This hormone has a very short half-life in the circulation, measured
in minutes.30 This is also the ideal time to stimulate a satiety
response when it would be able to limit the size of the meal
ingested. Because of the short duration of action of CCK when the
physiological hormone needs to be active, accentuation of that
response might increase appetite suppression, while not being
overly stimulatory and certainly not acting over a longer duration
of time that might be associated with trophic effects.31–33

CHARACTERIZATION OF THE ORTHOSTERIC NATURAL PEPTIDE
LIGAND-BINDING SITE
As a first step toward the development of an allosteric modulator,
it is important to understand how the orthosteric natural agonist

binds and acts at its receptor. CCK, like most peptide hormones,
approaches the CCK1R from outside the membrane. This peptide
is hydrophilic and cannot cross the lipid bilayer without pore
induction or use of detergents. The binding site for this hormone
at the CCK1R, its physiological target for induction of satiety,8 is at
the external surface of the lipid bilayer, with contributions by the
amino-terminal tail and extracellular loop regions of this
receptor.34 This has been established by receptor mutagenesis
and chimeric receptor analysis,34,35 as well as by the direct
approach of intrinsic photoaffinity labeling of receptor residues in
spatial approximation with residues within the natural peptide
ligand.36 With the pharmacophoric region of CCK that is
responsible for activity at the CCK1R representing the carboxyl-
terminal heptapeptide amide, photoaffinity labeling of this
receptor has been successful with probes incorporating a
photolabile site of crosslinking at six of these seven positions
within this portion of the peptide, as well as just beyond this
region at the peptide amino terminus.37 All of these points of
experimentally established spatial approximation with specific
residues within the CCK1R have been accommodated into
working models of the CCK-occupied CCK1R.36 This has even
been further constrained with a series of fluorescent analogs of
CCK and use of fluorescence resonance energy transfer with a
series of fluorescently tagged CCK1R constructs to elucidate and
apply 12 distance constraints to this model.38 Of note, the
carboxyl-terminal end of CCK in this model resides adjacent to the
amino-terminal tail of the receptor, whereas it dips into the bilayer
within the helical bundle in a competing model that was based
exclusively on indirect effects of mutagenesis.39 This becomes
particularly important as the region in which this end of the
peptide resides in the alternate model would interfere with the
small-molecule-binding site that could be the site of action of
allosteric modulators.39

CHARACTERIZATION OF THE SMALL-MOLECULE LIGAND-
BINDING POCKET
The small-molecule-binding site within the helical bundle has
been directly mapped as well. This was achieved with photo-
affinity labeling using 14C-labeled benzodiazepine agonist and
antagonist ligands.40 It was also confirmed using fluorescence
quenching of ligand binding41 and the impact of receptor
mutagenesis on ligand binding.42,43 The allosteric nature of this
small-molecule-binding site was further confirmed using pharma-
cologic analyses, including the kinetics of ligand dissociation and
the impact of orthosteric and possible allosteric ligands on the
functions of each other.42–44

Radioiodinated small-molecule CCK1R ligands have been
developed45,46 that provide a means for direct displacement from
this allosteric pocket to establish the molecular basis for the
binding of small-molecule ligands. This was successfully applied to
antagonist ligands to gain insights into the inactive conformation
of this pocket. This effort included not only the docking of a single
benzodiazepine antagonist ligand, but also a ligand-guided
computational approach using many molecules that have been
reported and that reside in public databases to gain more general
understanding of this pocket.42,43 This molecular model has
substantial predictive power, with the model being able to
distinguish ligands of this receptor from those of other receptors,
and it was even able to very effectively distinguish ligands binding
to the CCK1R from those binding to the very closely related type 2
CCK receptor (CCK2R).
A unique small-molecule ligand that is an agonist at the CCK1R

and an antagonist at the CCK2R provided a very powerful tool to
apply similar techniques to the active conformation of this same
allosteric pocket.47 This, too, was used in a ligand-directed
computational effort to generalize our understanding of the
active conformation of this pocket.43 It also provided molecular
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insights into the determinants of biological activity, with evidence
for a key interaction between a ‘trigger functionality’ within a
benzodiazepine agonist and the receptor residues it likely
interacts with.20 Once again, this model had great predictive
power, being able to effectively distinguish CCK1R agonists from
CCK1R antagonists.43 This has provided clear evidence of the
differences in the shape of this pocket when in inactive and active
conformations.

DEVELOPMENT OF A CCK1R PAM WITHOUT INTRINSIC
AGONIST ACTIVITY
A number of strategies are possible to identify and/or develop a
PAM without intrinsic agonist activity. It is possible that one or
more of the existing small-molecule agonist ligands already has
PAM activity. This needs to be explored. If so, the molecular basis
of that ligand could be examined using analogous approaches to
those described above, with the resulting model contrasted with
the active and inactive conformations of this pocket, with this
ultimately utilized in an in silico drug discovery ligand-screening
effort. Similarly, if such an agonist with PAM activity were
identified, the ‘agonist trigger’ could be modified in a medicinal
chemical approach to modification of such a ligand in a drug
development effort. Finally, a high-throughput screening effort
would be possible. It is important to recognize that most, if not all,
of the efforts to develop CCK1R-active drugs for appetite control
that were utilized previously were designed to seek full agonists
and would have almost certainly missed PAMs having no intrinsic
agonist activity.

LATERAL ALLOSTERISM OF MEMBRANE RECEPTORS
Just as drugs can act as guest allosteric modulators, there is also a
phenomenon that has been called lateral allosterism in which
interacting membrane proteins or lipids within the bilayer can also
act as allosteric modulators of a membrane receptor, such as a G
protein-coupled receptor.48 Indeed, the first indication that this
could be relevant to the CCK1R came from a set of observations in
patients with cholesterol gallstones.49 It was shown that gall
bladders from such patients had abnormal contractile responses
to CCK.49 In contrast, gall bladders from patients having pigment
gallstones had normal responses to this hormone.49,50 A major
difference between these two clinical settings is the presence of
supersaturated cholesterol in lithogenic bile.51 It was postulated
that the cholesterol could get into the membrane and be
responsible for the gall bladder muscle dysfunction.52 Indeed,
direct quantitation of the level of cholesterol in the membrane of
gall bladder smooth muscle cells in patients with cholesterol
gallstones was found to be elevated, and extraction of the
cholesterol from these cells resulted in normalization of the
contractile response to CCK.52,53 In addition, an animal model in
which prairie dogs were fed high-cholesterol diets and then went
on to develop cholesterol gallstones exhibited all the same
features, with increased gall bladder membrane cholesterol,
abnormal CCK responsiveness and normalization upon extraction
of the cholesterol.54

IMPACT OF MEMBRANE CHOLESTEROL ON CCK1R STRUCTURE
AND FUNCTION
A series of studies was done in model cell systems in which the
CCK1R could be expressed and the molecular mechanism of the
impact of the cholesterol could be studied.55,56 In these studies,
the impact of the cholesterol was reproduced, with elevated
cholesterol resulting in higher-affinity CCK binding and lower
signaling responsiveness to CCK (Figure 1).56 This was shown to be
specific to the CCK1R, with the CCK2R being resistant to the
deleterious effects of cholesterol.56 It is helpful to think about the

CCK1R as having three dominant domains, the extracellular
domain where the natural peptide ligand binds, the intracellular
domain where the heterotrimeric G protein interacts with the
receptor, and the intramembranous core helical bundle domain in
which a network of hydrogen bonds helps to stabilize conforma-
tions and to mediate conformational changes associated with
agonist binding and activation (Figure 2). Clearly, the impact of
the cholesterol is to cause a conformational change in this
receptor that renders the latter domain dysfunctional. In that
situation, CCK binds with higher than normal affinity, yet the G
protein is not stabilized in a receptor-associated state where its
activation can be initiated. This suggests that the major defect
when expressed in a high-cholesterol membrane environment is
in the transduction function of the core helical bundle of this
receptor.
A number of tools have been developed to help provide

additional insights into this abnormal state of the CCK1R in a high-
cholesterol environment. Methods to increase the cholesterol in
the cell membrane using methyl-β-cyclodextrin–cholesterol com-
plex or LDL were established and applied to CCK1R-bearing cells.56

Cells in which mutations in the lipid synthetic machinery were
present and that resulted in elevated cholesterol were further
engineered to express the CCK1R.57 In addition, a CCK1R mutant
affecting a residue at the bottom of TM3, near the DRY ionic lock
mechanism and involving a cholesterol-binding motif, was shown
to have all of the structural and functional effects typical of the
wild-type CCK1R in a high-cholesterol environment.55 This turned
out to be a very powerful new tool. It could be used in analogous
approaches to that used to characterize the allosteric pocket in
agonist and antagonist modes, to try to characterize the abnormal
pocket in the setting of elevated membrane cholesterol. Indeed,
this was done and it showed that this pocket was in a different
conformation than either the agonist or antagonist pockets in a
normal membrane.55 This raised the extremely interesting
possibility that unique drugs would have to be developed for
this situation.

MEMBRANE CHOLESTEROL COMPOSITION IN OBESITY
It is noteworthy that cellular and membrane cholesterol have
been reported to be elevated in obesity and metabolic
syndrome.58,59 If this holds true, it is possible that certain
patients who likely are quite advanced along the clinical
continuum that starts with tendency toward mild weight gain
and dieting, and moves toward obesity and metabolic syndrome
have enough excess cholesterol in their cell membranes to
interfere with the CCK satiety servomechanism (Figure 1). It is
possible that these patients will need a ‘corrective PAM’ without
intrinsic agonist activity, representing a second drug, to
complement the PAMs without intrinsic agonist activity that
act at the normal receptor in a normal membrane environment.
It will ultimately be important to determine whether this
situation of an abnormal CCK1R conformation really exists
clinically, and if so, which patients would benefit from and/or
require a second type of drug.
The location of the relevant CCK1R for the treatment of

obesity is believed to be on vagal afferent neurons.10 Activation
of this receptor has been shown in experimental models to
result in stimulation of a variety of central nervous system
nuclei, including the nucleus of the solitary tract that is involved
in appetite control.60–62 Unfortunately, direct characterization of
this receptor in intact human subjects is difficult or impossible.
Such an analysis will require creative approaches to establish the
sensitivity of this particular receptor to CCK and to determine
whether the abnormal CCK stimulus–activity coupling observed
on the gall bladder muscle cells in the setting of cholesterol
gallstone disease and in vitro in model cells with elevated
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membrane cholesterol might also be relevant to the vagal
afferent receptors.
The true test will ultimately require the development of drugs,

such as are discussed above, with activity to act as a ‘corrective
PAM’ without intrinsic agonist activity at the CCK1R, which can

also gain access to the vagal afferent receptors. These can be
tested in clinical trials to determine whether they are active at the
physiologically relevant target and whether this treatment will be
useful to facilitate weight reduction in patients far along the
clinical continuum toward obesity and metabolic syndrome.

Figure 2. Strategy for correcting abnormal stimulus–activity coupling at the CCK1R. When the CCK1R is present in a normal membrane
microenvironment and functions normally, such as in normal weight people or those with a tendency to gain weight who are at the early
stages of this clinical continuum, there could be clinical benefit from a PAM devoid of intrinsic activity that might augment CCK-stimulated
satiety responses (left). In the later stages of this continuum when people become obese and may have metabolic syndrome, and in which
CCK1R stimulus–activity coupling can be compromised because of the presence of high membrane cholesterol, a ‘corrective PAM’ might be
beneficial, and perhaps even necessary, to recalibrate the function of the CCK1R (right).

Figure 1. CCK1R dysfunction in the obesity continuum. Shown is the CCK1R dysfunction in the clinical continuum that initially starts with
susceptibility to gain weight, and eventually leads to obesity and metabolic syndrome. In the earlier stages, CCK1R exhibits normal binding
and stimulus–activity coupling, whereas during the later stages there is a significant increase in membrane cholesterol, which results in an
increased binding affinity, but reduced G protein coupling efficiency, with 22.5-fold more receptors required to achieve the same half-maximal
response. Dotted lines indicate the IC50 and EC50 values at normal and high levels of membrane cholesterol, respectively.
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CONCLUSIONS
CCK is a physiologically important GI peptide hormone with
multiple actions that support nutritional homeostasis, including
the stimulation of satiety after a meal when nutrients that
stimulate its release enter the proximal small intestine. The potent
and prolonged activation of the CCK1R on vagal afferent neurons
by full agonists of the CCK1R carries the risk of side effects and
toxicity that can potentially be circumvented and avoided
by drugs acting as PAMs without intrinsic agonist activity at this
receptor. These agents would only be active during a finite
and physiologically relevant point in time when CCK action
could be augmented to limit the size of the meal being ingested.
The case is developed that different types of PAMs without
intrinsic agonist action might be necessary to serve the full clinical
continuum in which early on, when people are struggling
to maintain a normal weight, a simple such drug would suffice,
while later in this course, when people might be obese with or
without metabolic syndrome, their CCK1R conformation and
stimulus–activity coupling might be so abnormal that a ‘corrective
PAM’ might be necessary. It is possible that both of these
activities might be satisfied by the same drug, but currently no
agents with such actions have yet been recognized. It will be
critical to develop and evaluate these types of drugs in an effort to
address the particularly difficult and refractory public health
problem of obesity, with its extensive disease associations and
comorbidities.
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