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Bariatric surgery and obesity: influence on the incretins
B Laferrère

The gut hormone incretins have an important physiological role in meal-related insulin release and post-prandial glucose control. In
addition to weight loss, the incretin hormones have a role in glucose control after bariatric surgery. The release of incretins, and
specifically of glucagon-like peptide (GLP)-1, in response to the ingestion of nutrients, is greatly enhanced after gastric bypass
(RYGBP). The rapid transit of food from the gastric pouch to the distal ileum is responsible for the greater GLP-1 release after RYGBP.
The incretin effect on insulin secretion, or the greater insulin response to oral glucose compared to an isoglycemic intravenous
glucose challenge, is severely impaired in patients with type 2 diabetes, but is recovered rapidly after RYGBP. The improvement in
insulin secretion rate and β-cell sensitivity to oral glucose after RYGBP is mediated by endogenous GLP-1, and is abolished by
exendin 9–39, a specific GLP-1 receptor antagonist. While calorie restriction and weight loss have major effects on the rapid and
sustained improvement of fasted glucose metabolism, the enhanced incretin effect is a key player in post-prandial glucose control
after RYGBP.
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INTRODUCTION
The intestinal hormone incretins, glucagon-like peptide 1 (GLP-1)
and glucose-dependent insulinotropic peptide (GIP) are respon-
sible for 50% of post-prandial insulin secretion and have an
important role in the physiology of glucose metabolism.1 Surgical
weight loss, a treatment of choice for severely obese individuals, is
accompanied by the resolution or improvement of type 2
diabetes.2,3 The predictors of diabetes remission after bariatric
surgery include shorter diabetes duration, the type of surgical
procedure and the amount of weight loss post-surgery.4–6

However, improvement in glucose control after RYGBP or VSG
occurs rapidly, and may involve mechanisms independent of
weight loss.7,8 Past studies suggest that some hormonal gut
signals, including GLP-1 and gut-brain neuronal pathways, could
be responsible for glucose control, independent of weight loss.
Here, the evidence for a role of GLP-1 in glucose control after
RYGBP will be reviewed, and its limitations discussed.

IMPORTANCE OF THE INCRETIN EFFECT IN PHYSIOLOGY
The incretin effect
The incretin effect is the greater insulin response to oral glucose
compared to an isoglycemic intravenous glucose load. Two
hormones, GLP-1 and GIP, secreted by gut endocrine cells in
response to nutrient ingestion, are responsible for the incretin
effect, that is, the enhancement of glucose-stimulated insulin
secretion (GSIS).9,10 In 1870, Claude Bernard was the first to
discover that glucose tolerance was better after an oral glucose
load than after an intravenous glucose load; he thought the liver
was responsible for uptake of glucose after ingestion, to prevent
hyperglycemia. La Barre and Heller11 identified the glucose-
lowering properties of duodenal extracts when administered
intravenously, and La Barre named it ‘incretin’. Once radio-
immunoassays became available12 the incretin effect was

characterized. McIntyre showed that a rapid infusion of 60 g of
glucose in the jejunum of one man resulted in a much greater
insulin response compared to the intravenous administration of
an equivalent glucose load, despite of lower glycemic levels after
the jejunum infusion. McIntyre concluded that factors other than
arterial glycemia must be responsible for insulin secretion.13 The
incretin effect was soon quantified, with a ~ 40% greater insulin
release after oral compared to a matched intravenous glucose
load in healthy normal weight and obese subjects.9 About 30
years after the term ‘incretin’ was coined, GIP was identified as one
of the main incretins. Its original name, gastric inhibitory peptide,
referring to the pharmacological role of the peptide to decrease
acid secretion, was later changed to glucose-dependent insulino-
tropic peptide, to reflect its physiological incretin effect. About 10
years later, GLP-1 was isolated and recognize as a key incretin.14

Thus the incretin effect, the augmented response of insulin after
oral glucose compared with matched intravenous glucose, or the
enhancement of GSIS, is mediated by the two incretin hormones
GLP-1 and GIP, released from gut endocrine cells in response to
meals and acting on the β-cell to stimulate insulin secretion.15

GIP and GLP-1
The release of the incretins GIP and GLP-1 is proportional to the
calorie load, with fat and carbohydrate providing the main
stimulants.16–18 GIP and GLP-1 are responsible for maintaining
euglycemia in spite of highly variable oral loads. The concentra-
tion of post-prandial circulating incretins is ~ 30 pM for GLP-1 and
300 pM for GIP. Incretin circulating concentrations are often not
different between lean, obese and individuals with type 2
diabetes.19 However, the incretin effect on insulin secretion is
blunted in patients with diabetes.17,20 The administration of
exogenous pharmacological doses of GLP-1, or of GLP-1 analogs,
restores insulin secretion and lowers blood glucose in patients
with diabetes. The effect of GIP on insulin secretion can be
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restored after lowering glycemia.21 Both GLP-1 and GIP have a
trophic effect on the β-cell, as demonstrated in vitro and in vivo in
rodent studies.22–25 GLP-1 has other important physiological
effects, including potentiation of GSIS in the post-prandial setting,
suppression of glucagon, slowing of gastric emptying, decrease of
body weight and favorable cardiovascular protection,1,26 that
makes it an attractive tool for the treatment of overweight or
obese individuals with diabetes. The half-life of GLP-1 and GIP is
only few minutes and both incretins are rapidly inactivated by the
enzyme dipeptidyl peptidase 4 (DPP-4). DPP-4 inhibitors and long-
acting GLP-1 analogs are now used in clinical practice to treat
diabetes, and GLP-1 analogs were recently approved for by the
Food and Drug Administration for weight loss (2014; Table 1).

RYGBP ALTERS INCRETIN PHYSIOLOGY
RYGBP enhances incretin release
With the availability of commercial kits for measuring GIP and
GLP-1, publications reporting incretin levels after RYGBP abound
(Table 2). Circulating concentrations of GLP-1 and GIP increase
after a mixed meal and/or an oral glucose load, by a factor 10 and
1.5, to reach peak levels of ~ 100 and 300 pM, respectively, after
RYGBP. The effect of RYGBP on GLP-1 is robust 27 and reported in
many studies (Table 2). In over 100 participants studied after
RYGBP, all were ‘responders’ and had large increase in GLP-1 after
either a meal test or glucose tolerance test. The enhancement of
GLP-1 is sustained many years after RYGBP, although the
magnitude of GLP-1 levels may vary overtime.28 The effect of
RYGBP on GIP is less consistent. GIP was shown to either
increase,29 not change or decrease,30–32 after RYGBP. GIP is
secreted from the upper gastrointestinal tract, part of which is
bypassed after RYGBP. The difference in GIP levels after RYGBP
among studies may be related to variation in surgical techniques
with different lengths of the bypass segment or bilio-pancreatic
limb, or to diabetes status of study subjects.

The rate of delivery of the nutrients to the lower intestine is the
main trigger of greater release of GLP-1 after RYGBP.33–35 RYGBP
surgical procedure involves the creation of a small gastric pouch
(~30 ml) and a gastrojejunal anastomosis, resulting in the shunting
of the larger part of the stomach, pylorus, duodenum and upper
jejunum from ingested food. Gastric emptying of liquid is
accelerated after RYGBP33,36–38 and GLP-1 peak levels correlate
positively with measures of gastric pouch emptying.33 The
enhanced GLP-1 release after RYGBP is blunted if the meal is
administered directly in the gastric remnant39,40 or at a slow rate
directly in the jejunal alimentary limb.41

Recovery of the incretin effect after RYGBP
The incretin effect, blunted in patients with type 2 diabetes,20 was
shown to increase to levels of normal glucose tolerant individuals
1 month after RYGBP in patients who underwent diabetes
remission.29 However, the incretin effect was not restored in
weight-matched subjects who underwent equivalent 10% total
weight loss by calorie restriction, demonstrating that the
improvement in the incretin effect after RYGBP is weight loss
independent.7 The release of incretins GLP-1 and GIP, and the
recovery of the incretin effect, persists years after surgery in
patients in diabetes remission (Laferrère, unpublished). So,
interestingly, very elevated incretin levels are associated with
normalization of the incretin effect after RYGBP. This raises the
question of relative β-cell insensitivity to the incretins after the
surgery. However, the insulinotropic effect of GIP and GLP-1 is
preserved in patients with normal glucose tolerance after
RYGBP.42 Whether this is also true in patients with diabetes
is unknown.

Trophic effect of GLP-1 on the β-cell
GLP-1 has been shown to have a trophic effect on the pancreas
in vitro and in rodent models.22–25 A recent study in pigs showed
increased islet number and β-cell proliferation after RYGBP, in
parallel with a rise in GLP-1, demonstrating the effect of RYGBP on
the plasticity of the endocrine pancreas in this animal model.43

Whether this is true in humans is unknown. It is legitimate to
hypothesize that the chronic and sustained elevation of post-
prandial GLP-1 after RYGBP28,44 could have a long-term trophic
effect on the human β-cells in vivo; however, this is unknown.
However, there is little evidence that chronic use of GLP-1 analogs,

Table 1. Physiological effect of GLP-1 and GIP

GIP GLP-1

Peptide, AA 42 30/31
Released from Duodenum (K cells) Distal bowel,

colon (L cells)
Circulating concentrations 60 pmol/l

(200–500 pmol l− 1)
5–10 pmol l− 1

(20–40 pmol l− 1)
NH2-inactivation/DPP-4 + +

Effect on beta cell
GSIS ↑ ↑↑
Glucose sensitivity ? ↑
Insulin biosynthesis ↑ ↑
Differentiation of
precursors

↑ ↑

Apoptosis ↓ ↓
Alpha-cell/glucagon
secretion

↔ /↑ ↓

Gastric emptying ↔ ↓↓
Food intake ↔ ↓
Body weight ↔ ↓
Additional effects
Neuroprotection ↑ ↑
Cardioprotection ? ↑
Renal (diuresis, natriuresis) ? ↑
Bone formation ↑ ↔
Response to T2DM Defective/preserved

under normoglycemia
Preserved

Abbreviations: AA, amino-acids; DPP-4, dipeptidyl peptidase inhibitor; GIP,
glucose-dependent insulinotropic peptide; GLP-1, glucagon-like peptide 1;
GSIS, Glucose-stimulated insulin secretion; T2DM, type 2 diabetes.

Table 2. Change of GLP-1 and GIP after bariatric surgery

Reference Surgery Obese/T2DM Stimulus GLP-1 GIP

Sarson,71,72 RYGBP OB Meal ↓
Halverson73 RYGBP OB OGTT ↑
Sirinek69 RYGBP OB OGTT ↓
Naslund74 JIB OB Meal ↑ ↑
Verdich75 Diet 19 OB/ 12 lean Meal ↑ ↓
Valverde76 BPD/VBG OGTT ↑
Korner77 RYGBP OB/Lean Meal ↑ ↓
Borg78 RYGBP OB Meal ↑
Morinigo33 RYGBP OB Meal ↑
Laferrère29 RYGB OB/T2DM OGTT ↑ ↑
Jorgensen79 RYGB OB/T2DM/NGT Meal ↑ —

Jacobsen80 RYGB OB OGTT ↑ —

Romero81 VSG/RYGB OB/T2DM Meal ↑ ↑
Mallipedhi82 SG/BPD IGT/T2DM OGTT ↑ ↓
Plourde83 BPD T2DM/NGT Meal ↑ ↓
Kim32 RYGBP Lean T2DM OGTT ↑ ↓

Abbreviations: BPD, bilio-pancreatic diversion; IGT, impaired glucose tolerant;
JIB, jejuno-ileal bypass; OB, obese; OGTT, oral glucose tolerance test;
NGT, normal glucose tolerant; RYGBP, Roux-en-Y gastric bypass surgery;
VBG, vertical banded gastroplasty; VSG, vertical sleeve gastrectomy.
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in patients with type 2 diabetes, restores and/or prevents the
deterioration of β-cell function.45 Some cases of severe hypogly-
cemia have been associated with nesidioblastosis after RYGBP.46

The neuroglycopenia can be prevented by exendin 9–39, a
specific GLP-1R antagonist.47 The association of nesidioblastosis
and RYGBP, and the documented effect of endogenous GLP-1 in
the control of post-prandial glucose, together with animal data,
suggest, but do not prove, that GLP-1 may, with other growth
factors yet to be identified, be involved in the stimulation of islet
growth after RYGBP. However, this remains speculative. More
long-term clinical studies of β-cell function coupled with improved
tools for imaging the pancreas are needed, as well as post-mortem
studies of the pancreas after RYGBP.

ANTAGONISM OF GLP-1 PREVENTS THE IMPROVEMENT IN
Β-CELL FUNCTION AFTER RYGBP
The main effect of the incretins is enhancement of GSIS.
To identify the role of endogenous GLP-1 in the amelioration of
impaired β-cell function after RYGBP, the specific GLP-1 receptor
antagonist exendin 9–39 has been used in four cross sectional48–51

studies and one short-term longitudinal52 study in post-RYGBP
patients. Exendin 9–39 completely blunts the recovery of β-cell
glucose sensitivity (BCGS) 1 week and 3 months after RYGBP,52

and worsens post-prandial glucose tolerance, although only
minimally.49 Exendin 9–39 suppresses insulin secretion in
response to a meal by 50%49,50 and corrects the profound
reactive hypoglycemia in patients with severe neuroglycopenia.50

Thus, clearly, the exaggerated GLP-1 response to ingestion of food
or glucose has a key role in post-prandial insulin secretion and
glycemic control after RYGBP. But, whether it is the main factor
driving the high rate of diabetes remission after RYGBP is perhaps
less clear.47,53–57

LIMITS OF THE ROLE OF GLP-1 IN T2DM REMISSION AFTER
RYGBP
Diabetes relapse
There is little evidence that GLP-1 is important for long-term
sustained diabetes remission after RYGBP. Although GLP-1 levels
remain elevated years after the surgery, diabetes relapse occurs in
a large percentage of patients. In the Swedish Obese Subjects
(SOS) study, the high rate of diabetes remission at 2 years, 72.3%,
drops to 38.1% at 10 years and 30.4% at 15 years.58 In another
study, based on retrospective review of electronic charts, one third
of patients, who initially went into diabetes remission after RYGBP,
relapsed within 5 years.6

Lessons from rodent models
Although data in humans and pigs support a role for GLP-1 in
controlling glucose metabolism after RYGBP, experiments with
knock-out animal models challenge the role of GLP-1 in the
control of body weight and glucose after RYGBP or vertical sleeve
gastrectomy (VSG). Berthoud et al.59 showed that obese GLP-1R-
deficient mice lost the same amount of body weight and fat mass
and maintained similarly lower body weight compared with
wild-type mice after a RYGBP-like procedure.59 GLP-1 levels are
also enhanced after VSG in humans60 and rodents,61 and are
thought to be a mediator of diabetes remission after this
surgery.62 However, VSG-operated GLP-1R-deficient mice respond
similarly to wild-type controls in terms of body weight loss,
improved glucose tolerance, food intake reduction, and altered
food selection.63 These data demonstrate that GLP-1 receptor
activity is not necessary for the metabolic improvements induced
by VSG or RYGBP surgery in these animal models. As these
experiments were conducted in whole body knockouts from birth,
developmental compensation could be a reason for these

conflicting results. The relevance of these knockout experiments
to clinical observations is therefore unclear.

Small and identical improvement in β-cell response to IV glucose
after RYGBP and caloric restriction
To assess β-cell function, BCGS and the disposition index (DI),
or the simplified relationship between insulin secretion and insulin
sensitivity, were measured. Both measures were calculated using
data from an oral glucose load and from a matched isoglycemic IV
glucose load, collected on separate days, in patients with type 2
diabetes and severe obesity. Data were collected before surgery,
and at one month, then yearly for three years after RYGBP. Prior to
surgery, BCGS after either an oral or an IV isoglycemic glucose
challenge, was, as expected, significantly impaired in patients with
T2DM compared to lean controls, and to obese controls with
normal glucose tolerance (NGT), matched for BMI. After RYGBP, all
patients were in diabetes remission (HbA1C o6.5%, fasting
glucose o7.0 mmol l− 1 (or 126 mg dl− 1), on no diabetes
medications). The BCGS and DI measured with the oral glucose
test parameters improved rapidly at 1 month and normalized to
the levels of the lean and the obese NGT controls at one year.64

However, BCGS and DI measured after IV glucose administration
improved only minimally and remained greatly impaired com-
pared to that of the lean and obese NGT non-operated controls.64

This experiment highlights the role of the incretins and other gut-
mediated factors in the amelioration of β-cell response to oral
nutrients after RYGBP. It also clearly shows a persistent β-cell
defect that cannot be rescued with an IV glucose challenge,
3 years after the surgery, even in persons who are in clinical
diabetes remission. In humans, there is no evidence to date for a
full recovery of β-cell function to IV stimuli after RYGBP.64 This
goes against a trophic role of GLP-1 on human β-cell after RYGBP.
Weight loss by either calorie restriction65,66 or by RYGBP67,68

improves insulin sensitivity. In a separate study, individuals
studied before and after RYGBP were compared to individuals
studied before and after an equivalent 10% weight loss by caloric
restriction, with or without laparoscopic adjustable gastric
banding (LAGB). BCGS and DI after IV glucose stimulus improved
significantly and similarly after the two modes of weight loss.
Others also have shown that a matched 20% weight loss by either
RYGBP or adjustable gastric banding (LAGB) result in similar
improvement of insulin sensitivity.67,68 These data demonstrate
that the amount rather than the method of weight loss is
important for the increase in insulin sensitivity. However, the
greater improvement in β-cell function measured during an oral
glucose challenge, after RYGBP compared with diet weight loss 7,69

underscores the importance of the engagement of the gut and the
incretin effect, rather than weight loss, in the metabolic response to
nutrient ingestion after RYGBP.70

CONCLUSION
Surgical weight loss is associated with a remarkably high rate of
type 2 diabetes remission. Decreased calorie intake and weight
loss, together with β-cell reserve, are likely to be the major
determinants of long-term glucose control after any bariatric
surgery. The effect of bariatric surgery on insulin sensitivity is
highly dependent on weight loss. The effect of the incretin
hormones on post-prandial insulin secretion and glucose control is
amplified after RYGBP, as a result of the accelerated transit of
ingested nutrients. The enhanced GLP-1 secretion rescues β-cell
function during meals, independent of weight loss, after RYGBP.
The incretin effect, observed only during meals, may only have a
limited role in diabetes remission after RYGBP. Future studies may
shed light on the link between other factors such as bile acids, gut
microbiota, gut remodeling and the incretins with weight and
metabolic outcomes after RYGBP.
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