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Does gastric bypass surgery change body weight set point?
Z Hao, MB Mumphrey, CD Morrison, H Münzberg, J Ye and HR Berthoud

The relatively stable body weight during adulthood is attributed to a homeostatic regulatory mechanism residing in the brain which
uses feedback from the body to control energy intake and expenditure. This mechanism guarantees that if perturbed up or down
by design, body weight will return to pre-perturbation levels, defined as the defended level or set point. The fact that weight
re-gain is common after dieting suggests that obese subjects defend a higher level of body weight. Thus, the set point for body
weight is flexible and likely determined by the complex interaction of genetic, epigenetic and environmental factors. Unlike dieting,
bariatric surgery does a much better job in producing sustained suppression of food intake and body weight, and an intensive
search for the underlying mechanisms has started. Although one explanation for this lasting effect of particularly Roux-en-Y gastric
bypass surgery (RYGB) is simple physical restriction due to the invasive surgery, a more exciting explanation is that the surgery
physiologically reprograms the body weight defense mechanism. In this non-systematic review, we present behavioral evidence
from our own and other studies that defended body weight is lowered after RYGB and sleeve gastrectomy. After these surgeries,
rodents return to their preferred lower body weight if over- or underfed for a period of time, and the ability to drastically increase
food intake during the anabolic phase strongly argues against the physical restriction hypothesis. However, the underlying
mechanisms remain obscure. Although the mechanism involves central leptin and melanocortin signaling pathways, other
peripheral signals such as gut hormones and their neural effector pathways likely contribute. Future research using both targeted
and non-targeted ‘omics’ techniques in both humans and rodents as well as modern, genetically targeted, neuronal manipulation
techniques in rodents will be necessary.
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INTRODUCTION
Gastric bypass and other bariatric surgeries are the most effective
treatment option for obesity and its associated comorbidities such
as diabetes, cardiovascular disease, sleep disturbances and certain
cancers. Although serious complications can occur, most patients
report significant improvements in general health and quality of
life, and there is an intensive search for the mechanisms
underlying these beneficial effects. A key observation is that the
large weight loss after gastric bypass surgery does not seem to
make patients hungrier and hypo-metabolic, responses typically
seen after calorie restriction-induced weight loss. Instead, many
gastric bypass patients seem both psychologically and physiolo-
gically ‘at ease’ with their reduced body weight. The surgery
seems to have reprogrammed the defended body weight at a
lower level. In this non-systematic review, we highlight recent
observations in rodent models of bariatric surgery that support
the notion of resetting the level of defended body weight and
discuss potential underlying mechanisms.

BEHAVIORAL EVIDENCE FOR RYGB-INDUCED CHANGE IN
DEFENDED BODY WEIGHT
Given the remarkable constancy of body weight over the adult
lifespan, the concept of a homeostatically controlled body weight
set point was introduced decades ago.1,2 The basic concept is that
a certain level of body weight (often referred to as the set point) is
actively defended through a neural mechanism that uses
feedback from the body to control energy intake and expenditure.
Although the definition of set point has been debated over the

years (for example, refs 3–5), it is now generally agreed that the
set point is not ‘set in stone’, but rather is flexible and adaptable,
taking into account essential biological and environmental
circumstances such as pregnancy, season and long-term nutrient
availability.6 In this review, the terms ‘set point’ and ‘level of
defended body weight’ are used interchangeably without
implying a defined underlying mechanism.
Because bariatric surgeries result in drastic reductions of food

intake and weight loss, it is a commonly held view that they at
least partially restrict total food intake in a non-physiological way.
When these surgeries were pioneered decades ago, simple
physical restriction of food intake and some malabsorption may
have been intended, but resetting the defended body weight to a
lower level clearly is a more physiological and thus preferred
mechanism. Defense of a certain body weight can be ascertained
by observing the metabolic and behavioral reactions to experi-
mental perturbations usually accomplished by transient over- or
underfeeding.7,8 In our rat model of RYGB,9,10 we have used
chronic intracerebroventricular infusion of the melanocortin
receptor antagonist SHU9119 to stimulate food intake.11 As shown
earlier,12 SHU9119 powerfully stimulates food intake and over a
2-week infusion period results in significant weight gain and
obesity in normal, chow fed as well as high-fat fed rats,11

reminiscent of rats and mice with MC4R deficiency.13,14 Impor-
tantly, when the antagonist infusion was halted, rats gradually
returned to their pre-infusion body weight, thus demonstrating
the concept of defense of their lower body weight. We thus used
this approach to test whether rats that had settled at a lower body
weight about 3 months after RYGB surgery would show a similar
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behavior. Indeed, upon SHU9119 infusion, RYGB rats increased
body weight to levels seen before surgery and slightly above that
of sham-operated rats (Figure 1).11 When infusion was stopped,
they returned to the same low body weight before infusion,
clearly demonstrating that this low body weight is actively
defended and not the result of an imposed physical restriction.
We preferred this approach over forced intragastric feeding that
results in the same voluntary feeding suppression7,8 because it is
more powerful and less invasive. Consistent with our findings,
transient hyperphagia and weight gain was also observed in
female rats with sleeve gastrectomy during pregnancy and
lactation.15

In our mouse RYGB model,16,17 we used a different approach, in
that we lowered pre-surgical body weight by calorie-restriction
before RYGB surgery. After 12 weeks on high-fat diet, mice
weighed about 35 g, 12 g of which was fat mass. After calorie
restriction and before surgery, they weighed 26 g, with only 4 g of
fat mass. Instead of losing weight, these mice gained weight and
fat mass after surgery to plateau at about 30 g, with 8 g of fat mass
(unpublished observations). These findings clearly demonstrate
that RYGB surgery does not indiscriminately lower body weight
level by physically limiting food intake. Rather, special circum-
stances are taken into account and lean body mass is defended.
Furthermore, in a larger cohort of high-fat-fed mice, RYGB-induced
weight as well as fat mass loss was positively correlated with pre-
surgical body weight and fat mass. The fatter the animal was

before surgery, the more fat mass was lost after surgery. In
contrast, lean mass was completely conserved by the surgery.
In summary, our findings suggest that RYGB results in the

establishment of a new level of defended body weight and
adiposity. A similar conclusion was reached in a previous study
with calorie-restriction in rats with sleeve gastrectomy.18

Meal size is restricted after gastric bypass surgery
Meal pattern analysis in the above SHU9119-induced overfeeding
study revealed different strategies to increase food intake in rats
with RYGB vs sham surgery. Although sham rats increased meal
size but not meal frequency, RYGB rats used the completely
opposite strategy of increasing meal frequency but not meal size
(Figure 2a). We had previously analyzed meal patterns in RYGB
and sham-operated rats at an early and late time point after
surgery with both liquid and solid food.10 Two weeks after surgery,
liquid (Ensure) meal size of RYGB rats was less than half that of
sham-operated animals, while meal frequency was increased
(Figure 2b). The decrease in meal size was entirely accounted for
by the rate of eating, with no change in meal duration. Twenty
weeks after surgery the difference in meal size had somewhat
moderated (35% lower), but meal frequency was still twice as high
in RYGB rats. Thus, our studies in rats indicate that although meal
size and eating rate are restricted after RYGB, animals compensate
by increasing meal frequency, resulting in an only slight or no
reduction in total food intake.
In studies with bariatric surgery patients, it is standard

procedure to provide a very low calorie diet for a week or two
after gastric bypass surgery19–21 and caloric intake is often also
restricted before surgery. In addition, patients typically receive
heavy dietary counseling before and after surgery, making it
difficult to analyze quantity and pattern of voluntarily ingested
food, particularly during the early post-surgical period. Never-
theless careful studies in patients from 6 weeks to 2 years after
RYGB22 revealed essentially similar effects on meal patterns as
observed in our rats. RYGB patients show reduced meal size and a
tendency for increased meal frequency, with decreased eating
rate but maintained meal duration.22 Also in agreement with our
rat study, the effect on meal size and eating rate was strongest
early after surgery and moderated somewhat later.22

In summary, studies in both rodent models and patients with
RYGB clearly demonstrate changes in eating patterns indicative of
major changes in appetite control mechanisms. RYGB clearly does
restrict meal size and eating rate, particularly early after surgery.
However, RYGB animals can increase total food intake if properly
stimulated, and thus the weight loss is not simply due to a
mechanical restriction of meal size. Mechanistically, it is highly
likely that these are behavioral adaptations to avoid discomfort,
nausea and pain generated by eating as usual.22 It will be
interesting to analyze the underlying adaptive neural mechanisms
(aversive learning) for these dynamic interactions between the
rearranged gut and the brain.
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Figure 1. Behavioral demonstration of defense of reduced body
weight level in rats with Roux-en-Y gastric (RYGB) bypass surgery.
Rats that had reduced body weight after RYGB received infusion of
saline or SHU9119, a potent melanocortin-4 receptor (MC4R)
antagonist. MC4R blockade induced rapid weight gain to obese
(sham-operated) body weight levels. After cessation of MC4R
blockade body weight promptly returned to pre-infusion levels.
Modified with permission from Mumphrey et al.,11 copyright
John Wiley.
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Figure 2. RYGB restricts meal size but not total food intake. (a) Total daily food intake, meal size and meal frequency of RYGB rats during
14-day ICV infusion of SHU9119. (b) Meal size, meal frequency and ingestion rate of liquid formula (Ensure) of rats at 2 weeks (2w) and
20 weeks (20w) after RYGB or sham surgery. *Po0.05, RYGB vs Sham, *Po0.05, SHU9119 vs Saline. Modified with permission from Zheng
et al.,10 copyright American Physiological Association.
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POTENTIAL UNDERLYING MECHANISMS FOR CHANGE
IN SET POINT
The multiple reciprocal signaling pathways between the gut and
other organs and tissues that are potentially recruited in the
effects of bariatric surgeries are depicted in Figure 3. Gut-to-brain
communication through the circulation and neural connections is
thought to be important, particularly for effects on eating and
physical activity. However, communication with other organs that
are important for energy and glucose homeostasis is also involved.
In the following sections, mechanisms that have received the most
attention will be discussed.

Role of leptin signaling
The discovery of leptin has provided an important missing link for
the negative lipostatic feedback regulation of body weight,
hypothesized long before by Kennedy.1 It has become clear that
leptin action on the hypothalamus is a major mechanism for the
homeostatic control of body weight/adiposity.23 In the absence of
leptin signaling or after destruction of critical hypothalamic
components of leptin signaling such as after VMH lesions, rodents
and humans appear to regulate at a higher defended body
weight.24,25 It is thus possible that bariatric surgeries, particularly
RYGB, change the defended body weight by restoring ‘normal’
leptin signaling and/or critical downstream signaling pathways in
the hypothalamus and elsewhere. We have recently tested this
hypothesis by carrying out RYGB surgery in leptin-deficient ob/ob
mice.26 Leptin-deficient mice lost significantly less body weight
and fat mass after RYGB, compared with wild-type mice, but more
than sham-operated mice (Figure 4a). Furthermore, leptin-
treatment of RYGB mice led to exaggerated percent body weight
loss in ob/ob compared with wild-type mice (Figure 4b), suggest-
ing that normal leptin signaling has at least a partially permissive
role for the full beneficial effects of RYGB on body weight.26

However, it is not clear how RYGB-induced changes in leptin
signaling lead to a lower defended body weight, as leptin levels
rapidly decrease after the surgery, commensurate with the rapid
weight loss. We therefore tested the possibility that RYGB reverses
obesity-associated leptin resistance, making up for falling leptin
levels, by measuring leptin-induced reduction of food intake and
induction of phospho-STAT3 in the basomedial hypothalamus
(Figure 5). Neither leptin-induced food intake suppression, nor
leptin-induced pSTAT3 induction was augmented in RYGB mice
compared with mice with sham surgery (Figure 5). Thus, increased
leptin sensitivity is unlikely to be the mechanism for the beneficial
effects of RYGB. This conclusion is corroborated by lack of
increased leptin sensitivity after sleeve gastrectomy in rats18 and
after RYGB in humans27 although intact leptin signaling is required
for the full beneficial effects of RYGB in mice, the exact site and
mechanism of leptin action remains to be investigated.
Although absence of leptin triggers a strong anabolic response

and safeguards dangerous weight loss, increased leptin, even at
high pharmacological doses, seems unable to trigger a catabolic
response to safeguard weight gain. The existence of another
circulating factor that stimulates catabolic mechanisms during
states of overnutrition has recently been hypothesized.28 Like
leptin, this other factor may act on the hypothalamic circuit
responsible for fine-tuning body weight homeostasis by differen-
tially affecting energy intake and expenditure. Although this factor
is distinct from leptin, it requires intact leptin signaling, as shown
by the absence of food intake suppression following a period of
intragastric overnutrition in leptin receptor-deficient Zucker rats.8

Although normal rats intragastrically ‘overfed’ for 10 days
progressively suppress voluntary food intake and exhibit complete
anorexia for a few days following cessation of infusion, Zucker rats
immediately return to pre-infusion food intake upon cessation.8

It is thus possible that this factor has a role in the suppression of
food intake and increase of energy expenditure after RYGB.
Fibroblast growth factor 21 (FGF21) could potentially fulfill the

role of this unknown factor. FGF21 is primarily stimulated in
adaptation to fasting,29 particularly protein-restriction.30 However,
prolonged systemic infusion of FGF21 in the Siberian hamster,
a model with seasonal body weight fluctuation, suppresses food
intake and body weight and increases energy expenditure
selectively during the high body weight phase (long days),
but not during the low body weight phase (short days).31

Furthermore, a single injection of antibodies to the FGF
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receptor-1c splice variant with dual agonist/antagonist activity
produced a long-lasting suppression of food intake and body
weight in diet-induced obese mice.32 It will thus be interesting to
test the potential role of FGF21 signaling in the beneficial effects
of RYGB.

Role of melanocortin signaling
Melanocortin-4 receptor (MC4R) signaling is the most powerful
catabolic downstream pathway of the basomedial hypothalamus,
which is highly sensitive to signals of nutrient availability,
including leptin. It is thus ideally positioned to mediate the
catabolic effects of bariatric surgeries. The requirement of MC4R
signaling to achieve reduced body weight with bariatric surgeries
has been directly tested in MC4R-deficient rodents. One study
concluded that MC4R signaling is not required for the full effects
of sleeve gastrectomy in rats, because weight loss was identical in
MC4R-deficient and wild-type rats.14 However, interpretation was
complicated by the fact that in this model of sleeve gastrectomy
there is only a transient reduction of body weight, returning to
pre-surgical levels already after 20–30 days and surpassing it by
25% at 10 weeks. The conclusion was entirely based on the higher
body weight levels reached in sham-operated rats and ignored
the massive weight regain of both genotypes after surgery.14

Another study concluded that complete absence of MC4R
signaling in homozygous, but not in heterozygous knockout mice,
abrogated the effectiveness of RYGB.33 Interpretation of that study
is made difficult due to high mortality, low number of animals and
the unusually low weight gain in MC4R-deficient mice, which was
less than observed in other studies using homozygous MC4R-
deficient mice.34

Using chronic pharmacological blockade of brain MC4R
signaling 3–4 months after RYGB or sham surgery in rats
(see Discussion above and Figure 1), we concluded that brain
MC4R signaling is not the critical mechanism by which RYGB
lowers defended body weight level.11 However, interpretation of

our findings was also not without problems. Although RYGB rats
(that had plateaued at the lower body weight level) gained body
weight during MC4R blockade, sham-operated rats showed an
even stronger weight gain response. Thus, a final conclusion
regarding requirement of MC4R signaling for the effects of
bariatric surgeries in animal models is premature and additional
studies will be necessary. In contrast to rodent models, studies in
patients with heterozygous mutations at various loci are more
consistent. With the exception of a few rare variants,35 all studies
looking at patients with MC4R variants found that gastric bypass
surgery was fully effective.14,33,35,36 However, gastric banding in
one rare patient with complete loss of MC4R functionality did not
produce a lasting reduction in body weight.
In summary, the most parsimonious conclusion from both

rodent and human studies is that complete absence of MC4R
signaling diminishes, but does not completely abolish, effective-
ness of bariatric surgeries. However, the partial absence of MC4R
signaling, due to heterozygous mutations, has relatively little
influence on surgical outcome, even if it results in obesity before
surgery. Thus, increased catabolic signaling through MC4R
expressing effector pathways may be partly responsible for
defense of a lower body weight level after bariatric surgery. It is
interesting in this respect that basomedial hypothalamic mRNA
expression levels of MC4R, as well as POMC and AGRP, the major
MC4R ligands, were not altered at 10 and 35 days after sleeve
gastrectomy.18 Although this outcome suggests that the surgery-
induced hypocaloric state and weight loss did not trigger the
expected below set point counter-regulatory hypothalamic
responses, there is no evidence that RYGB induces a permanent
change in melanocortin signaling within the mediobasal hypotha-
lamus. However, melanocortin signaling is not limited to the
arcuate nucleus but extends to other hypothalamic and extra-
hypothalamic sites. Specifically, MC4 receptors on preganglionic
autonomic neurons are required for the full effects of RYGB on
body weight reduction and increased energy expenditure.37
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Role of extrahypothalamic mechanisms
Recent research has shown that feedback signals from the
metabolic periphery such as leptin, GLP-1, ghrelin and insulin
not only act on the hypothalamus and brainstem, but also on
brain areas not classically associated with homeostatic regulation
such as the mesolimbic dopamine system, sensory processing
pathways and cortico-limbic structures (see Berthoud38 for recent
review). These extra-hypothalamic areas should be considered as
part of a larger neural system regulating body weight home-
ostasis, one that takes into consideration environmental factors
and their interaction with cognitive and emotional processes.
Defended body weight may thus be determined by an interaction
between the classical hypothalamic and these extra-hypothalamic
brain areas in an environment-dependent manner, and bariatric
surgeries may act on any component of this larger neural system.
For instance, RYGB has been linked to changes in taste
reactivity,39–42 food reward39,43,44 and cognitive functions,45 which
could all contribute to the mechanism defending a new body
weight. However, before such conclusions can be substantiated,
the nature and exact site of action of the mediating signals needs
to be demonstrated in future experiments.

Role of gut hormones
Early experimental studies showing that infusion of blood from a
donor rat with intestinal bypass surgery suppressed food intake in
recipient control rats suggested increased secretion of a humoral
factor after surgery.46 Later studies in human subjects and rats
after RYGB showed greatly increased meal-induced circulating
levels of GLP-19,47–49 and PYY9,47,50 as well as reduced levels of
ghrelin,9,50 and these gut hormones became prime candidate
mechanisms for the beneficial effects of RYGB.51 However,
subsequent studies in rodents directly testing roles for each of
these gut hormones in the beneficial effects of RYGB and sleeve
gastrectomy were largely negative. Neither GLP-1 receptor
deficiency nor ghrelin deficiency appreciably changed the effects
of RYGB17,52 or sleeve gastrectomy,53,54 and neither GLP-1
receptor nor PYY/Y2 receptor blockade in the brain attenuated
RYGB-induced body weight suppression17 (but see Chandarana
et al.55 for a different outcome). Although these studies do not
lend much support for individual roles of these hormones, it is
possible that they act synergistically. Thus, the effect of RYGB may
be mediated by the combined induction of multiple gut
hormones and factors, such that removal of any single factor
has little or no consequence. It is also possible that compensatory
mechanisms shift control from the deficient signaling pathway to
other hormones. Future experiments should thus use loss-of-
function strategies that are either inducible and/or involve more
than one signaling pathway. For example, because GLP-2 has
been demonstrated to act in addition to GLP-1 on appetite in the
brain56 and the two hormones may substitute for each other, a
double GLP-1R/GLP-2R knockout strategy may be necessary. This
line of reasoning is supported by studies using octreotide, a non-
specific inhibitor of all gut hormones.51 Inhibiting postprandial gut
hormone responses with octreotide normalized RYGB-induced
reduction of appetite and food intake at least in the short term.51

Besides the L-cell hormones GLP-1 and PYY, other gut
hormones and secreted factors such as neurotensin,57 CCK,58

ApoA-IV,59 FGF 15/1960 and bile acids61–64 have been shown to be
increased after RYGB and may thus be involved in mediating some
of the beneficial effects of bariatric surgeries. The beneficial effects
of sleeve gastrectomy have been demonstrated to require FXR
signaling, an important target of bile acids.65

In summary, there is considerable indirect evidence for
important roles of hormones and other factors secreted from
the surgically rearranged gut in reducing energy intake in helping
to implement a new, lower defended body weight. However,

direct evidence from specific loss-of-function studies directed at
single mechanisms or factors is still missing, at least for RYGB.

Role of microbiota–host interactions
The gut microbiome changes after gastric bypass surgery in
humans,66–68 rats69 and mice,70 and a recent transplant study in
mice suggests that the changes in gut microbiome are responsible
for at least some effects on body weight.70 The signaling pathways
leading from the microbiota in the intestinal lumen to reduced
body weight are not known (Figure 3). One possibility is that
microbiota-induced effects on intestinal barrier function reverse
obesity-associated endotoxemia and inflammation.71 Consistent
with this idea is the observation of decreased paracellular
permeability after gastric bypass in humans.72 Reduced systemic
inflammatory signaling could thereby lead to reduced inflamma-
tion of hypothalamic areas involved in set point regulation.73

However, it is still not clearly understood which circulating
inflammatory signals are involved and how they engage brain
inflammatory processes. Another possibility is that the microbiota
change bile acid profile and abundance which in turn signal
through FXR and TGR5 receptors to peripheral organs involved in
energy metabolism and to the brain. Finally, microbiota-derived
factors such as neurotransmitters or neurotransmitter-like sub-
stances and other small circulating molecules may signal directly
to the brain. This will require the full assessment of circulating
metabolites of genomic and metagenomic origin by using global
metabolomics approaches.

Role of neural communication pathways between the periphery
and the brain
Besides the blood circulation, vagal afferents are in an ideal
position to communicate information from the gut to the brain74

and we have recently examined the role of this communication
pathway in the body weight lowering effects of RYGB in rats. In
the first study, eliminating vagal communication through the
common hepatic branch, which innervates the liver, hepatic portal
vein and the upper duodenum75 had no effect on RYGB-induced
reduction of food intake and body weight.76 In the second study,
eliminating vagal communication through the celiac branches
that innervate most of the small and large intestines, including the
Roux- and common limbs, attenuated RYGB-induced body weight
loss by about 20%, consistent with increased vagal afferent
signaling from these limbs.77 A similar attenuation of RYGB-
induced weight loss was observed with transection of the dorsal
vagal para-esophageal bundle, which includes the celiac
branches.78 A recent clinical study in a large cohort of patients
undergoing RYGB with or without vagotomy found no effect of
vagotomy on percent extra weight loss.79 However, because all
these vagal lesions did not differentiate between afferents and
efferents, the conclusions are limited and await more selective
vagal manipulations such as targeted genetic deletions in mouse
models of RYGB.37,80

CONCLUSIONS
Studies using forced over- or under-feeding paradigms in rodents
clearly demonstrate defense of a new body weight set point after
RYGB and sleeve gastrectomy, but the underlying mechanisms
have not yet been fully revealed. Specifically, it is not clear what
signals are generated in the re-arranged gut, how they reach the
brain, and where exactly in the brain they act to evade a state of
hunger and hypo-metabolism that is typically encountered with
dieting-induced weight loss. Deletion of single factors hypothe-
sized to be the critical surgery-induced signals has not yielded the
expected results. Total absence of leptin and MC4R signaling seem
to attenuate but not abolish the beneficial weight loss effects of
RYGB, but partial loss of MC4R signaling has no effect, even
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though it is obesogenic. Part of the complication in defining the
critical brain circuitry is the recent realization that body weight
homeostasis is not limited to parts of the hypothalamus, but
includes other brain systems including sensory and corticolimbic
systems, brainstem, and even autonomic outflow pathways.
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