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Abstract

Three major genetic isoforms of apolipoprotein E (ApoE) exist in humans, ApoE2, ApoE3, and 

ApoE4 leading to differences in susceptibility to Alzheimer’s disease (AD). This study 

investigated the impact of human ApoE isoforms on brain metabolic pathways involved in glucose 

utilization and amyloid-β (Aβ) degradation, two major areas that are significantly perturbed in 

preclinical AD. Hippocampal RNA samples from middle-aged female mice with targeted human 

ApoE2, ApoE3, and ApoE4 gene replacement were comparatively analyzed with a qRT-PCR 

custom array for the expression of 85 genes involved in insulin/insulin-like growth factor (Igf) 

signaling. Consistent with its protective role against AD, ApoE2 brain exhibited the most 

metabolically robust profile among the three ApoE genotypes. When compared to ApoE2 brain, 

both ApoE3 and ApoE4 brains exhibited markedly reduced levels of Igf1, insulin receptor 

substrates (Irs), and facilitated glucose transporter 4 (Glut4), indicating reduced glucose uptake. 

Additionally, ApoE4 brain exhibited significantly decreased Pparg and insulin-degrading enzyme 

(Ide) indicating further compromised glucose metabolism and Aβ dysregulation associated with 

ApoE4. Protein analysis showed significantly decreased Igf1, Irs, and Glut4 in ApoE3 brain, and 

Igf1, Irs, Glut4, Pparg, and Ide in ApoE4 brain compared to ApoE2 brain. These data provide the 

first documented evidence that human ApoE isoforms differentially affect brain insulin/Igf 

signaling and downstream glucose and amyloid metabolic pathways, illustrating a potential 

mechanism for their differential risk in AD. A therapeutic strategy that enhances brain insulin/Igf1 

signaling activity to a more robust ApoE2-like phenotype favoring both energy production and 

amyloid homeostasis holds promise for AD prevention and early intervention.
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Introduction

As one of the most devastating neurodegenerative disorders, Alzheimer’s disease (AD) 

currently affects approximately 35 million people worldwide, including 5.4 million 

Americans, and these numbers are predicted to triple by 2050 [1, 2]. AD disproportionally 

impacts females more than males; approximately two-thirds of current victims of AD are 

women [3]. Two classes of drugs are presently prescribed for the treatment of AD; all were 

FDA-approved during 1993–2003 [3]. These drugs help to regulate levels and activity of key 

neurotransmitters that are involved in learning, reasoning, and memory. Four of the five 

approved drugs are cholinesterase inhibitors that function to decrease the breakdown of 

acetylcholine. The other works by regulating glutamate activity. These treatments can 

temporarily help manage some symptoms in select patients and they do not treat the 

underlying causes of the disease or retard the progression of the disease [4]. In the last 

decade, over 100 human trials have failed in an attempt to find an effective treatment for mid 

to late-stage AD [5]. At present, while the cause of AD is not well understood nor is an 

effective treatment available, one of the key strategies to address this challenge would be to 

identify AD risk mechanisms that would allow institution of AD prevention and early 

intervention.

AD is an age-related, progressive, and extremely complex neurodegenerative disease, 

beginning with a long preclinical phase (10–20 years) characterized by glucose 

hypometabolism and increased amyloid-β (Aβ) deposition in brain regions particularly 

vulnerable to AD [6–8]. In addition to Aβ accumulation, which is hypothesized to be 

perhaps the earliest change presently detectible [8], reduced glucose utilization nearly 

concomitantly occurs in several brain areas typically affected in AD in preclinical, 

presymptomatic subjects with genetic predisposition for developing AD [6, 9]. The 

Alzheimer’s Association (AA) and the National Institute on Aging (NIA) have recently 

revised diagnostic criteria for AD and have added preclinical AD (PCAD) as a recognized 

stage of the disease. This PCAD stage is defined as presymptomatic but where key 

biological changes are underway that may begin years or even decades before memory loss, 

confusion, or changes in thinking or behavior occur. The AA and NIA challenge researchers 

to identify these early changes, measureable biomarkers, and early intervention strategies to 

slow or cease the progression of AD [8, 10].

Apolipoprotein E (ApoE) is primarily produced by the liver in the periphery and by 

astrocytes in the CNS. The primary role of ApoE is cholesterol transport, regulating lipid 

transport and injury repair in the brain [11]. Additionally, ApoE plays roles in glucose 

metabolism, mitochondrial function, neuroinflammation, neuronal signaling, and Aβ 
processing [11, 12]. Humans possess three major genetic isoforms of ApoE coded by three 

alleles, ε2, ε3, and ε4 [11, 13, 14]. Genetic variation in ApoE [15–17] has long been 

implicated in human risk for developing late-onset AD [18, 19]. ApoE2 is relatively rare, 

with only approximately 5% incidence, and it is recognized as a protective variant against 

AD [11, 20, 21]. ApoE3, the most common isoform, is present in approximately 75% of the 
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population and is believed to be neutral in AD [22]. ApoE4, the strongest genetic risk factor 

for late-onset AD, occurs in only about 20% of the population but accounts for 

approximately 65% of AD cases [11, 20, 21]. ApoE4 correlates with an earlier age of onset 

and higher incidence of late onset AD whereas ApoE2 seems to decrease the incidence or 

delay disease onset [11, 23, 24]. Though conflicting evidence exists, the increased risk for 

AD conveyed by the ApoE4 allele appears to have a greater risk impact in females than in 

males [25–28]. Conversely, ApoE2 appears to afford a greater protective effect against AD 

in males than in females [28, 29].

In early mild cognitive impairment, the presence of the ApoE4 allele has been linked to both 

increased Aβ deposition in the cortex and decreased levels of Aβ in the cerebrospinal fluid 

(CSF) [30] demonstrating Aβ dysregulation as an early event in disease progression. In an 

isoform-dependent manner, ApoE isoforms differentially regulate Aβ proteolysis and Aβ 
clearance from brain and modulate Aβ–induced oxidative stress in synaptosomes 

(ApoE4<ApoE3<ApoE2) [31–34]. Moreover, the neurotoxic oligomeric form of Aβ is more 

abundant and even stabilized in ApoE4 over ApoE3 and ApoE2 brain, but the mechanisms 

by which this occurs are less clear [35–37]. Recent evidence has also shown that ApoE2 

carriers have reduced AD pathology in the CSF and lower hippocampal atrophy than their 

non-ApoE2 counterparts [38, 39]. Despite evidence of the protective effect associated with 

ApoE2, remarkably few studies have been done to determine the mechanism of this 

protection [39]. These studies emphasize the need for further understanding of the protective 

effect of ApoE2.

Impaired glucose metabolism in the brain is associated with AD beginning in the earliest 

stages [9, 40, 41], perhaps even before amyloidogenesis and long before onset of clinical 

symptoms [42]. ApoE4 carriers exhibit decreased glucose metabolic rates in the brain 

compared to non-ApoE4 subjects [43]. As evidenced by positron emission tomography 

(PET), inheritance of the ApoE4 allele results in impaired cerebral glucose metabolism in 

subjects with a family history of AD but who do not yet have dementia [40]. Due to many 

overlapping abnormalities between AD and type 1 and type 2 diabetes mellitus, AD has 

been referred to as type 3 diabetes [44, 45]. Normally, activation of insulin or insulin-like 

growth factor 1 (Igf1) signaling results in an intracellular cascade leading to increased 

glucose uptake and utilization. Defective insulin/Igf1 signaling has been implicated in AD 

pathogenesis [46–49], and recent studies have shown that Igf1 polymorphism also modifies 

AD risk [50, 51]. However, how this signaling could be linked to different susceptibility for 

AD associated with human ApoE isoforms is poorly understood. In this study, using gene 

expression profiling analyses, we tested the hypothesis that insulin/Igf1 signaling could be 

differentially regulated by human ApoE isoforms, which could serve as an important 

mechanistic rationale for their differential risks for AD. Our results identify several areas of 

insulin/Igf1 signaling that are differentially regulated in brain among the three ApoE 

variants. These pathways could potentially serve as targets for AD prevention, risk 

reduction, and early intervention.
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Materials and Methods

Animals

The use of animals was approved by the Institutional Animal Care and Use Committee at the 

University of Kansas and followed NIH guidelines for the care and use of laboratory 

animals. This study was carried out in human ApoE2, ApoE3, and ApoE4 gene-targeted 

replacement (hApoE2-TR, hApoE3-TR, and hApoE4-TR) mouse models. These mouse 

lines were created by gene targeting and carry one of the three human ApoE alleles in place 

of the endogenous murine ApoE gene while retaining the endogenous regulatory sequences 

required for modulating hApoE expression [52]. These mice share a C57BL/6J genetic 

background and express the human ApoE protein at physiological levels; thus, they provide 

a complete in vivo system that allows direct measurement and comparison of hApoE 

isoform-specific effects. The following experiments were conducted on brain tissues 

collected from 6-month-old hApoE2-TR, hApoE3-TR, and hApoE4-TR female mice. Our 

choice of using female models in this study was based on the facts that females are at a 

much higher risk for AD than males, and ApoE4 genotype appears to confer a greater risk 

for AD to females than males; therefore, we set investigating the mechanism of female 

susceptibility to AD as our priority.

qRT-PCR gene expression profiling

qRT-PCR gene arrays were custom manufactured at Qiagen (Valencia, CA); a list of 85 

genes included on the arrays is provided in Supplemental Table 1. Total RNA was isolated 

from mouse hippocampal tissues using the PureLink RNA Mini Kit (Life Technologies, 

Carlsbad, CA). RNA quantity and quality were analyzed using the Experion RNA StdSens 

Analysis Kit on an Experion Automated Electrophoresis System (Bio-Rad, Hercules, CA). 

RNA to cDNA synthesis was prepared using the High Capacity RNA-to-cDNA Master Mix 

(Life Technologies) on a MyCycler Thermal Cycler (Bio-Rad). qRT-PCR reactions were 

performed on 0.5 μg cDNA samples mixed with the RT2 SYBR Green qPCR Master Mix, 

under the thermal cycling conditions: Holding Stage: 95°C for 10 min; Cycling Stage: 40 

cycles; 95°C for 15 sec; 60°C for 1 min; Melting Curve Stage: default setting from 60°C to 

95°C. Fluorescence was detected on an ABI 7900HT Fast Real-Time PCR System equipped 

with the Sequence Detection System Software Version 2.3 (Life Technologies).

Data were analyzed using the PCR Array Data Analysis Software (Qiagen). Relative gene 

expression levels or fold differences (FD) relative to the comparison group were calculated 

by the comparative Ct (ΔΔCt) method, with Ct denoting threshold cycle [53]. Samples 

collected from 5 animals per ApoE genotype group were included in the analysis. For each 

sample, ΔCt was calculated as the difference in average Ct of the target gene and the 

endogenous control gene. For each ApoE genotype group, mean 2−ΔCt was calculated as the 

geometric mean of 2−ΔCt of the 5 samples in the group. FD was then calculated as mean 

2−ΔCt (one ApoE genotype group)/mean 2−ΔCt (the other ApoE genotype group as the 

comparison group). FD values greater than one indicate a greater expression relative to the 

comparison group. FD values less than one indicate a lower expression relative to the 

comparison group. The 2−ΔCt values for each target gene between two ApoE genotype 

groups were statistically compared using Student’s t-test; p<0.05 was considered statistically 
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significant. The heat map displays results of unsupervised hierarchical clustering; distances 

between target genes were calculated based on the ΔCt values using Pearson’s correlations. 

The volcano plot displays FD (X-axis) and p-values (Y-axis) enabling identification of genes 

with both large and small expression differences that are statistically significant.

Western blot protein expression analysis

Mouse cortical tissues were homogenized in T-PER Tissue Protein Extraction Buffer 

(Thermo Scientific, Rockford, IL) containing protease and phosphatase inhibitors using 

0.5mm glass beads in a Bullet Blender homogenizer (Next Advance, Averill Park, NY). 

After centrifugation at 12,000 RPM for 10 min at 4°C, supernatant was transferred to fresh, 

labeled microfuge tubes, and saved as whole protein lysate at −80°C until analysis. Protein 

concentrations were determined using the Pierce BCA Protein Assay Kit (Thermo 

Scientific) on a Synergy H1 Hybrid Microplate Reader equipped with Gen5 software 

(BioTek, Winooski, VT). Protein homogenates containing 50 ug of total protein each were 

mixed at 1:1 with 2x Laemmli sample buffer containing 5% β-mercaptoethanol (BME), 

heated for 5 min using an AccuBlock digital dry bath (Labnet, Hanover Park, IL) at 95°C, 

and loaded onto precast Criterion TGX (any kD) or Criterion TGX (18%) Precast Gels as 

appropriate for the molecular weight of the protein of interest. Precision Plus Protein All 

Blue Standards and samples were run using a Criterion cell and PowerPacHC at 200 V for 

55–60 min in tris-glycine-SDS (TGS) running buffer. PowerPacHC, Criterion cell, gels, 

standards, and buffers were all from BioRad (Hercules, CA).

In-gel proteins were transferred to a nitrocellulose membrane (0.20 μm) using a Criterion 

Blotter and PowerPacHC at 100 V for 30 min (BioRad). After transfer, membranes were 

incubated in blocking solution (Blotting-Grade Blocker in phosphate buffered saline (PBS) 

solution with 0.2% (v/v) Tween 20) at room temperature for 1.5 h on a gentle rocking 

platform. Membranes were then incubated with mouse anti-Igf1 antibody, rabbit anti-Irs1 

antibody, or rabbit anti-Glut4 antibody, rabbit anti-Ide antibody and either mouse anti-β-

tubulin antibody or rabbit anti-β-actin antibody (Pierce) for 2 h on a gentle rocking platform, 

followed by three rinses for 5 min each with PBS solution with 0.2% (v/v) Tween 20. Blots 

were then incubated for 1 h with goat anti-mouse IgG (H+L) or goat anti-rabbit IgG (H+L), 

horseradish peroxidase-linked whole secondary antibody as appropriate. The resulting blots 

were rinsed three times for 5, 10, and 10 min each in PBS solution with 0.2% (v/v) Tween 

20 and signals were detected using Clarity Western ECL Substrate (Bio-Rad) and the LI-

COR scanner. Analysis was performed using the Image Studio Digits Version 4.0 software. 

Data are presented as mean±SEM, and statistical analysis was performed in GraphPad Prism 

software using ANOVA plus Bonferroni’s Multiple Comparison posttest with p<0.05 

considered significant.

Results

In this study, we investigated the gene expression profiles in the brains of middle-aged 

female mice carrying the human ApoE2, ApoE3, or ApoE4 gene to examine the impact of 

ApoE genotype on brain metabolic pathways involved in glucose utilization and Aβ 
degradation. Hippocampal RNA samples were comparatively analyzed with qRT-PCR-based 
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gene arrays for the expression of a focused panel of genes involved in insulin/Igf signaling 

(Supplemental Table 1). Distinct and consistent patterns emerged in these gene arrays 

demonstrating both differences and overlaps among the three ApoE brains (Fig. 1). More 

specifically, significant differences were found in key genes involved in Igf1/Glut4/

Pparg/Ide cascades in both the neutral ApoE3 and high-risk ApoE4 groups when compared 

to the protective ApoE2 group (Fig. 2&3).

Among the 85 genes analyzed, 23 genes exhibited a significant fold difference (p<0.05) 

between any two of the three ApoE groups (Fig. 2). The heat map demonstrates that, among 

three ApoE brains, the profile associated with ApoE2 brain appeared most distinct from 

ApoE3 and ApoE4 brains; in comparison, ApoE3 and ApoE4 brains exhibited some degree 

of similarities (Fig. 2a). The volcano plots illustrate fold changes and p-values for significant 

differences in ApoE3 compared to ApoE2 (Fig. 2b) and ApoE4 compared to ApoE2 (Fig. 

2c).

Significantly downregulated genes in ApoE3 compared to ApoE2 hippocampus included 

Igf1 (FD=0.79; p=0.011), insulin receptor substrate 1 (FD=0.85; p=0.048) and 2 (FD=0.82; 

p=0.010) (Irs1/2), and solute carrier family 2 facilitated glucose transporter member 4 

(Slc2a4, Glut4) (FC=0.55; p=0.003) (Fig. 2b). Versus ApoE2 samples, ApoE4 hippocampus 

exhibited many of the same downregulated genes in this panel as did ApoE3, including Igf1 

(FC=0.87; p=0.044), Irs1 (FC=0.86; p=0.027), and Glut4 (FC=0.61; p=0.006) (Fig. 2c). In 

addition, ApoE4 hippocampus was found to express significantly decreased peroxisome 

proliferator-activated receptor gamma (Pparg) (FD=0.82; p=0.025) versus ApoE2 and 

insulin-degrading enzyme (Ide) versus ApoE2 and ApoE3 (FD=0.87; p=0.013; FD=0.087; 

0.043) (Fig. 2c).

Areas of discord between ApoE3 and ApoE4 brain include significantly lower in ApoE4 

brain: Ide (FD=0.87, p=0.039), Ldlr (FD=0.80, p=0.039), Pck2 (FD=0.85, p=0.006), and 

Pklr (FD=0.82, p=0.047), and significantly higher in ApoE4 brain: Npy (FD=1.33, p=0.022), 

Prkcc (FD=1.16, p=0.045), and Prkci (FD=1.18, p=0.009), when compared to ApoE3 brain. 

The lower Ide seen here in hApoE4 mouse brain is consistent with the human Ide data found 

by Cook et al. in ApoE4 carriers vs. non-ApoE4 carriers [54].

Common areas of significantly altered expression between ApoE3 and ApoE4 hippocampus 

versus that found in ApoE2 illustrate some overlaps in risk related to Igf1 signaling 

deficiencies. Downregulation of Igf1, Irs1, and Glut4 present in both ApoE3 and ApoE4 

brain predicts less efficient glucose metabolism in both groups compared to ApoE2 brain. 

Previous studies have also shown lower Irs1 in ApoE4 brain versus ApoE3 in studies in 

older mice [55]. Akt (protein kinase B) 1 and 2 and growth factor receptor-bound protein 2 

(Grb2) were found to be upregulated in both ApoE3 and ApoE4 brains compared to the 

ApoE2 group. Differences in Akt gene expression is evidence of changes in regulation of 

glycogen synthesis and Glut4 translocation.

Further, some aspects of altered gene expression found to be unique to ApoE4 brain, i.e. 

deficiencies in Ide and Pparg, infer additional risk for AD associated with this genotype 

(Fig. 3, Table 1). Pparg also showed nearly significantly lower levels in ApoE4 brain versus 
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ApoE3. A greater variability of Pparg in the ApoE3 group in both the mRNA and protein 

studies contributed to the lack of significance. A significant difference in Pparg between the 

ApoE3 and ApoE4 groups may be found using a larger sample size.

To validate the results of the gene array studies (Fig. 4) and the effect of ApoE status on key 

proteins involved in Igf1/Ide signaling in brain, cortical protein analysis (Fig. 4) using SDS-

PAGE and WB showed significantly lower levels of Igf1, Irs1, and Glut4 proteins in ApoE3 

(p<0.001, p<0.01, and p<0.001, respectively) and in ApoE4 (p<0.01, p<0.01, and p<0.001, 

respectively) brain compared to ApoE2 brain, consistent with hippocampal gene array data. 

Additionally, ApoE4 brain exhibited significantly lower levels of Ide protein compared to 

levels found in ApoE2 and ApoE3 brain (p<0.01, p<0.05 respectively), and lower Pparg 

levels compared to ApoE2 brain (p<0.05), also consistent with gene array results.

Discussion

The brain relies almost exclusively on glucose for energy production to supply the high 

energy requirements, thereby directly relying on glucose availability and glucose 

metabolism to fill the needs. Progressive decreases in glucose metabolism begin years prior 

to the clinical onset of AD and continues to decline throughout the progression of the 

disease [6, 56, 57]. Declines in glucose metabolism are associated with decreasing cognitive 

test scores and correlate with the severity of dementia [58, 59]. In mouse models of AD, 

changes in insulin signaling and energy metabolism are seen in brain regions involved in 

learning and memory, and these changes overlap with patterns of Aβ deposition even in the 

early stages of the disease [41, 57].

Insulin resistance occurs in AD brain, and Igf1 activates similar pathways [46, 49, 60, 61]. 

Igf1 serves as a regulator of a variety of biological functions [60, 62] including playing 

essential roles in initial brain development and brain maintenance in adulthood, as well as 

cognition and neuroprotection [62, 63]. Pathways associated with Igf1 include roles in 

normal mammalian brain aging, neurogenesis and plasticity, and Aβ processing [64–66]. 

Disruption in insulin/Igf1 signaling could potentially lead to many of the detrimental 

consequences seen in AD suggesting a relationship between diabetes and AD pathogenesis 

[45, 61]. Markedly reduced gene expression and protein levels of key Igf1 signaling 

molecules, Igf1, Irs1, and Glut4, found here in ApoE3 and ApoE4 brain compared to the 

more metabolically robust ApoE2 brain illustrate a potential mechanism for impaired 

glucose metabolism lending to increased risk for developing late-onset AD. Additionally, 

ApoE4 brain exhibits lower levels of Pparg, a nuclear receptor involved in regulation of 

mitochondrial biogenesis and neuronal survival [67, 68], and Ide, a major enzyme that 

degrades Aβ peptide monomers in the brain [66], suggesting decreased mitochondrial 

efficiency and decreased ability to sustain Aβ homeostasis which could serve as additional 

mechanisms underlying the high risk of ApoE4 for AD. Together, these data provide the first 

documented evidence that human ApoE isoforms differentially affect the Igf1/Irs1/Glut4/

Pparg/Ide system in the brain, which may explain, at least in part, why ApoE2 decreases 

whereas ApoE4 increases the risk for developing AD.
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Igf1 signaling regulates multiple targets in glucose metabolism. Igf1 binds mainly to the 

Igf1-R, a receptor tyrosine kinase, activating multiple intracellular signaling cascades [69, 

70]. Compared to healthy controls, AD brain expresses lower levels of both Igf1 and Igf1-R 

in brain regions responsible for learning and memory [45]. Although there are conflicting 

reports on changes in circulating levels of Igf1 in AD, a regression analysis shows a higher 

ratio of unbound to bound Igf1 in AD compared to non-AD controls, suggesting a type of 

progressive resistance to Igf1 in AD similar to that seen in insulin resistance [46, 71, 72]. In 

Igf1 deficient neurons, activation of Akt, Glut4 expression, and, consequently, glucose 

uptake are reduced [70]. Deficient Igf1 gene expression, reduced Igf1 protein levels, and the 

other concomitant changes to components of the Igf1 signaling cascade found here in 

ApoE3 and ApoE4 compared to ApoE2 brain indicate a potential mechanism by which 

glucose utilization is altered thereby conferring differential AD risk among the different 

ApoE genotypes.

Glut4, the primary insulin/Igf1-responsive glucose transporter, is stored in vesicles in the 

cytoplasm of cells [73]. These vesicles are translocated to the plasma membrane primarily in 

response to insulin/Igf1 binding to its receptor [73]. The insulin/Igf1 signaling pathway 

involves insulin/Igf1 binding to its receptor resulting in Irs phosphorylation and subsequent 

interaction of Irs with PI3K, leading to downstream activation of Akt. Once activated, Akt 

leads to the translocation of Glut4 vesicles to the plasma membrane for glucose entry into 

the cell as well as leading to activation of glycogen synthesis [74]. Under normal conditions, 

these processes respond quickly to changes in blood glucose levels and are readily reversible 

when insulin/Igf1 levels drop [73]. Significant downregulation of Glut4 and Irs seen here in 

ApoE3 and ApoE4 brain would result in lower glucose uptake into neuronal cells and less 

energy produced versus the more energetically robust ApoE2 brain. Upregulation of Akt1 

(involved in cell survival pathways) and Akt2 (required to induce glucose transport) may be 

an attempt to increase glucose transport that was lost with downregulation of Glut4 and may 

be a compensatory response in order to rescue cells in the face of lower glucose utilization. 

Grb2, involved in signal transduction and cell communication, can activate the RAS/MAPK 

pathway in an Irs1-independent manner [74]. Grb2 upregulation may also be compensatory 

due to decreases in Irs1 in ApoE3 and ApoE4 brain and downregulation of Mapk1 in ApoE3 

brain.

In addition to Igf1/Irs/Glut4 signaling deficiencies, downregulation of Pparg presents further 

challenge to the energy production problem in ApoE4 brain. Pparg is expressed in key areas 

of the brain that control energy balance and plays a central role in this regulation [75–78]. 

Pparg is a modulator of insulin sensitivity, and one consequence of ablation of Pparg is 

insulin resistance [79]. Synthetic Pparg agonists known to induce insulin sensitization are 

currently being used to treat type 2 diabetes mellitus [76, 78]. Therefore, decreased Pparg in 

ApoE4 brain could render neuronal cells less able to respond to changes in glucose 

circulating in brain capillaries [77, 78]. Pparg is also involved in the regulation of lipid 

uptake and storage and fatty acid oxidation [76, 80]. Under conditions of glucose deprivation 

or poor glucose utilization, the brain uses ketone bodies as an alternate, though less efficient, 

fuel source. These ketone bodies are primarily synthesized by β-oxidation of fatty acids in 

the liver, carried in the bloodstream, and then up-taken by the brain [81]. Limited studies 

have shown that astrocytes can metabolize fatty acids under starvation conditions; however, 
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neurons do not undergo the highly oxidative process of β-oxidation [82, 83]. ApoE4 brain 

has been shown to be less responsive than ApoE2 or ApoE3 brain in attempts to utilize 

ketone bodies as alternative fuel for energy production [84]. Moreover, Pparg stimulation 

has been shown to promote mitochondrial biogenesis, stabilize mitochondria, reduce 

oxidative stress, and protect against apoptosis [67, 68]. Therefore, decreased Pparg in 

ApoE4 brain could be indicative of less efficient mitochondrial metabolism when compared 

to ApoE2 brain. Our data further show a significant increase in Npy in ApoE4 brain that 

favors energy storage over energy utilization [85].

Together with changes in glucose utilization, amyloid deposition in brain is thought to be 

among the earliest changes on the road toward AD [7, 8, 86, 87]. Mounting evidence exists 

that elevation of Aβ levels and subsequent Aβ-induced damage leads to neurodegeneration 

in AD brain [30, 88, 89]. In addition to its roles in energy regulation, Igf1 is involved in 

regulating Aβ levels in brain by modulating pathways involved in its degradation [48, 90, 

91]. Treatment with Igf1 promotes clearance of Aβ and reverses cognitive shortcomings 

associated with Aβ accumulation [90, 92]. However, the potential role of Igf1 signaling in 

the regulation of Aβ metabolism has remained unclear and controversial.

The many functions of ApoE include inhibition of Aβ transport across the blood-brain 

barrier and facilitation of proteolytic degradation of Aβ by Ide [33, 35, 93]. Ide, as the name 

implies, functions to degrade insulin. Impairment of this ability through insufficient levels or 

activity results in hyperinsulinemia and glucose intolerance [94]. Ide is also known to 

degrade Aβ monomers, thereby potentially playing a role in preclinical development of AD 

[66, 95, 96]. Ide functions as a protease helping to regulate Aβ levels in the brain by 

degrading this neurotoxic peptide [89, 97, 98] and has been proposed as a potential junction 

between AD and type 2 diabetes [97, 99]. In addition to the deleterious effects on glucose 

utilization, downregulation of Ide found in our study in the ApoE4 group may be 

responsible, at least in part, for the mechanism by which ApoE status and the presence of the 

ApoE4 allele contributes to changes in amyloid homeostasis seen with ApoE4 in AD. 

Conversely, higher levels of Ide found in this study in ApoE2 brain demonstrate another 

potential mechanism of neuroprotection afforded by ApoE2. Aβ accumulation is a function 

of both increased production and decreased degradation and clearance [89, 97]. Ide levels 

decrease in mouse and human hippocampus as a function of age [100]. Further and earlier 

deficiencies in Ide levels in ApoE4 brain identified in this study would then amplify this 

problem leading to increased risk for AD.

Conclusions

The purpose of this study was to explore the potential differences in brain metabolic 

pathways, specifically insulin/Igf signaling, among the three major human ApoE genotypes 

using mouse models. In doing so, we were able to elucidate differences in key mechanisms 

involved in glucose utilization and amyloid degradation that arise from genetic differences in 

ApoE isoforms, which closely mimic those seen in PCAD and thus serve as potential targets 

for AD prevention and early intervention. Our data demonstrate that ApoE2 brain is 

associated with a more metabolically robust profile than both ApoE3 and ApoE4 brain, 

which provides a mechanistic rationale for its protective role against AD (Fig. 5). ApoE4 
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status and the resulting glucose and amyloid metabolic deficiencies set the stage for 

accelerated neurodegeneration and decrease the brain’s defense ability to respond to other 

AD risk stressors.

A major novelty of our study reported here was the comparison of ApoE2 to ApoE3 and 

ApoE4 genotypes. Many studies have been done comparing ApoE3 to ApoE4 or ApoE4 

carriers versus ApoE4 non-carriers, but few animal models and even fewer human studies 

have included the ApoE2 genotype. Recent studies that have included ApoE2 have shown 

reduced Aβ and phospho-tau pathology and decreased hippocampal atrophy in ApoE2 

carriers [102]. Those studies highlight the tremendous need for further explorations like ours 

that elucidate the mechanism by which ApoE2 confers this neuroprotection. Recent failures 

of a series of high-profile human trials aimed at treatment of mid to late-stage AD highlight 

the significance of AD prevention and early intervention. To that end, our findings suggest 

that a therapeutic strategy that converts the energy and amyloid metabolic profile of the 

high-risk ApoE4 and intermediate-risk ApoE3 subjects to one that more closely resembles 

the neuroprotective ApoE2 metabolic phenotype could hold promise for preventing, 

reducing the risk, or delaying the onset of AD, in particular in the high-risk ApoE4 carriers 

when addressed in the preclinical stages. Ongoing studies in our laboratory are aimed to 

further explore how human ApoE isoforms may interact with sex and age to modulate these 

pathways and their involvement in AD pathogenesis.
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Fig. 1. 
Gene expression profiles in the brains of middle-aged female mice carrying human ApoE2, 

ApoE3, or ApoE4 gene. Hippocampal RNA samples were analyzed with a qRT-PCR gene 

array for the expression of a focused panel of genes involved in insulin/Igf signaling. Red 

indicates high expression, green indicates low expression. Control Group = ApoE2 brain; 

Group 1 = ApoE3 brain; Group 2 = ApoE4 brain; N = 5 per ApoE genotype group. A list of 

all genes profiled is provided in Supplemental Table 1.
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Fig. 2. 
The heat map (a) includes genes that significantly differed between any two of the three 

ApoE genotypes. The volcano plots show fold changes (X-axis) and P-values (Y-axis) 

between (b) ApoE3 brain versus ApoE2 brain and (c) ApoE4 brain versus ApoE2 brain; 

each dot represents a gene; red indicates greater expression; green indicates lower 

expression; dots that fall above the horizontal blue line indicate significantly differed genes 

(p<0.05). Highlighted significantly altered expression - Igf1: insulin-like growth factor 1; 

Irs1/2: insulin receptor substrate 1/2; Slc2a4: solute carrier family 2 facilitated glucose 

transporter member 4 (Glut4); Pparg: peroxisome proliferator-activated receptor gamma; 

Ide: insulin-degrading enzyme. N = 5 per ApoE genotype group.
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Fig. 3. 
When compared to ApoE2 brain, ApoE3 and ApoE4 brain exhibit both similar and distinct 

expression profiles of genes involved in insulin/Igf signaling. Major genes that showed a 

significantly lower expression in both ApoE3 and ApoE4 brain than ApoE2 brain include 

Igf1, Irs1, and Glut4, involved in glucose metabolism. Ide, a key player involved in the 

degradation of Aβ monomers in the brain, and Pparg, involved in insulin sensitivity and 

mitochondrial biogenesis, were significantly low-expressed in only ApoE4 but not ApoE3 

brain when compared to ApoE2 brain.
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Fig. 4. 
ApoE isoforms differentially modulate the expression, at both the gene and protein level, of 

major players involved in Igf1 signaling and glucose and Aβ metabolism including Igf1, 

Irs1, Glut4, Pparg, and Ide. Specifically, when compared to ApoE2 brain, both ApoE3 and 

ApoE4 brain exhibited a significantly lower expression of Igf1, Irs1 and Glut4. Moreover, 

ApoE4 brain was associated with a significantly lower expression of Pparg than ApoE2 

brain and significantly lower expression of Ide than both ApoE2 and ApoE3 brain, and there 

was not a significant difference between ApoE2 and ApoE3 brain. N = 5 per ApoE genotype 

group; *p<0.05, **p<0.01, and ***p<0.001.
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Fig. 5. 
Our hypotheses and conclusion: 1) When compared to the ApoE3 and ApoE4 brain, the anti-

AD ApoE2 brain is associated with a more robust Igf1 signaling and mechanisms involved 

in glucose uptake, glucose metabolism, and Aβ degradation, which could serve as a 

molecular basis underlying its protective role against the development of AD. 2) When 

compared to the ApoE2 and ApoE3 brain, the pro-AD ApoE4 brain is associated with a 

weaker Igf1 signaling and mechanisms involved in glucose uptake, glucose metabolism, and 

Aβ degradation, which could mechanistically contribute to its detrimental role in the 

etiology of AD. Therefore, targeting Igf1/Irs/Glut4/Pparg-related energy metabolism and the 

downstream energy production as well as Ide and associated Aβ degradation could serve as a 

vital strategy in order to transform a pro-AD ApoE4 brain to the anti-AD ApoE2 phenotype, 

and, as a result, increase the defense ability of an ApoE4 brain against the development of 

AD.
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Table 1

Differentially expressed genes in ApoE3 and ApoE4 brain compared to ApoE2 brain

ApoE3 vs ApoE2 (p<0.05) ApoE4 vs ApoE2 (p<0.05)

Gene Symbol Fold Difference p-value Fold Difference p-value

Akt1 1.15 0.019 1.17 0.043

Akt2 1.30 0.001 1.24 0.002

Braf 0.86 0.008

Cebpb 0.83 0.004

Frs2 0.89 0.012

Grb2 1.29 0.008 1.30 0.010

Ide 0.87 0.013

Igf1 0.79 0.011 0.87 0.044

Irs1 0.85 0.048 0.86 0.027

Irs2 0.82 0.010

Ldlr 1.32 0.037

Mapk1 0.93 0.002

Npy 1.27 0.041

Pck2 1.14 0.048

Pik3cb 0.83 0.002

Pik3r2 1.35 0.013

Pklr 1.50 0.007

Pparg 1.032 0.062 0.82 0.025

Prkcc 0.86 0.042

Prkci 0.80 0.003

Rras2 0.89 0.013 0.82 0.009

Slc2a4 0.55 0.003 0.61 0.006

Srebf1 1.24 0.015

N = 5 per ApoE genotype group

J Alzheimers Dis. Author manuscript; available in PMC 2017 June 27.


	Abstract
	Introduction
	Materials and Methods
	Animals
	qRT-PCR gene expression profiling
	Western blot protein expression analysis

	Results
	Discussion
	Conclusions
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Table 1

