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ABSTRACT
Immune checkpoint inhibitors have significantly improved the treatment of several cancers. T-cell
infiltration and the number of neoantigens caused by tumor-specific mutations are correlated to
favorable responses in cancers with a high mutation load. Accordingly, checkpoint immunotherapy
is thought to be less effective in tumors with low mutation frequencies such as neuroblastoma, a
neuroendocrine tumor of early childhood with poor outcome of the high-risk disease group.
However, spontaneous regressions and paraneoplastic syndromes seen in neuroblastoma patients
suggest substantial immunogenicity. Using an integrative transcriptomic approach, we investigated
the molecular characteristics of T-cell infiltration in primary neuroblastomas as an indicator of pre-
existing immune responses and potential responsiveness to checkpoint inhibition. Here, we report
that a T-cell-poor microenvironment in primary metastatic neuroblastomas is associated with
genomic amplification of the MYCN (N-Myc) proto-oncogene. These tumors exhibited lower
interferon pathway activity and chemokine expression in line with reduced immune cell infiltration.
Importantly, we identified a global role for N-Myc in the suppression of interferon and pro-
inflammatory pathways in human and murine neuroblastoma cell lines. N-Myc depletion potently
enhanced targeted interferon pathway activation by a small molecule agonist of the cGAS-STING
innate immune pathway. This promoted chemokine expression including Cxcl10 and T-cell
recruitment in microfluidics migration assays. Hence, our data suggest N-Myc inhibition plus
targeted IFN activation as adjuvant strategy to enforce cytotoxic T-cell recruitment in MYCN-
amplified neuroblastomas.
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Introduction

Monoclonal antibodies against the negative immune check-
point molecules PD-1/PD-L1 significantly improve disease out-
come in a variety of cancers.1-4 The PD-1 receptor is expressed
on the surface of T cells and PD-L1 ligand binding induces an
exhausted T-cell state that impedes the elimination of tumor
cells by cytotoxic T cells.5,6 Blocking the PD-1/PD-L1 axis
restores antitumoral immunity and achieves remissions, but
not all patients benefit from this therapy and response rates dif-
fer significantly between cancer entities.1,2

Immune checkpoint inhibitors are particularly effective in
metastatic melanoma,1 an aggressive skin cancer that derives
from pigment producing melanocytes in the epidermis. T-cell
infiltration in tumors before treatment has been associated with
favorable treatment responses.7-9 This is in line with the con-
cept that checkpoint immunotherapy is most effective against
tumors with pre-existing but dampened antitumor immune
responses. The interferon (IFN) pathway plays a central role in
the orchestration of immune responses and is strongly
activated in T-cell-rich melanomas driving the expression of
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T-cell-recruiting chemokines like CXCL10. Using mouse mela-
noma models we recently showed that T-cell-poor melanomas
respond to PD-1 blockade only after targeted type I IFN activa-
tion by the immunostimulatory RNA poly(I:C), because this
adjuvant strategy enforced T cell recruitment.10 Similarly, small
molecule agonists of the cGAS-STING cytosolic DNA sensing
pathway induce innate immune recognition of tumors11 and
overcome resistance to PD-1 blockade.12,13

Importantly, recent studies found that the neoantigen load
determines tumor immunogenicity and predicts responsiveness
to checkpoint inhibitors in melanoma and lung cancer
patients.8,9,14-16 Neoantigens arise as a consequence of tumor-
specific mutations and their numbers correlate with the exonic
mutation frequency. Of note, melanomas and lung cancers
have a particular high neoantigen load9,14 due to the mutagenic
impact of UV-light irradiation and tobacco smoke in the devel-
opment of the diseases. These findings suggest that checkpoint
inhibitors are less effective in tumors with a low neoantigen
load like neuroblastoma, a disease of early childhood, having a
more than 20-fold lower exonic mutation frequency.17,18 How-
ever, neoantigens are not the only cause of tumor immunoge-
nicity, because cancer testis and cell lineage antigens also elicit
strong antitumoral immune responses.

Neuroblastoma is an embryonal malignancy that originates
from the developing sympathetic nervous system,19,20 and
accounts for 12% of cancer-related deaths in children. Poor dis-
ease outcome of high-risk neuroblastoma despite multimodal
radiochemotherapy emphasizes the need for additional treat-
ment options like checkpoint inhibitors. As the neoantigen
load is low in neuroblastoma, it is likely that additional predic-
tive biomarkers are needed to identify subgroups of patients
that could benefit from checkpoint immunotherapy. For this
reason, we aimed to identify molecular characteristics of T-cell-
infiltrated versus T-cell-poor neuroblastomas, because T-cell
infiltration is considered as a marker of pre-existing immune
responses that can be enforced by therapeutic checkpoint
inhibition.

Using an integrative transcriptomic approach, we report
here that a T-cell-poor microenvironment in primary meta-
static neuroblastomas is associated with genomic amplification
of the MYCN (N-Myc) oncogene. This coincided with a lower
interferon pathway activity and reduced chemokine expression
in these tumors, and we found that N-Myc suppresses inter-
feron and pro-inflammatory pathway activity in a global man-
ner. Furthermore, N-Myc depletion enhanced targeted
interferon pathway activation and Cxcl10 chemokine expres-
sion by a small molecule STING agonist, which promoted T-
cell recruitment in microfluidics migration assays. Thus, our
data delineate an adjuvant strategy to enforce T-cell recruit-
ment and to improve immunotherapy of MYCN-amplified
neuroblastomas.

Results

To explore T-cell infiltration in neuroblastoma, we used RNA-
seq gene expression data from our previously described patient
cohort of 498 primary neuroblastomas with detailed clinical
annotation and MYCN-amplification status (Fig. 1A).21 As a
measure of T-cell content in neuroblastoma tissues, we

calculated the averaged expression level of a T-cell gene signa-
ture as described previously.10,22,23 Neuroblastoma samples
were subsequently ranked by increasing T-cell signature
expression level that separated T-cell-poor from T-cell-rich
tumors (Fig. 1B). We also included clinical stage (INSS) and
risk (INRG) annotation, genomic MYCN amplification status
as well as MYCN mRNA expression level in our analysis. Inter-
estingly, we found that MYCN-amplified neuroblastomas were
strongly enriched among the T-cell-poor tumors. Importantly,
genomic MYCN amplification and high MYCN mRNA expres-
sion were also associated with a T-cell-poor status in the sub-
group (n D 181) of stage 4 (INSS) metastatic neuroblastomas
(Fig. 1C). This subgroup analysis is important, because the clin-
ical course of neuroblastoma is highly heterogeneous that could
confound our results. Next, we repeated the analysis using a
gene signature that is highly expressed by different cytotoxic
immune cells22 and thus indicative of an antitumor immune
response. Again, MYCN-amplified neuroblastomas showed low
expression of this cytotoxic immune cell signature within the
subgroup of stage 4 metastatic disease (Fig. 1D). We also cor-
roborated the inverse correlation between MYCN amplification
and expression of these two immune cell signatures, when we
selectively analyzed primary neuroblastomas from the abdo-
men/pelvis (n D 116) or adrenal gland (n D 197) (Figs. S1 and
S2). These are the two most frequent sites of neuroblastoma
occurrence comprising 75% of samples in our cohort with
available anatomic annotation (n D 420). Hence, this ruled out
that contamination or inclusion of lymphoid tissue from meta-
static sites such as lymph node or liver confounded our analy-
sis. As MYCN amplification is associated with poor disease
outcome, we consistently found that lower expression of the T-
cell or cytotoxic immune cell signatures was associated with a
reduced overall survival in stage 4 neuroblastoma patients
(Fig. 1E). An unbiased median expression cut-off was used for
the low versus high classification of the gene expression signa-
tures. Taken together, T-cell or cytotoxic immune cell signa-
tures were stratified by NMYC amplification status and
associated with disease outcome.

As these signatures were non-specific for particular subsets
of T cells, natural killer T cells (NKT) or NK cells, we aimed to
gain more insight by using CIBERSORT, a recently described
bioinformatic deconvolution approach to estimate the relative
content of immune cell subtypes from whole tissue gene
expression data.24,25 First, we ranked the neuroblastoma sam-
ples by increasing the expression of a combined T-cell and
cytotoxic immune cell signature that included also marker
genes for, e.g., NK cells (Fig. S3A). Then, we applied the
CIBERSORT method and plotted the estimated fraction of
immune cell subtypes using the same ranking of samples
(Fig. S3B). Consistently, CIBERSORT reported an increasing
cytotoxic CD8C T cell fraction in line with our analyses
(Fig. S3C, upper panel). A concomitant increase in the fraction
of regulatory T cells (Tregs) likely reflected feedback inhibition
of the immune response (Fig. S3C, lower panel), a notion that
was also supported by the elevated expression of negative
immune checkpoint genes like CTLA4 or CD274 (Fig. S3A).
Interestingly, CIBERSORT revealed opposing trends for the
fractions of resting and activated NK cells (Fig. S3D), but this
result requires experimental validation and further
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investigation. Estimated fractions of monocytes and macro-
phages remained rather constant, besides an increase of pro-
inflammatory macrophages (CIBERSORT M1-subtype)
(Fig. S3E). Taken together, the independent CIBERSORT
approach corroborated our finding that MYCN-amplification is
associated with a reduced cytotoxic CD8C T/immune cell infil-
tration, also suggesting a poor pre-existing antitumor immune
response in this subgroup.

Mutation load emerges as an important determinant of anti-
tumor T-cell responses and responsiveness to checkpoint
inhibitors, because it correlates with the number of neoanti-
gens.9,14,26 In lung cancer, a recent study identified a nonsynon-
ymous mutation load � 178 as predictive for good responses to

anti-PD-1 therapy14 and similar values have been determined
in melanoma.9 Although neuroblastomas have comparably few
nonsynonymous mutations, we interrogated the correlation
between the T-cell signature expression and the mutation load,
which was available for 121 neuroblastomas from our cohort.
In these samples, we found that non-MYCN-amplified high-
risk neuroblastomas had significantly more nonsynonymous
mutations (median 17 mutations, n D 35) than MYCN-ampli-
fied high-risk neuroblastomas (median 11 mutations, n D 36)
or non-high-risk neuroblastomas (median 4 mutations, n D
50) (Fig. 2A). T-cell signature expression significantly corre-
lated with the mutation load only in high-risk neuroblastomas
(Fig. 2B and C). However, this correlation was strictly

Figure 1. Genomic MYCN amplification is associated with a T-cell-poor microenvironment in metastatic neuroblastoma. (A) Outline of analysis. (B) Expression of T-cell sig-
nature genes in entire neuroblastoma cohort. Samples ranked by increasing T-cell signature expression. Log2 gene expression values were z-score transformed for heat-
map visualization. Clinical and genomic annotations are indicated. (C) Left panel: The same analysis as in (B), but restricted to INSS stage 4 neuroblastomas. Right panel:
T-cell signature expression in MYCN-amplified and non-MYCN-amplified metastatic neuroblastomas. ���p < 0.001; two-sided Wilcoxon rank test. MYCN-amp., n D 65;
non-MYCN-amp., n D 116. (D) The same analysis as in (C), but using the cytotoxic immune cell signature. (E) Kaplan–Meier survival plots of INSS stage 4 neuroblastomas
stratified by MYCN amplification status (left panel), T-cell signature expression (middle panel) and cytotoxic immune cell signature (right panel). High/low groups were
defined by an unbiased median expression value cut-off. p-values determined by two-sided log-rank test.
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dependent on the MYCN-status, because no significant correla-
tions were detected within the subgroups of MYCN-amplified
and non-MYCN-amplified high-risk neuroblastomas, respec-
tively. Of note, another study found no difference in the muta-
tion load of MYCN-amplified versus non-MYCN-amplified
high-risk neuroblastomas.18 Taken together, it cannot be ruled
out that the mutation/neoantigen load contributes to immuno-
genicity and pre-existing immune responses in high-risk neuro-
blastomas, but our data rather suggest a functional role for
N-Myc itself.

Alternatively, N-Myc could influence immune cell recruit-
ment to the microenvironment by controlling immune signal-
ing pathways as described by us for c-Myc and Myc-related
lineage transcription factors in other tumor entities.27,28 As T-
cell-rich melanomas exhibit an activated interferon pathway
governing immune cell recruitment,10,29,30 we interrogated the
role of N-Myc in the regulation of interferon signaling and che-
mokine expression. Expression of our melanoma-derived IFN
response signature10 positively correlated with the T-cell signa-
ture in metastatic neuroblastomas (Fig. 3A). MYCN-amplified
neuroblastomas showed a reduced IFN pathway activity
(Fig. 3B) and lower CD274 (PD-L1) expression (Fig. 3C). PD-
L1 is known to be regulated by the IFN pathway and often pre-
dicts treatment responses to anti-PD-1/PD-L1 therapy in sev-
eral cancers, even though complementary biomarkers will be
necessary.31 Furthermore, expression of cytokine and chemo-
kine genes was lower in tissues from MYCN-amplified neuro-
blastomas (Fig. 3D), which is in line with a T-cell-poor tumor
microenvironment. Indeed, a previous study in melanoma cor-
related the presence of intratumoral T cells with the expression
of CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL1032 that
were all expressed at higher levels in our non-MYCN-amplified
neuroblastomas. Of note, N-Myc has been implicated in the
direct transcriptional inhibition of CCL2 chemokine expres-
sion.33 However, our data indicated that N-Myc could suppress
cytokine and chemokine expression in global manner, similar
to what we have described previously for c-Myc in Burkitt’s
lymphoma.27 In particular, this prompted us to ask whether
MYCN amplification determines low IFN pathway activity in
cultured neuroblastoma cell lines. For this purpose, we ana-
lyzed the expression of the IFN response signature in a panel of

human neuroblastoma cell lines with known MYCN amplifica-
tion status (Fig. 3E). Indeed, baseline IFN pathway activity was
significantly lower inMYCN-amplified neuroblastoma cell lines
when compared with cell lines lacking this genomic event. Sup-
pression of MYCN expression by two independent siRNAs
induced the bona fide IFN response gene OAS1 in the two
MYCN-amplified neuroblastoma cell lines SKNBE and NMB,
respectively (Fig. 3F and G).

Upon recruitment to the tumor tissue T cells become acti-
vated by antigen exposure and produce IFN-g and TNF-a,
which evoke a pro-inflammatory microenvironment. Thus, we
asked whether N-Myc could impair interferon responses, as
this could interrupt feed-forward amplification of inflamma-
tory signals and dampen antitumor immune responses. We
treated SKNBE and NMB cells with IFN-g, IFN-a or TNF-a
and detected increased STAT1 phosphorylation and protein
levels upon IFN-g exposure confirming an intact IFN-g signal-
ing cascade in these cell lines (Fig. 4A). PD-L1 is a well-charac-
terized IFN-g target and its surface expression was increased
by IFN-g treatment and further augmented by concomitant
RNAi knockdown of N-Myc (Fig. 4B). Consistently, RNA-seq
expression profiling demonstrated that depletion of N-Myc
enhanced the transcriptional response to IFN-g stimulation
(Fig. 4C). Importantly, suppression of N-Myc augmented the
induction of chemokine and cytokine genes by IFN-g including
CXCL9 and CXCL10 that are key drivers of T-cell recruitment
into the tumor microenvironment (Fig. 4D).34

Based on these results we asked whether N-Myc also
impaired IFN-g responses in neuroblastoma cell lines estab-
lished from genetically engineered mouse models (GEMMs), as
GEMMs are important tools for the pre-clinical evaluation of
immunotherapeutic approaches. We described previously the
neuroblastoma cell lines mNB-A1 and mNB-A2 isolated from
LSL-MYCN;Dbh-iCre transgenic mice.35 In this model, a
human MYCN transgene becomes activated in a Cre-condi-
tional manner selectively in dopamine b-hydroxylase (Dbh)-
expressing cells and drives neuroblastoma development. Deple-
tion of N-Myc by two independent siRNAs potently impaired
proliferation of mNB-A1 cells in culture validating N-Myc
oncogene dependency (Fig. 4E and F). We also performed gene
expression profiling by RNA-seq analysis to address global

Figure 2. Comparison of T-cell signature expression and mutation load in primary human neuroblastomas. (A) Number of total non-synonymous mutations identified in
indicated subgroups of low-risk and high-risk neuroblastomas. ���p < 0.001; pairwise two-sided Wilcoxon rank test with correction for multiple testing (false-discover
rate). (B) Correlation analysis of T-cell signature expression level (log2) and mutation load (number of mutations) in non-high-risk neuroblastomas and (C) high-risk neuro-
blastomas (NMYC-status color-coded). rho: Spearman rank correlation value. p-value determined by two-sided Spearman’s rank correlation test with continuity correction.
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signaling pathway alterations in response to acute N-Myc sup-
pression by RNAi. Gene set enrichment analysis (GSEA) using
the “hallmark” gene set collection of the Broad molecular signa-
ture database (MSigDb) revealed upregulation of IFN pathway
activity upon N-Myc depletion in mNB-A1 cells (Fig. 4G and
Tables S1 and S2).36,37 In line with the observed growth arrest,
MYCN siRNA treated cells also showed downregulation of the
proliferation-associated E2F and Myc target gene signatures.

Next, we investigated how N-Myc depletion affects the
responses of mNB-A1 cells to IFN-g stimulation. First, IFN-g
exposure increased the levels of phosphorylated and total Stat1
protein confirming intact IFN-g signaling in mNB-A1 cells
(Fig. 4 H). N-Myc depletion by RNAi strongly enhanced IFN-g
and also TNF-a induced transcription of several cytokine and
chemokine genes including Cxcl9 and Cxcl10 (Fig. 4I), which
was also confirmed by qRT-PCR analysis (Fig. 4J). Altogether,

Figure 3. MYCN amplification status is associated with a lower IFN pathway activity in primary metastatic neuroblastomas and cultured neuroblastoma cell lines. (A) Scat-
ter correlation plot of IFN response versus T-cell signature expression in INSS stage 4 neuroblastomas. MYCN amplification status of individual samples is color-coded as
indicated. rho; Spearman rank correlation value. (B) IFN response signature expression in MYCN-amplified versus non-MYCN-amplified metastatic neuroblastomas.
���p < 0.001; two-sided Wilcoxon rank test. MYCN-amp., n D 65; non-MYCN-amp., n D 116. (C) The same analysis as in (B), but log2-transformed reads per million (rpm)
of CD274 (PD-L1) mRNA expression. (D) Left panel: Expression of selected cytokine and chemokine genes in INSS stage 4 neuroblastoma tissues. Samples ranked by
increasing signature expression. Log2 gene expression values were z-score transformed for heatmap visualization. Clinical and genomic annotations as indicated. Right
panel: Chemokine signature expression in MYCN-amplified versus non-MYCN-amplified metastatic neuroblastomas. ���p < 0.001; two-sided Wilcoxon rank test. MYCN-
amp., nD 65; non-MYCN-amp., nD 116. (E) Left panel: Heatmap clustering of IFN response signature gene expression in human neuroblastoma cell lines. MYCN amplifica-
tion status is indicated. Right panel: IFN response signature expression in MYCN-amplified versus non-MYCN-amplified human neuroblastoma cell lines. ���p< 0.001; two-
sided Wilcoxon rank test. MYCN-amp., n D 16; non-MYCN-amp., n D 8. (F, G) qRT-PCR analysis of relative OAS1 and MYCN mRNA expression (normalized to UBC mRNA
expression) in the MYCN-amplified human neuroblastoma cell lines SKNBE (F) and NMB (G) treated with siNT (non-targeting siRNA pool) or two independent siRNAs
against MYCN. Error bars indicate standard deviations (s.d.) from three biologic replicates.
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these findings establish N-Myc as a global inhibitor of inter-
feron and pro-inflammatory gene programs in human and
murine neuroblastoma cell lines. This provides a mechanistic
explanation for the association between MYCN amplifications

and a T-cell/immune-cell-poor microenvironment seen in
human neuroblastoma tissues.

Targeted IFN pathway activation by stimulating nucleic acid
sensing mechanisms of the innate immune system emerges as

Figure 4. N-Myc restrains INF-g responses in human and murine neuroblastoma cell lines. (A) Western blot analysis for N-Myc, pSTAT1, total STAT1 and actin protein
expression in SKNBE and NMB cells. Transfected siRNAs and interferon/TNF-a stimulation as indicated. (B) FACS analysis of PD-L1 surface expression in SKNBE cells treated
as indicated. (C) Expression of IFN response signature genes in SKNBE cells determined by RNA-seq analysis. Transfected siRNAs and INF-g stimulation as indicated. Log2
expression values were z-score transformed for heatmap visualization. (D) Experiment as described in (C) showing expression of selected chemokine/cytokine genes.
�p < 0.05, ��p < 0.01, ���p < 0.001, ANOVA with Tukey’s HSD test for multiple comparisons. (E) Upper panel: Origin of mNB-A1/A2 cell lines. Lower panel: Immunoblot
validation of N-Myc depletion in mNB-A1 cells by MYCN siRNAs targeting the human MYCN transgene. (F) Proliferation of mNB-A1 cells treated with non-targeting siRNA
pool (siNT) or siRNAs against MYCN. Upper panel: Representative image of crystal violet stained dish. Lower panel: Quantification based on three biologic replicates. Error
bars indicate s.d. (G) GSEA showing top hallmark gene sets upregulated or downregulated in mNB-A1 cells by knockdown of MYCN based on RNA-seq gene expression
profiling. NES; normalized enrichment score. FDR: False discovery rate q-value. (H) Western blot analysis for N-Myc, pStat1, total Stat1 and actin protein expression in
mNB-A1 cells. Transfected siRNAs and Ifng/Tnf-a stimulation as indicated. (I) Expression of selected chemokine/cytokine genes in mNB-A1 cells treated as indicated. Visu-
alization of z-score transformed log2 expression values from RNA-seq analysis. (J) qRT-PCR analysis of relative Cxcl10 mRNA expression (normalized to Ubc expression) in
mNB-A1 cells treated as described in H/I. Error bars indicate s.d. of biologic triplicates. ���p <0.001, two-sided Wilcoxon rank test.
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promising strategy to induce immune responses in T-cell-poor
tumors.10,38-40 Indeed, the first pharmacological agents have
entered clinical trials. Small-molecule STING agonists potently
activate the cGAS-STING cytosolic DNA sensing pathway and
trigger IRF3-dependent inflammatory gene transcription,41

including type I IFNs, cytokines and chemokines. DMXAA is a
well-characterized small molecule agonist specific for mouse
but not human STING.42 Thus, we asked whether inhibition of
N-Myc could enhance targeted IFN pathway activation by the
STING agonist DMXAA in mouse neuroblastoma cells. Gene
expression analysis by RNA-Seq showed that N-Myc depletion
strongly augmented the transcriptional response to DMXAA
treatment in mNB-A1 cells (Fig. 5A, upper panels). This
included IFN inducible genes involved in antigen presentation
(Psmb9, Tap1, B2m, H2-K1, and H2-D1) as well as cytokines
and chemokines (Flt3l, Cxcl1, and Cxcl10). N-Myc protein level
encoded by the human MYCN transgene in mNB-A1 cells was
not altered by DMXAA treatment (Fig. 5A, lower panel). Using
qRT-PCR, we independently validated our findings by measur-
ing relative mRNA expression of Oas1, Cxcl10 and MYCN in
mNB-A2, Nho2a and mNB-A1 cells (Fig. 5B–D). The Nho2a
cell line was established from the TH-MYCN transgenic mouse
neuroblastoma model and described previously.43 In all three
cellular model systems, we consistently observed that MYCN
suppression enhanced the transcriptional responses to targeted
STING activation by DMXAA. Importantly, N-Myc depletion
also strongly augmented Cxcl10 chemokine release into the
supernatant induced by DMXAA treatment (Fig. 5E). Several
studies have shown that the TH1-type chemokine Cxcl10 plays
a pivotal role in the recruitment of T cells to the tumor micro-
environment enforcing experimental cancer immunothera-
pies.34,44 Using a microfluidics-based migration assay, we
demonstrated that the conditioned supernatant from N-Myc
depleted and DMXAA-treated mNB-A1 cells indeed attracted
mouse OT-I T cells (Fig. 5F and G). Within 1 h we tracked the
migration of T cells (n D 30 per biologic triplicate) and deter-
mined their cell migration speed (velocity) and their forward
migration index (yFMI), a measure of the directional migration
toward the source of the gradient. Taken together, the data sup-
port our concept that inhibition of N-Myc could enhance T-cell
recruitment to immune cell-poor MYCN-amplified neuroblas-
tomas upon targeted IFN activation by STING agonists.

Discussion

In this study, our transcriptomic analysis demonstrated that
genomic MYCN amplification is associated with a T-cell/cyto-
toxic immune cell poor microenvironment in stage 4 metastatic
neuroblastomas. This finding has important implications for
clinical efforts that evaluate checkpoint blockade immunother-
apy in neuroblastoma patients, because the paucity of intratu-
moral T cells and lower PD-L1 expression before treatment has
been shown to predict poor responses to checkpoint inhibitors
in other tumor entities.1,7 Of note, an inverse correlation
between NKT cell infiltration and MYCN amplification has
been described previously,45 also in line with our cytotoxic cell
signature and CIBERSORT analyses. In contrast, a recent
immunohistochemical (IHC) study of 84 neuroblastomas
(cases with INSS stage 4, n D 20) did not find a significant

association with T-cell infiltration and MYCN amplification
status in their samples. In concert with our results, T-cell infil-
tration predicted a better disease outcome, also in the subgroup
of MYCN-amplified neuroblastomas.46 Obviously, there is
some discrepancy to our study about which we can only specu-
late, but our analyses were based on a different method (RNA-
seq) that is sensitive to capture complex immune cell profiles in
whole tumor samples. Our study also involved a significantly
larger cohort of patients with metastatic neuroblastoma (cases
with INSS stage 4, n D 181). This emphasizes the need to evalu-
ate and compare different methods for quantification of T cell
or immune cell content in routine diagnostic setting. Immune
signature profiling by the nCounter Nanostring platform,47

cost-effective 30mRNA-Seq or microarray platforms might be
feasible options for this purpose.

Taken together, our data suggest that patients with MYCN-
amplified neuroblastomas are less likely to benefit from check-
point blockade immunotherapy, because their tumors show a
T cell/cytotoxic immune cell poor phenotype. Importantly, we
provided experimental evidence by showing that the N-Myc
driven neuroblastoma cell state impaired IFN pathway activity,
chemokine expression and immune cell recruitment in micro-
fluidics migration assays. In vivo, this mechanism could
restrain the feed-forward amplification of chemokine responses
in the tumor microenvironment and dampen antitumor
responses. Our study revealed a potent inhibitory effect of
N-Myc on the expression of the TH1-type chemokines Cxcl9
and Cxcl10. Recent experimental studies demonstrated that
Cxcl10 expression in tumors promotes T cell-recruitment and
enforces T-cell immunotherapy.34,44 Therefore, we hypothesize
that N-Myc impairs the establishment of a T-cell-inflamed
microenvironment, at least in part, through dampening a feed-
forward loop of Cxcl10 expression and recruitment of IFN-
g-producing T cells. However, it is an important finding that
N-Myc restrained transcriptional IFN responses on a global
level rather than suppressing only individual genes of this path-
way. This provides further mechanistic insights in line with
previous studies that reported defective antigen processing and
presentation in neuroblastoma cells,48 a process that is known
to be induced by IFN-g. Of note, N-Myc and c-Myc have been
described as direct suppressors of MHC class I gene transcrip-
tion.49,50 In summary, N-Myc emerges as a general antagonist
of the IFN pathway that regulates antigen processing and pre-
sentation as well as chemokine secretion and thus the interac-
tion between neuroblastoma and immune cells. Thereby, N-
Myc could also limit the efficacy of immune checkpoint inhibi-
tion. However, it is important to consider that IFN signaling
can be detrimental to the antitumor immune response due to
the activation of multiple negative feedback mechanisms.51

Future studies therefore need to focus on context and schedul-
ing of immunotherapeutic interventions to achieve optimal
efficacy.

In contrast to aggressive high-risk neuroblastoma, spontane-
ous regressions are repeatedly seen among patients with low-risk
disease.52,53 This phenomenon is of great interest to researchers
and clinicians and various mechanisms have been proposed.
Likely, tumor biologic and immunological mechanisms contrib-
ute to spontaneous regressions in an interconnected manner.53

For example, insufficient telomerase expression in low-risk
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Figure 5. Depletion of N-Myc promotes targeted IFN pathway activation by the STING agonist DMXAA and T-cell recruitment in microfluidics migration assays. (A) Left
panel: Expression of IFN-inducible genes in mNB-A1 cells treated with siNT or siMYCN#1/#2 upon exposure to DMXAA or DMSO vehicle control. Log2 expression values
were z-score transformed for heatmap visualization. Right upper panel: Quantification of averaged signature expression values shown in the heatmap. ���p < 0.001,
ANOVA with Tukey’s HSD test for multiple comparisons. Right lower panel: Immunoblot validation of N-Myc depletion in the respective conditions. (B–D) qRT-PCR analysis
of relative Oas1, Cxcl10 and MYCN mRNA expression (normalized to Ubc expression) in mNB-A2 (B), Nho2a (C) and mNB-A1 (D) murine neuroblastoma cells treated as
described in (A). Error bars indicate s.d. of biologic triplicates. (E) Cxcl10 protein concentration measured by ELISA in supernatant from cultured mNB-A1 cells treated as
described in (D/E). Error bars indicate s.d. of biologic triplicates. (F) Representative images (one out of three biologic replicates) showing tracked migration of mouse OT-I
T cells in microfluidics gradient chamber. Gradient was established using conditioned supernatant of mNB-A1 cells treated as indicated. (G) Quantitative analyses of T cell
(n D 30) migration. Data shown for one representative biologic replicate. Average values (yFMI, velocity) of individual biologic replicates are shown in Fig. S4. �p < 0.05,
��p < 0.01, ���p < 0.001, unpaired Student’s t-test.
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neuroblastomas54 may trigger a senescence-like growth arrest
that could trigger an immune response,55 as seen in various
mouse tumor models.56 Intriguingly, about half of the patients
with the neural autoimmune disease opsoclonus myoclonus syn-
drome (OMS) with antineural autoantibodies have been diag-
nosed with neuroblastoma.57-59 OMS occurs as a paraneoplastic
syndrome in neuroblastoma and is associated with a favorable
outcome of the disease. With respect to the rather low neoanti-
gen load in neuroblastoma,17,18,54 this suggests that neuroendo-
crine lineage antigens substantially contribute to the
immunogenicity of neuroblastoma cells. This also implies the
caveat of serious neurologic side effects60 that could develop as a
consequence of immune checkpoint inhibitor treatment in neu-
roblastoma patients. Of note, N-Myc is known to impair neuro-
nal differentiation programs,61,62 which could also reduce the
expression level of immunogenic neuronal lineage antigens in
MYCN-amplified neuroblastomas.

Obviously, a careful pre-clinical evaluation is needed and we
believe that MYCN-driven GEMMs are useful tools to explore
therapeutic efficacy as well as adverse effects of novel combina-
torial treatments. For this reason, we used neuroblastoma cell
lines established from two independent MYCN-driven GEMMs
and demonstrated that N-Myc antagonized targeted IFN path-
way activation by a small molecule STING agonist in both cel-
lular model systems. Thus, our findings provide a scientific
basis to evaluate N-Myc inhibition plus targeted IFN activation
as adjuvant strategy with immune checkpoint inhibitors in
MYCN-driven GEMMs and ultimately also in patients with
MYCN-amplified neuroblastomas.

Materials and methods

Cell culture

All cell lines were cultured in a humidified incubator with 5%
CO2 at 37 �C. Cells were kept in RPMI 1640 Medium with 10%
fetal bovine serum, 2 mM glutamine, 100 U/mL penicillin and
100 mg/mL streptomycin added supplementary. The murine
neuroblastoma cell lines mNB-A1 and mNB-A2 additionally
received B-27 and N-2 supplement (all from Life Technolo-
gies). All used cell lines were negative for mycoplasma contami-
nation and tested on a monthly basis. None of these cell lines
appears on the ICLAC list of misidentified cancer cell lines.

Transfection, knockdown and immune stimulation

Cells were seeded at high density in a 12-well plate and
reversely transfected with 30 pmol siRNA using 3 mL Lipofect-
amine RNAiMAX (Life Technologies). Used siRNAs against
MYCN were Hs_MYCN_6 (# SI03087518) and Hs_MYCN_7
(SI03113670, both Qiagen). As a negative control, a non-target-
ing siRNA control pool was used (Dharmacon, # D-001206-13-
20). Twenty four hours after knockdown medium was changed
and cells were treated with either 25 mM or 50 mM DMXAA
(SelleckChem) or equal amounts of DMSO as vehicle control.
For cytokine stimulations, murine cells were treated with
100 U/mL murine TNF-a or 250 U/mL murine IFN-g (Pepro-
tech). Human cell lines were treated with 1,000 U/mL TNF-a,
IFN-a or IFN-g (Peprotech).

Cell growth assay

Cells were seeded at low density and fixed after reaching con-
fluency by covering with 4% formaldehyde. Plates were washed
with distilled H2O and stained for 30 min using 0.05% crystal
violet. Stained plates were scanned at 800 nm using Odyssey Sa
Imaging System (LI-COR Biosciences) and signal intensities
were used for quantification.

Immunoblot analysis

For whole cell lysates, cells were lysed in 1X Laemmli buffer
(2,000 cells per mL) and incubated for 3 min at 95 �C. Lysed
samples were separated by 10% SDS-PAGE and transferred to
a nitrocellulose membrane (GE Healthcare) by wet blotting for
90 min at 70 V (both systems by BioRad). Membranes were
blocked with 5% bovine serum albumin (GE Healthcare) in
TBS with 0.5% Tween for 1 h on a shaker and then probed
with primary antibodies in 5% BSA in TBS with 0.5% Tween at
4 �C overnight. On the next day membranes were probed with
IRDye680LT and IRDye800CW secondary antibodies in 3%
BSA in TBS with 0.5% Tween. Proteins were detected by mea-
suring at 700 nm and 800 nm wavelength using Odyssey Sa
Imaging system (LI-COR Biosciences). Used antibodies were as
follows: Broad Range Markers (#sc-2361), Actin (#sc-47778),
N-Myc (#sc-53993), Stat1 (#sc-464, all Santa Cruz Biotechnol-
ogy), pStat1 (#9177, Cell Signaling Technology).

RNA isolation, cDNA synthesis and quantitative real-time
PCR

Treated cells were lysed with RLT buffer (Qiagen) and then fro-
zen at ¡80�C for at least 15 min. After thawing on ice and add-
ing ethanol lysates were applied to Zymo Spin II columns
(Zymo Research). RNA was isolated by washing with RW1
washing buffer (Qiagen) and Zymo RNA washing buffer
(Zymo Research) and eluted with RNAse-free H2O. The con-
centration of the RNA was measured using NanoDrop 2000c
(Thermo Scientific). cDNA synthesis was performed using All-
in-One cDNA Synthesis SuperMix (Biotools) according to
manufacturer’s instructions. qRT-PCR reactions were always
prepared in technical duplicates in a total volume of 10 mL con-
taining EvaGreen (BioBudget), primers and RNase-free H2O.
qRT-PCR was performed using Roche LC480 according to
manufacturer’s instructions. Samples were quantified by nor-
malization to the housekeeping gene ubiquitin. Sequences of
used qRT-PCR primer pairs (all ordered from Microsynth) are
listed in Table S3.

30mRNA RNAseq

Cells were lysed in 200 mL RLT buffer (Qiagen) and total RNA
was isolated using Zymo I spin columns (Zymo Research) and
eluted in 8 mL of RNAase-free H2O. RNA concentrations were
determined using Qubit (LifeTech). 30mRNA-seq library prepa-
ration was performed using the forward QuantSeq 30mRNA-
Seq Library Prep Kit for Illumina (Lexogen GmbH, Austria)
according to the manufacturer’s protocol. Size distribution and
yield of the 30mRNA-seq library after the PCR step was
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determined by the D1000 high sensitivity tape station (Agilent)
before pooling of the barcoded libraries. The pooled 30mRNA-
Seq libraries were loaded on the Illumina HiSeq2500 platform
and analyzed by a 50 cycles rapid run with on-cartridge cluster-
ing. Raw data is accessible through ENA project PRJEB20874/
ERP023066. Computational 30mRNA-seq analysis was done
with the Bioconductor/R computing environment. FASTQ files
were aligned to the hg38 human or mm10 mouse reference
genome using the RSubread aligner package.63 The voom
method of the limma package was used for normalization and
linear modeling.64 mRNA expression values were transformed
to log2 values of read counts per million (rpm or cpm). For
GSEA non- or very low expressed genes were removed which
resulted in »6,000 robustly expressed genes.

Gene set enrichment analysis (GSEA)

GSEA36 was performed using the BROAD javaGSEA stand-
alone version (http://www.broadinstitute.org/gsea/down
loads.jsp) and the curated hallmark gene set collection
(BROAD molecular signature database, MSigDbv5.1). We used
the default setting of 1,000 permutations and the gene-set per-
mutation mode. For GSEA we used the eBayes moderated t-
test statistics as ranked metric input for the GSEA pre-ranked
gene list algorithm. Results from GSEA are provided in
Tables S1 and S2.

Analysis of published data sets

Pre-processed and normalized RNA-seq data of primary
human neuoblastomas (GSE49711/GSE62564) and Affymetrix
(u133p2) microarray data of human neuroblastoma cell lines
were accessed through the R2 Genomics Analysis and Visuali-
zation Platform (http://r2.amc.nl). Clinical annotation and
MYCN-status were obtained through GSE49711/GSE62564.
Data was imported into the R/Bioconductor computing plat-
form and analyzed by standard procedures. Immune cell gene
signatures were obtained from Bindea et al.22 and signature
expression levels were defined as the mean of log2-transformed
gene expression values.

Mutation load analysis

Processed nonsynonymous mutation data and MYCN amplifi-
cation status for 235 high-risk neuroblastomas was accessed
from the recently published study by Pugh et al.18 A full geno-
mic characterization of our neuroblastoma cohort will be
described elsewhere (Ackermann et al., The genetic basis of
favorable outcome and fatal tumor progression in neuroblas-
toma, submitted).

Flow cytometry

Seeded out cells were washed with PBS and detached shortly
using 0.05% trypsine (Life Technologies). Resuspended cells
were then transferred to a high binding 96-well plate (Greiner)
and stained with fluorochrome-conjugated monoclonal anti-
bodies (Anti-CD274, #17-5983-41, eBioscience Inc.). Probes
were fixed in 4% formaldehyde and kept sealed at 4 �C

overnight. Data were acquired using FACSCanto Flow Cytome-
ter (BD Biosciences) and analyzed with FlowJo software
(FlowJo LLC, Version 8.7 for Mac).

ELISA

Supernatants of stimulated cells grown to confluency of 80–
90% were collected and centrifuged at 300g for 3 min. Samples
were stored at ¡80 �C for a short period and thawed on ice.
The murine Cxcl10-Elisa kit (R&D DuoSet #DY466-05) was
used according to manufacturer’s instructions. The absorbance
of the samples was measured using Tecan Infinite M200 Pro.
For wavelength correction, measured absorbance at 570 nm
was subtracted from the measured 450 nm absorbance. The
concentration of chemokines in the supernatants was calcu-
lated based on the standard curve received with the provided
chemokine standard.

Analysis of T cell chemotaxis

In vitro analysis of T-cell chemotaxis was performed in a
microfluidic device for controlled application of dynamic che-
mokine gradients using m-slide III 3-in-1 (Ibidi) channel cham-
bers. CD8C T cells were obtained from OT-1 spleen and lymph
node preparations by MACS separation using negative selec-
tion according to the manufacturer’s instructions (Miltenyi).
Subsequently, CD8C T cells were activated with OVA-pulsed
BM-DCs from C57BL/6JRcc mice for 120 h. The slides were
coated with 13.0 mg/mL goat anti-human IgG antibody (Dia-
nova) and subsequently were blocked with 1% BSA in PBS at
RT for 1 h. 50 mg/mL murine ICAM-1/FC (R&D Systems) was
immobilized on the antibody-coated surface at RT for 1 h. 2 £
105 CD8C T cells in RPMI (C1% FCS, C 50 mM DMXAA,
C5 mM Mg2C) were transferred to the channel. Gradient fields
were generated by controlled inflow (10 mL/min) of condi-
tioned neuroblastoma cell culture supernatants and control
media by the use of separately connected infusion syringe
pumps to individual inflow channels. Live cell imaging of
adherent CD8C T cells was performed at 37 �C using a fully
automated inverted Olympus Fluoview 1000 confocal micro-
scope equipped with a motorized xyz-stage (M€arzh€auser). Che-
motaxis of CD8C T cells was recorded over a period of 60 min
by capture of differential interference contrast images every
60 sec with a 0.40 UPLAPO 10£ objective (Olympus). A solu-
tion of 5 mM FITC-Dextran (10 kDa, Invitrogen) was used to
characterize the concentration profile of the cell culture super-
natant because of the comparable molecular weight to most rel-
evant chemokines. Migration parameters of motile cells were
calculated using the Manual Tracking and Chemotaxis Tool
plugins in ImageJ.

Statistical tests

All statistical tests were calculated with R and specified in the
figure legends. If necessary, corrections for multiple compari-
sons were applied.
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