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The emergence of noncoding RNAs as Heracles in autophagy
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ABSTRACT
Macroautophagy/autophagy is a catabolic process that is widely found in nature. Over the past few
decades, mounting evidence has indicated that noncoding RNAs, ranging from small noncoding RNAs to
long noncoding RNAs (lncRNAs) and even circular RNAs (circRNAs), mediate the transcriptional and post-
transcriptional regulation of autophagy-related genes by participating in autophagy regulatory networks.
The differential expression of noncoding RNAs affects autophagy levels at different physiological and
pathological stages, including embryonic proliferation and differentiation, cellular senescence, and even
diseases such as cancer. We summarize the current knowledge regarding noncoding RNA dysregulation in
autophagy and investigate the molecular regulatory mechanisms underlying noncoding RNA involvement
in autophagy regulatory networks. Then, we integrate public resources to predict autophagy-related
noncoding RNAs across species and discuss strategies for and the challenges of identifying autophagy-
related noncoding RNAs. This article will deepen our understanding of the relationship between
noncoding RNAs and autophagy, and provide new insights to specifically target noncoding RNAs in
autophagy-associated therapeutic strategies.
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Introduction

Noncoding RNAs, which account for nearly 98% of the tran-
scriptome, lack the capacity to be translated into proteins.1

Conventional notions regarding noncoding RNAs were
restricted to rRNA and tRNA for a long period of time, and
indeed, both of these noncoding RNAs play irreplaceable roles
in the translation of protein-coding genes.2 However, with
accumulating knowledge, previously identified yet disregarded
noncoding RNAs are now receiving new attention (detailed in
Box I). Noncoding RNAs participate in variety of biological
processes, including modulating gene expression both at the
transcription and post-transcription levels, protecting genomes
from exogenous nucleic acids to guide genome rearrangement
or DNA synthesis, and others.3 Additionally, noncoding RNA
dysfunction is related to imbalances in cellular homeostasis
and leads to pathologies such as tumorigenesis.4,5

Box I— Disregarded noncoding RNAs receive new
attention

As the old saying goes, the seeds of revolution are invariably
sown decades before it erupts. This is an accurate portrayal
of changing attitudes regarding noncoding RNAs.3 Through-
out the development of the RNA field, rRNAs and tRNAs,
which were discovered in the 1950s, first gained attention for
their roles in gene expression and protein synthesis.2 How-
ever, it took a long period of time to innovate and obtain
knowledge to move from small nuclear RNAs to small nucle-
olar RNAs.6 In the process, the old rules providing a rational

framework for inertial thinking were overthrown. Noncod-
ing RNAs take part in a remarkably broad spectrum of cellu-
lar processes. Based on the number of nucleotides,
noncoding RNAs are classified as small noncoding RNAs
and long noncoding RNAs.7 Small noncoding RNAs are
RNAs that contain approximately 20–24 nucleotides, exem-
plified by microRNAs (miRNAs). In 1993, the Ambros and
Ruvkun laboratories first announced the discovery of a short
RNA that base-pairs to partially complementary sequences
in the 30 untranslated region of mRNA to control the timing
of developmental transitions.8 Through base pairing at spe-
cific intervals on target mRNAs, miRNAs do not cause cleav-
age but initiate translational repression to achieve mRNA
decay.9 Compared to small noncoding RNAs, the number of
nucleotides in long noncoding RNAs (lncRNAs) is usually
greater than 200 base pairs.7 LncRNAs were once considered
“transcriptional noise” or abandoned RNA transcribed from
junk DNA.7,10 It is daunting to investigate their biological
functions and mechanisms. On the one hand, available evi-
dence indicates cytoplasmic lncRNAs scavenge or alter the
expression of miRNAs as competing endogenous RNAs
(ceRNAs) or interact with translational machinery by target-
ing mRNAs.11 On the other hand, nuclear lncRNAs recruit
histone-modifying complexes such as Xist for transcriptional
repression or bind chromatin-modifying complexes such as
PRC2 to affect target gene expression and decoy proteins to
inhibit their actions.12–14 The recent development of detec-
tion technology facilitated the identification of a novel type
of circular RNA (circRNA). In contrast to typical linear
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noncoding RNAs, endogenous circRNAs form a 3-dimen-
sional covalently closed continuous loop structure by ligating
the 30 and 50 ends.15 The special closed loop protects circR-
NAs from degradation by exoribonucleases and may endow
special biologic functions such as avidity for miRNAs, allow-
ing circRNAs to act as intracellular sponges, resulting in the
hierarchical regulation of one noncoding RNA by
another.16,17 CircRNAs remain mysterious, and much has
yet to be revealed about their nature once certain obstacles
are overcome. However, we are moving from ignorance to
awareness regarding noncoding RNAs, and we are gradually
closing in on their biologic origins. The discovery of multiple
types of noncoding RNAs heralds better prospects for their
characterization.

Macroautophagy, hereafter referred to as autophagy, is a
highly conserved catabolic process that is essential for main-
taining homeostasis.18 In 1962, Ashford and Porter first
observed an increase in lysosomes and a phenomenon involv-
ing lysosomes digesting cytoplasmic components into proteins
in hepatocytes during glucagon perfusion into rat livers.19 In
the following year, de Duve named this phenomenon “auto-
phagy” to describe cellular self-destruction.20 Autophagosomes,
the major units in the autophagy process, are characterized by
the formation of double-membrane vesicles. Intracellular phag-
ophores engulf damaged proteins and organelles to generate
autophagosomes and then combine with lysosomes to form
autolysosomes (detailed in Box II).21 The engulfed cargoes are
degraded by lysosomal hydrolases, and the decomposition
products are reused or further decomposed.22 The degradation
of intracellular material enables cell survival to cope with exter-
nal stress. At the same time, external stresses also affect cellular
autophagic activity.23 Stresses such as starvation or glucagon
enhance cellular autophagy levels compared with reductions by
exogenous insulin or amino acids.24–27 By studying the ultra-
structure of lysosomes and the mechanisms underlying cyto-
plasmic component sequestration into lysosomes, autophagy
itself can be subdivided into specific subgroups.28 Mammalian
cells primarily undergo macroautophagy and also experience
other types of autophagy, such as microautophagy and chaper-
one-mediated autophagy.23 Among these subgroups, the major
differences are the types of cargo to be degraded and the mode
of transportation for cargo into the lysosomes.29 Since the
initial identification of Atg5 in 1996, more than 40 Atg genes
have been found in yeast, and many of these have mammalian
orthologs.30 Autophagy deregulation due to ATG genes is
related to various pathological states in humans, such as neuro-
degeneration, cardiovascular disease, pathogenic infections and
cancer.31–34 In some breast cancers, autophagy is restored by
exogenous BECN1 to suppress tumorigenesis.35 At the same
time, autophagy itself is also beneficial for tumor cells to survive
metabolic stresses.36 For example, the accumulation of
SQSTM1/p62, which is important for autophagosome matura-
tion, promotes tumorigenesis.37 Thus, the exact role of auto-
phagy is still open for debate.

Increasing evidence suggests noncoding RNAs are associ-
ated with autophagy regulation. The first small noncoding
RNA identified as an autophagy regulator was MIR30A, which

targets the BECN1 gene in a variety of cancer cells.38 Numerous
researchers have reported the ability of lncRNAs to regulate
miRNAs by binding to and separating them from their binding
sites on mRNAs to affect autophagic activity.39 In this review,
we focus on summarizing the important roles of noncoding
RNAs and their diverse regulatory mechanisms in autophagy.
Additionally, we integrate public resources to predict auto-
phagy-related noncoding RNAs and discuss experimental
research methods in combination with bioinformatics tools
and analysis. A profound understanding of the interactions
between noncoding RNAs and autophagy may benefit clinical
therapeutics.

Box II— The molecular mechanisms of autophagy:
lessons from yeast

Macroautophagy is primarily a degradation pathway to turn
over and recycle intracellular materials through autophago-
some-dependent vacuolar hydrolysis.18 Autophagy was ini-
tially discovered in mammalian cells, but many prominent
breakthroughs were made in yeast by the ease and applica-
bility of genetic and molecular techniques.19,40 The auto-
phagy process consists of several steps, including
phagophore induction, nucleation and expansion, autopha-
gosome maturation and fusion with the vacuole/lysosome,
and breakdown and efflux of the autophagic cargo. The
nutrient-sensing kinase MTOR (in mammals)/TOR (in
yeast) acts as the main adaptor junction to precisely sense
and accumulate stress signals from different sources. Under
normal circumstances, MTOR exists in an active state to
repress phagophore initiation by blockading assembly of the
ULK1 complex. The ULK1 complex consists of ULK1,
ATG13, RB1CC1/FIP200 and ATG101 in mammalian cells,
which correspond to the Atg1, Atg13, Atg17, Atg29, Atg31
complex in yeast.41,42 Stresses such as starvation or hypoxia
inactivate MTOR to disassociate it from the ULK1 complex,
and the assembled ULK1 complex phosphorylates ATG13
and RB1CC1 to induce the phagophore.41 Following induc-
tion, autophagy cascades sequentially proceed to the phos-
phatidylinositol 3-kinase (PtdIns3K) complex, of which
PIK3C3/Vps34, BECN1/Vps30 and PIK3R4/Vps15 are the
core components.43 In this multi-subunit complex BECN1
functions as a scaffold to recruit and activate coenzyme fac-
tors, including ATG14/Atg14, UVRAG/Vps38, AMBRA1,
SH3GLB1/Bif-1 and RUBCN/Rubicon.44–46 BECN1 also
interacts with BCL2 as a mutually antagonistic factor to bal-
ance autophagy and apoptosis.35 Subsequently during auto-
phagosome formation, 2 ubiquitin-like protein conjugation
systems, specifically the LC3/Atg8–phophatidylethanol-
amine (PE) conjugation system and the ATG12–ATG5 con-
jugation system, as well as the ATG9/Atg9 cycling system
are essential. The E1-like enzyme ATG7/Atg7 activates the
ubiquitin-like modifiers ATG12/Atg12 and LC3/Atg8,
which are transferred to the E2-like enzymes ATG10/Atg10
and ATG3/Atg3, respectively.20 LC3 forms an amide bond
with PE that is dependent on the isopeptide ATG12–
ATG5.47 The ATG12–ATG5-ATG16L1 complex functions
as an E3-like enzyme that determines the site of LC3
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lipidation. At the same time, the ATG12–ATG5-ATG16L1
complex is required for elongation of the phagophore mem-
brane.48 LC3 conjugates to PE on the membrane subsequent
to ATG4/Atg4 proteolysis, which is important for mem-
brane biogenesis.49 Ultimately, the ‘mature’ autophagosome
traffics to and fuses with the lysosomal/vacuolar membrane
to form an autolysosome wherein the cargo is degraded by
hydrolases, and concomitant metabolic byproducts are
released through permeases in the autolysosomal membrane
(the intuitive flow is shown in Figs. 1 and 2, and orthologous
contrast in Table S1).

miRNAs and the regulation of autophagy

As an important member of noncoding RNAs, miRNAs have
been confirmed to take part in each phase of autophagy, includ-
ing phagophore induction, nucleation and expansion, and
autophagosome and autolysosome maturation, and play regula-
tory roles. The details are as follows:

Phagophore induction

The ULK1 complex integrates upstream nutrient and energy
signals to coordinate phagophore induction, and phosphor-
ylation of the ULK1 complex is controlled by MTOR, a
major nutrient/energy sensor.50,51 The upstream nutrient

signaling pathways include the class I phosphoinositide
3-kinase (PI3K)-AKT-MTOR, Ca2C-AMPK-MTOR, TP53-
MTOR and others.52–55 Some miRNAs interfere with
upstream nutrient signaling pathways to affect downstream
phagophore induction (Table 1). For example, MIR451,
MIR155 and MIR21 regulate the expression of certain key
enzymes such as TSC1, RHEB and PTEN in the PI3K-
AKT-MTOR signaling pathway (Table 1 and Fig. 1). During
hypertrophic cardiomyopathy, MIR451 is downregulated to
activate autophagy by suppressing TSC1, which forms a het-
erodimer with the product of TSC2.52,56 In another study of
Mycobacterium tuberculosis infection in macrophages,
MIR155 induces autophagy to decrease the survival of intra-
cellular Mycobacteria by interfering with RHEB, which is a
negative regulatory factor in autophagy.53 However, TSC1
and RHEB negatively regulate each other. The phosphoryla-
tion of AKT prevents TSC1 from inhibiting RHEB (Fig. 1).
In this way, MIR451 and MIR155 interactively regulate the
upstream signaling pathway.52,53 Certain calcium-metaboliz-
ing enzymes such as TRPM3 and Drosophila IP3K2 are
conditioned by MIR204 and Drosophila mir-14 in the Ca2C-
AMPK-MTOR pathway (Table 1 and Fig. 1). In clear renal
carcinoma, TRPM3, which is enriched in cancer cells to
raise the AMPK-activing Ca2C influx, promotes tumor
growth. MIR204 represses TRPM3 to inhibit autophagy and
shorten tumor cell survival.54 In a separate study of
Drosophila, mir-14 was vital to salivary gland cell death by

Figure 1. Overview of the miRNAs involved in the regulation of autophagy-related signaling pathways. The interplay of autophagy with multiple upstream signaling
pathways occurs through MTOR, which is a master regulator of autophagy that is involved in several regulatory pathways including PI3K-AKT-MTOR, Ca2C-AMPK-MTOR,
TP53-MTOR and others. Except for the classic nutrient-sensing MTOR pathways, autophagy is implicated in various other signaling events, such as the mitochondrial path-
way and transcription factor pathways.
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inhibiting IP3K2, the product of which phosphorylates ino-
sitol trisphosphate (IP3) to prevent the release of calcium,
leading to improved autophagy.57 Intriguingly, TP53, which
is involved in the crosstalk between autophagy and apopto-
sis, exerts dual properties in terms of autophagy regulation.
Under genotoxic stress, TP53 and HMGB1 form complexes
in the cytoplasm and nucleus, respectively, and lead to
opposing outcomes (detailed below).58 Confirmed miRNAs
such as MIR212, MIR144 and MIR129–5p regulate auto-
phagy through the TP53-MTOR pathway (Table 1 and
Fig. 1). In prostate cancer, MIR212 is downregulated both
in cancer tissues and blood serum and disrupts the
upstream signaling pathway by antagonizing SIRT1 to
inhibit cellular autophagy.55 In addition, upstream nutrient
and energy signals are also affected by ambient stresses
such as hypoxia. Hypoxia caused by oxygen deprivation in
the intracellular environment attenuates aerobic oxidation,
leading to a lack of energy supply. For example, MIR301A/
B targets the 30 untranslated region of NDRG2 to decrease
its expression, causing an increase in autophagy as opposed
to the reduced apoptosis observed under hypoxia.59

Notably, the engine consisting of the ULK1 complex and
MTOR is not only affected by upstream signals but also directly
controlled by miRNAs. For example, MTOR inactivation is
modulated by miRNAs such as MIR99A, MIR15A and MIR100;
correspondingly, activation of the ULK1 complex is inhibited by

MIR20A, Mir106a and others (Table 2 and Fig. 2). Without
exception, these miRNAs dephosphorylate MTOR, resulting in
the recovery of ULK1 complex assembly to accelerate autophagy
(e.g., MIR99A and MIR144 in cardiomyocytes), or boycott ULK1
complex phosphorylation to reduce autophagy (e.g., MIR20A in
myoblasts).60–62 Additionally, some mitochondrial membrane
proteins such as BNIP3L/NIX and FUNDC1 and translational
factors such as FOXO3/FoxO3a and STAT3 also contribute to
phagophore induction and are regulated by miRNAs such as
MIR137, MIR182 and MIR17–5p (Table 1 and Fig. 1).

Phagophore nucleation

In one model of autophagosome biogenesis, isolated mem-
branes gather and assemble into phagophores. The PtdIns3K
complex, which is recruited by the activated ULK1 complex,
plays an essential role in phagophore nucleation.43 Among the
components of this complex, BECN1 has an irreplaceable role
and functions as a scaffolding protein to recruit and assemble
cofactors such as ATG14, UVRAG and others.63 The impor-
tance of BECN1 is also reflected in the crosstalk between auto-
phagy and apoptosis.64 BECN1 and BCL2 are mutually
antagonistic such that BCL2 suppresses autophagy by seques-
tering BECN1, and BECN1 potentiates apoptosis by binding to
BCL2.64,65 Many miRNAs, such as MIR30, MIR376A/B and
others, target the BECN1 gene to affect autophagy (Table 2 and

Figure 2. Detailed schematic of the roles of related miRNAs and lncRNAs during the core phase of autophagy. The core proteins or genes regulated by miRNAs and
lncRNAs are marked during the dynamic steps. Autophagy induction is directly controlled by MTOR or other translational factors and signaling pathways (Fig. 1). Under
an unfavorable stimulus, such as hypoxia or starvation, the inactivated MTOR assembles and activates ULK1/2 complexes to trigger the autophagy cascade (steps A-B).
Then, initiation of the phagophore and phagophore nucleation is driven by the BECN1-associated PtdIns3K complex. In this critical stage, crosstalk exists between auto-
phagy and apoptosis (step B). During autophagosome formation, phagophore elongation and completion involve 2 ubiquitin-like protein conjugation systems (ATG12–
ATG5 conjugation and LC3–phophatidylethanolamine [PE] conjugation) and the ATG9 cycling system (steps C-D). The RAB family of small GTPases is essential for endocy-
tosed proteins to function throughout the autophagy flux (step E). Finally, the mature autophagosome fuses with a lysosome to form the autolysosome, which degrades
its cargo via hydrolases.
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Fig. 2). For example, MIR376B attenuates starvation-induced
autophagy by blocking BECN1 in breast cancer.66 Furthermore,
miRNAs enhance autophagy by interfering with the BCL2 gene
(Table 2 and Fig. 2). Notably, the downregulation of MIR21
and MIR497 promotes autophagy while reducing apoptotic
injury by inhibiting the BCL2 gene.67,68 MCL1, an antiapoptotic
BCL2 homolog, also accelerates autophagy.69 In macrophages
infected by Mycobacterium tuberculosis, the upregulation of
MIR17–5p accelerates protective autophagy to eliminate infec-
tion by downregulating MCL1.70 In both autophagy and apo-
ptosis, the role of the tumor suppressor TP53 cannot be
ignored. The dual regulatory roles of this protein facilitate its
interaction with HMGB1 in the cytoplasm and nucleus.58 TP53
knockout enhances the expression of cytosolic HMGB1, which
induces autophagy by directly binding with BECN1 to displace
BCL2, compared with autophagy inhibition by HMGB1 in the
nucleus.71 Several miRNAs target HMGB1 and TP53 to regulate
autophagy, including MIR22, MIR218, MIR23B-3p and others
(Table 1 and Fig. 1).

As cofactors of BECN1, ATG14 and UVRAG also play
important roles in phagophore nucleation, and miRNAs are
involved in this process (Table 2 and Fig. 2). For example,
Mir125a- and Mir351-mediated Uvrag reduction is associated
with autophagy inhibition; additionally, autophagy attenuation

caused by MIR125A is also involved in immune escape by
Mycobacterium tuberculosis.72,73 During ovarian cancer treat-
ment, MIR152 attenuates cisplatin-induced autophagy by
downregulating ATG14 while enhancing cisplatin-induced apo-
ptosis and inhibiting tumor cell proliferation.74

Additionally, the RAB family, which includes small GTPases
that regulate early endocytosis, acts at the early phagophore
stage in mammalian cells to activate the PtdIns3K complex to
localize into the ATG5-positive phagophore. Several miRNAs,
including MIR101, MIR130A, MIR150 and others, affect the
PtdIns3K complex activity by regulating the RAB family
(Table 2 and Fig. 2).MIR101 expression is lacking in some can-
cers, such as breast cancer, liver cancer and prostate cancer.
MIR101-mediated autophagy inhibition through RAB5a accel-
erates the drug sensitivity of tumor cells.75 After phagophore
nucleation, the compartment gradually expands to assemble
the autophagosome in a stepwise manner.

Phagophore expansion and maturation into
the autophagosome

There exist 2 key mechanisms that underlie the expansion of
phagophore membranes to form the autophagosome: the
ATG9 cycling system and 2 ubiquitin-like protein conjugation

Table 1. miRNAs targeting different Autophagy-related pathways in phagophore induction.

Pathway Target Description Autophagy miRNA Refs

Hypoxia NDRG2 NDRG family member 2 activated MIR301A/B 59

PI3K-AKT-MTOR TGFBR2 transforming growth factor b receptor 2 inhibited MIR19A/B-3p 138

IGF1R insulin like growth factor 1 receptor activated MIRLET7I 139,140

MIR100
PTEN phosphatase and tensin homolog activated MIR21 117

TSC1 tuberous sclerosis 1 inhibited MIR451 52

RHEB Ras homolog enriched in brain activated MIR155 53,141

RICTOR RPTOR independent companion of MTOR complex 2 activated MIR155 141,142

MIR15A
MIR16

RPS6KB2 ribosomal protein S6 kinase B2 activated MIR155 141

Ca2C-AMPK-MTOR IP3K2 inositol 1,4,5-trisphosphate kinase 2 activated Drosophila 57

mir-14
TRPM3 transient receptor potential cation subfamily M member 3 inhibited MIR204 54

TP53 TIGAR TP53 induced glycolysis regulatory phosphatase activated MIR144 143

CDKN1A cyclin dependent kinase inhibitor 1A activated MIR182 144

DRAM1 DNA damage regulated
autophagy modulator 1

inhibited MIR199A-5p 145

SIRT1 sirtuin 1 inhibited MIR140–3p 55,146,147

MIR212
MIR34A

HMGB1 high mobility group box 1 inhibited MIR129–5p 148–153

MIR141
MIR218
MIRLET7F
MIR22

HMGB2 high mobility group box 2 inhibited MIR23B-3p 154

MAPK1/ERK2-MAPK3/ERK1 DUSP4/5 dual specificity phosphatase 4/5 activated MIR26A 155

Translational factors FOXO3 forkhead box O3 inhibited MIR182 118,156

MIR212/132
TFAP2A transcription factor AP-2 a inhibited MIR638 157

STAT3 signal transducer and activator of transcription 3 inhibited MIR17–5p 70

Mitophagy BNIP3L BCL2 interacting protein 3 like inhibited MIR137 158

FUNDC1 FUN14 domain containing 1 inhibited MIR137 158

UCP2 uncoupling proteins 2 inhibited MIR214 159

CDKN1B -CDK2-MTOR CDKN1B cyclin-dependent kinase inhibitor 1B inhibited MIR221 119

Hedgehog Gas1 growth arrest specific 1 activated MIR148A 160

Others PSME4 proteasome activator subunit 4 inhibited MIR29B 161

ARC activity regulated cytoskeleton associated protein activated MIR325 162

UBQLN1 ubiquilin 1 inhibited MIR200C 163
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Table 2. miRNAs modulating autophagy signaling networks.

Autophagy phase Target Characteristics miRNA Autophagy Refs

Induction MTOR Intracellular protein complex of an atypical
Ser/Thr with kinase activity

MIR99A Pro-autophagy 60,61,112,142,164–166

MIR144
MIR15A
MIR16
MIR7
MIR100
MIR222

ULK1/2 Serine/threonine protein kinase MIR25 Anti-autophagy 62,123,167–171

MIR595
MIR20A
MIR26B
MIR4487
Mir17–5p
Mir106b
MIR885–3p
MIR290/295

RB1CC1 RB1 inducible coiled-coil 1 MIR224–3p Anti-autophagy 172,173

MIR20A
MIR20B

ATG13 Component of the ULK1 complex MIR4459 Anti-autophagy 174

Phagophore nucleation BCL2 Integral outer mitochondrial membrane protein
that blocks the apoptotic death of cells

MIR21 Pro-autophagy 67,68,147,175–181

MIR497
MIR182
MIR34A
MIR210
MIR205
Mir195
MIR24–2
MIR365–2
MIR146A

MCL1 Anti-apoptotic BCL2 family member MIR106A Pro-autophagy 70,182–184

MIR17–5p
MIR204
MIR101

BECN1 Component of class III PtdIns3K complex MIR30A/B/C/D Anti-autophagy 38,66,181,185–191

MIR409–3p
MIR376A/B
MIR17–5p
MIR216A/B
MIR519A
MIR129

ATG14 Component of class III PtdIns3K complex MIR195 Anti-autophagy 74,79,192

Bos Taurus MIR29B
MIR152

UVRAG Component of class III PtdIns3K complex MIR630 Anti-autophagy 73,193–195

MIR374A
MIR125A MIR183

Mir351
ATG2 Peripheral membrane protein MIR30D Anti-autophagy 196–199

MIR143
MIR130A
MIR1303

ATG9 Transmembrane protein Caenorhabditis elegans Anti-autophagy 78,79

mir-34
Bos Taurus
MIR29B

Elongation and completion ATG3 E2 like enzyme for LC3/ATG8 conjugation MIR495 Anti-autophagy 200

ATG4 Cysteine proteinase MIR376B Anti-autophagy 66,75,201–204

MIR101
MIR34A
Mir144
MIR24–3p

ATG5 Conjugated with ATG12 MIR181A Anti-autophagy 83,124,172,193,205–207

MIR374A
MIR30A/B/C
MIR224–3p
MIR299–5p

ATG7 E1 like enzyme MIR188–3p Anti-autophagy 80–82,104,171,208

MIR375
MIR17
MIR290–295

(Continued on next page )
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systems, the LC3–phophatidylethanolamine (PE) conjugation
system and the ATG12–ATG5 conjugation system. ATG9 is
widespread in eukaryotes, and its trafficking is proposed to be
critical in providing membrane to the expanding phagophore.76

In yeast, Atg11, Atg23 and Atg27 are involved in the antero-
grade transport of Atg9, whereas the peripheral membrane pro-
teins Atg2 and Atg18 form a complex with Atg9 that is required
for Atg9 retrieval.77 Among these proteins, miRNA regulation
has been observed (Table 2 and Fig. 2). For example, in Caeno-
rhabditis elegans, mir-34 inhibits autophagy by disrupting
ATG-9 cycling, shortening the life span.78 Conversely, through
the same mechanism, Bos taurus MIR29B attenuates autophagy
to repress the replication of bovine viral diarrhea virus in host
cells.79 In the 2 ubiquitin-like protein conjugation systems,
multiple miRNAs have been reported to be involved, such as
MIR106B, MIR200, MIR210 and others (Table 2 and Fig. 2).
During the course of chronic obstructive pulmonary disease,
MIR210 attenuates protective autophagy by targeting ATG7,
which accelerates bronchial myofibroblast differentiation.80

ATG7 is also targeted by MIR17 and MIR199 to activate auto-
phagy to inhibit the cytotoxicity of chemotherapeutic and low-
dose ionizing radiation in glioblastomas and hepatocellular
cancers.81,82 Furthermore, MIR30A/C and MIR106B are upre-
gulated in the intestinal tissues of patients with Crohn disease
and interfere with both ATG5 and ATG16L1 expression, lead-
ing to the inhibition of cellular autophagy. As a result of auto-
phagy weakening in intestinal epithelial cells, local
inflammation of the intestinal tract becomes exacerbated.83,84

In other ubiquitin-like conjugation systems, MIR204, for exam-
ple, attenuates autophagy in cardiomyocytes when switching
from hypoxia to reoxygenation by targeting LC3 and simulta-
neously repressing BCL2 expression.85

Furthermore, SQSTM1, a multifunctional receptor pro-
tein, binds LC3 and is incorporated by the phagophore,
ultimately becoming degraded along with ubiquitinated
cargo proteins in autolysosomes.86 SQSTM1 is not only a
specific substrate of autophagy but also a strong inducer of
autophagy, similar to the oxidative stress response.87 Mir17,
Mir20, Mir93, Mir106 and MIR372 are involved in the deg-
radation of SQSTM1 to regulate autophagy (Table 2 and
Fig. 2). For example, Mir17, Mir20, Mir93 and Mir106 pro-
mote haematopoietic cell expansion through autophagy
attenuation by targeting Sqstm1 in mice.88 The above miR-
NAs regulate key proteins during phagophore expansion
into the autophagosome and influence autophagosome mat-
uration. Ultimately, the ‘mature’ autophagosome fuses with
the lysosomal membrane to enter the autolysosome matura-
tion phase.

Autolysosome maturation

Completion of the autophagic process relies on the fusion of
autophagosomes with lysosomes to form autolysosomes. The
docking and fusion processes are promoted by RAB7, LAMP2
and other proteins (Table 2 and Fig. 2). MIR207 and MIR352
modulate LAMP2 gene expression to block the lysosomal-

Table 2. (Continued )

Autophagy phase Target Characteristics miRNA Autophagy Refs

MIR210
MIR199

ATG12 Ubiquitin like protein MIR630 Anti-autophagy 154,193,209,210

MIR23B-3p
MIR200B

ATG10 E2 like enzyme for ATG12 conjugation MIR519A Anti-autophagy 193

ATG16L1 Component of ATG12–ATG5-ATG16L1 protein complex MIR885–3p Anti-autophagy 83,84,170,211,212

MIR30A/C
MIR20A
MIR106B
MIR93

MAP1LC3A Microtubule associated protein 1 light chain 3 a MIR214 Anti-autophagy 54

MAP1LC3B Microtubule associated protein 1 light chain 3 b MIR497 Anti-autophagy 54,68,85

MIR204
MIR214

SQSTM1 Autophagy receptor and ubiquitin-binding protein Mir106 Anti-autophagy 88,213

Mir17
Mir20
Mir93
MIR372

Fusion and
Degradation

LAMP2 Lysosomal associated membrane protein 2 MIR207 Anti-autophagy 89

MIR352
LARP1 La ribonucleoprotein domain family member 1 MIR4459 Anti-autophagy 39,214

MIR26A/B
RAB1A RAB family of the small GTPase superfamily MIR184 Anti-autophagy 215

MIR150
RAB5A MIR101 75,216

MIR130A
RAB11A MIR21 217–219

MIR320A
MIR520E

RAB7 MIR17–5p 220

RAB1B MIR502 221

RAB31 MIR184 215

MIR150
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autophagy pathway. Furthermore, MIR207 mimics also reduce
the number of cellular lysosomes and autophagosomes.89 Con-
versely, MIR4459 inhibits LARP1 expression, which is involved
in SQSTM1 protein synthesis to attenuate autophagy in vascu-
lar endothelial cells.39 The identification of these miRNAs as
regulators of autophagy-lysosomal genes will allow us to
identify regulatory mechanisms and may have implications for
further clinical applications.

Long noncoding RNAs and autophagy regulation

In terms of traditional concepts regarding the sequential trans-
fer of biological information, individual thinking can be con-
strained by central dogma, which in this case entails the
detailed residue-by-residue transfer of sequential information
that cannot be transferred back from protein to either protein
or nucleic acid, as noted by Francis Crick in 1958.90 However,

accumulating evidence indicates that this simplification ignores
the existence of reverse information flow from RNA to DNA.
Therefore, the central dogma was restated by Francis Crick in
1970.91 Similar to the complements in central dogma, studies
on the other forms of noncoding RNAs will supplement the
cognition of noncoding RNAs in regulating autophagy. Multi-
ple miRNAs underlie the regulation of autophagy. As another
important type of noncoding RNA, long noncoding RNAs
(lncRNAs) are estimated to exceed 15,000.92,93 Are lncRNAs
merely functionless transcription byproducts of coding genes,
or are they special envoys? The latter hypothesis is not a fig-
ment of the imagination. Emerging evidence indicates lncRNAs
act as competitive platforms for both miRNAs and mRNAs.11

The lncRNA category is diverse and includes not only anti-
sense, intronic, and intergenic molecules but also pseudogenes
and retrotransposons.94,95 Meanwhile, lncRNAs demonstrate
specificity among diverse tissues and cells in physiological or
pathological conditions.96 In addition to expanding the

Table 3. lncRNAs targeting special targets in autophagy.

Name Accession noa. Disease phenotype Regulation Mechanism Refs

APF GEO profile: AK079427 myocardial infarction upregulate Binds MIR188–3p to affect ATG7 expression 104

TGFB2-OT1
(FLJ11812)

HGNC_ID: 50629 inflammation — Binds MIR3960, MIR4488 and MIR4459 to
target ATG13, CERS1, NAT8L and LARP1

39,222

PTENP1 HGNC_ID: 9589 hepatocellular carcinoma downregulate Represses oncogenic PI3K-AKT signaling
pathway and elicit autophagy via
sequestering MIR17, MIR19B and MIR20A
in vitro

97

NBR2 HGNC_ID: 20691 human cancers downregulate Induced by the STK11-AMPK pathway under
energy stress and interacts with AMPK to
promotes kinase activity in turn

223,224

PVT1 HGNC_ID: 9709 diabetes upregulate unknown 225

MEG3 HGNC_ID: 14575 mycobacterial infection bladder
cancer

downregulate Linked to MTOR activity and PI3K-AKT
signaling pathway to regulate autophagy

99,226

PCGEM1 HGNC_ID: 30145 osteoarthritis upregulate Increases the expression of ATG12, ATG5,
ATG3 and BECN1

227

BANCR HGNC_ID: 43877 papillary thyroid carcinoma upregulate unknown 228

GAS5 HGNC_ID: 16355 osteoarthritis non-small cell lung
cancer

upregulate Acts as a negative regulator of MIR21 in
autophagy

229,230

Chast Ensembl_ID:
ENSMUST00000130556

cardiovascular downregulate Impedes Plekhm1 to autophagy inhibition
and cardiomyocyte hypertrophy

101

H19 HGNC_ID:4713 diabetic cardiomyopathy downregulate Regulates DIRAS3 expression and promote
MTOR phosphorylation to inhibit
autophagy as cardiomyocytes exposed to
high glucose

231

loc146880 HGNC_ID:28630 lung cancer upregulate PM2.5 exposure induces ROS, which activates
loc146880 expression, and the lncRNA
upregulates autophagy in return

232

HOTAIRM1 HGNC_ID: 37117 myeloid differentiation upregulate Acts as a miRNA sponge in a pathway that
included MIR20A, MIR106B, MIR125B and
their targets ULK1, E2F1 and DRAM2.

233

AlncRNA — hepatocellular carcinoma upregulate Targets multiple miRNAs including MIR21,
MIR153, MIR216A, MIR217, MIR494 and
MIR10A-5p

234

MALAT1 HGNC_ID:29665 hepatocellular carcinoma
aggressive pancreatic cancer

upregulate EPAS1/HIF-2a-MALAT1-MIR216B axis
regulating MDR of HCC cells via
modulating autophagy in hepatocellular
carcinoma and via HuR-TIA-1-mediated
autophagy activation in aggressive
pancreatic cancer

235,236

AK156230 GEO profile: AK156230 mouse embryonic fibroblasts upregulate unknown 237

HOTAIR HGNC_ID: 33510 hepatocellular carcinoma upregulate Activates autophagy by increasing ATG3 and
ATG7 expression

238

HNF1A-AS1 HGNC_ID: 26785 hepatocellular carcinoma upregulate Acts as an oncogene in tumor growth and
apoptosis through sponging tumor-
suppressive MIR30B-5p (MIR30B) and
derepress BCL2

207

aEnsembl Genome Browser, Gene Expression Omnibus (GEO), HUGO Gene Nomenclature Committee (HGNC)
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transcriptome, some lncRNAs unite to carry out autophagy
regulation, including PTENP1, MEG3, APF and others (Table 3
and Fig. 2).

Specifically, noncoding PTENP1, a pseudogene of the tumor
suppressor gene PTEN, contains miRNA-binding sites that act
as natural miRNA sponges, which bind shared miRNAs to reg-
ulate the cognate PTEN gene.97 In hepatocellular carcinoma,
lncRNA suppresses the oncogenic PI3K-AKT-MTOR pathway
to induce cellular autophagy and apoptosis through decoy
MIR17, MIR19B, and MIR20A, which interact with PTEN and
PHLPP, resulting in reduced autophagy levels (Fig. 3).97 At the
same time, the PTENP1 pseudogene encodes 2 antisense RNA
isoforms, a and b. The a isoform locates to the promoter
region of PTEN to modulate its transcription via DNA methyl-
ation. In contrast, the b isoform combines with the PTENP1
lncRNA through RNA-RNA pairing to destabilize PTEN pro-
tein output.98 Similarly, the APF lncRNA regulates autophagic
cell death by adsorbing MIR188–3p, and MIR188–3p inhibits
ATG7 to suppress autophagy (Fig. 3).

Crosstalk between autophagy and apoptosis is not converted
by only miRNAs but also lncRNAs. For example, the

downregulation of the lncRNA encoded by MEG3 increases
autophagy but inhibits apoptosis to extend cell survival in blad-
der cancer.99 MEG3 lncRNA increases apoptosis to suppress
cancer cell proliferation through TP53 regulation and, as men-
tioned in Section miRNAs and the regulation of autophagy, the
downregulation of TP53 increases cytosolic HMGB1 to form
the HMGB1-BECN1 complex, which promotes autophagy.71,99

Additionally, lncRNAs function as guide strands to influence
cis or trans autophagy-related gene expression.100 The Chast
lncRNA inhibits cardiac autophagy and exacerbates cardio-
myocyte hypertrophy by impeding Plekhm1 gene expression
during cardiac remodeling.101 PLEKHM1 is an autophagy regu-
lator that plays an important role in vesicular transport and
impedes autophagy in various cell lines.102,103 Suppression of
Chast attenuates or reverses cardiomyocyte hypertrophy.101

Above all, lncRNAs act as competitive platforms for trans- or
cis-regulation, and co-repression on target genes are crucial
regulators of autophagy regulatory networks.99,101,104 Deepen-
ing knowledge will allow us to further understand mechanisms
involving lncRNAs and autophagy. In terms of technology plat-
forms, particularly sequencing technology such as high-

Figure 3. Conceptual schematic of regulation mechanism between miRNAs and lncRNAs in autophagy. AlncRNA� is an abbreviation of “an artificial long noncoding RNA.”
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throughput sequencing and “next-generation” sequencing, the
depth and breadth of sequencing instrumentation are continu-
ously improving to achieve higher accuracy in less time. Scien-
tific research methods should also keep pace with this
technological revolution. Methodology will be discussed in
detail in the section below on integration of public resources
and prediction of noncoding RNAs associated with autophagy.

Circular RNAs and autophagy regulation

As important and complementary members of the noncoding
RNA family, the high-profile discovery of natural circRNAs
was met with a great deal of interest. CircRNAs are novel
endogenous noncoding RNAs that differ from traditional linear
RNAs. The biogenesis of circRNAs is confusing and remains
unclear, although circularization signals, exon-skipping events
and splicing machinery are thought to participate in the circu-
larization process.105,106 The exact mechanism by which the
splicing machinery selects particular regions to circularize has
not been fully elucidated.106 Among numerous convincing
hypotheses, several theoretical models have been proposed to
explain the possible formation of circRNAs, including lariat-
driven circularization, intron-pairing-driven circularization
and resplicing-driven circularization.16,107 In theory, any exon-
skipping event holds the potential to cause cyclization, and a
spliced lariat containing skipped exons will rapidly undergo
internal splicing.16 Originally, circularized transcripts were
thought to be byproducts of imperfect splicing, like lncRNAs, a
notion supported by their low yield, lack of specific protective
modifications and sequence conservation.108 However, this
concept has been recently challenged.16,106 CircRNAs were not
discovered earlier and received less attention because classic
RNA detection methods specifically identify only RNA mole-
cules with polyadenylated tails, and the generation of circRNAs
involves polyadenylated tail loss.17

Potentially, circRNAs are cleaved by autophagic degradation
and regulate autophagy in turn. Their higher stability endows
circRNAs with more biological functions as intermediates in
RNA processing reactions. For example, the circRNA CDR1-
AS/ciRS-7/circRNA sponge for MIR7 (CDR1 antisense RNA)
functions as a sponge for MIR7.109 CDR1-AS itself contains
more than 70 conserved seed matches for MIR7. The seed
matches are limited in their complementarity, which prevents
bound MIR7 from being sliced from CDR1-AS by RISC.109,110

Interestingly, MIR7 suppresses cell viability and induces auto-
phagy by inhibiting EGFR expression and efficiently regulates
the PI3K-AKT-MTOR pathway to reduce AKT, MTOR and
RPS6KB1 to inhibit tumor growth.111,112 Thus, as a natural
MIR7 sponge, CDR1-AS may perturb its concentration and
function. According to 2 different groups, the conserved, stable
structure of CDR1-AS may be related to the activity and func-
tion ofMIR7.109 Furthermore, CDR1-AS is sensitive toMIR671,
and MIR671 directs the miRNA-mediated endonucleolytic
cleavage of CDR1-AS.113 Therefore, CDR1-AS may be responsi-
ble for bringing MIR7 to a subcellular location where MIR671
promotes MIR7 slicing from CDR1-AS.17,114 Another circRNA,
circular Foxo3, which is encoded along with the linear Foxo3
mRNA by the Foxo3 gene, appears to possess a high affinity for
CDK2 and CDKN1A/p21.115 Deregulation of the Foxo3 gene is

associated with AKT activity and PTEN silencing, both of
which reduce autophagy.116,117 On the one hand, additional
tests are required to determine whether circular Foxo3 affects
Foxo3 gene transcription and translation to regulate Foxo3
mRNA and proteins during autophagy.118 On the other hand,
there is a high affinity between circular Foxo3 and CDK2 that
allows them to form a ternary complex with CDKN1A or inter-
act with CDKN1B/p27.115 CDKN1A and CDKN1B are both
inhibitors of CDK2. CDK2 phosphorylates CDKN1B to pro-
mote its degradation, and CDKN1B negatively regulates CDK2
to induce autophagy.119 Circular Foxo3 may construct a special
molecular space structure with CDK2 to absorb or capture
downstream proteins such as CDKN1B to regulate autophagy.
Thus, autophagy is closely associated with RNA or protein dys-
function. The emergence of circRNAs represents a new per-
spective from which we will review the hierarchical regulation
of one noncoding RNA by another in the context of auto-
phagy-related noncoding RNAs. Depending on their unique 3-
dimensional covalent structure, circRNAs effectively capture or
sequester RNAs or proteins and release them in subcellular
locations to mediate autophagy regulation. New types of non-
coding RNAs hold great prospects for research and applica-
tions. Given the peculiarities of controlled inhibition and
subsequent derepression, circRNAs also have the potential to
be autophagy-related research tools.

Integration of public resources and the prediction
of noncoding RNAs associated with autophagy

Based on our discussion and analysis in the preceding 3 mod-
ules, noncoding RNAs are crucial regulators of autophagy, evi-
denced by their intensive interactions with this process.120

However, this role is only the tip of the iceberg, and there
remains a great deal for us to explore. The 21st century is the
century of biologic information. In the post-genomic era, given
massive workload requirements, requests for higher technol-
ogy, scattered research sites, and vast amounts of experimental
data, the need to develop public resources is urgent.121

Our team compiled relevant information on noncoding
RNAs from the National Center for Biotechnology Information
(http://www.ncbi.nlm.nih.gov/pubmed/), including 4 noncod-
ing autophagy-associated RNA databases (Table 4). Based on
these databases and resources, we consolidated cross-species
data, including data from Homo sapiens, Pan troglodytes,
Macaca mulatta and others (Fig. 4). The consolidated data
comprise 375 predicted miRNAs related to autophagy, includ-
ing 46 miRNAs in Bos Taurus, 47 in Canis lupus, 3 in Danio
rerio, 15 in Gallus gallus, 51 in Homo sapiens, 52 in Macaca
mulatta, 62 in Mus musculus, 52 in Pan troglodytes and 47 in

Table 4. Noncoding RNA-associated autophagy databases.

Database Name website Ref

Autophagy Regulatory
Network

http://autophagy-regulation.org/search 239

The Autophagy
Database

http://www.tanpaku.org/autophagy/index.html 240

ncRDeathDB http://www.rna-society.org/ncrdeathdb/index.php 241
GAMDB http://gamdb.liu-laboratory.com/index.php 121

AUTOPHAGY 1013

http://www.ncbi.nlm.nih.gov/pubmed/
http://autophagy-regulation.org/search
http://www.tanpaku.org/autophagy/index.html
http://www.rna-society.org/ncrdeathdb/index.php
http://gamdb.liu-laboratory.com/index.php


Rattus norvegicus (Table S2). The 4 core steps of autophagy,
specifically induction, phagophore nucleation and expansion,
and autophagosome and autolysosome maturation, as well as
the intersection of the 9 species with predicted miRNAs is

shown in a Venn diagram (Fig. 4). These graphs provide valu-
able and instructive predictive information regarding the regu-
latory relationships between noncoding RNAs and autophagy
for scientists in this field. However, due to the lack of extensive

Figure 4. An overview of the functional and physical interactions between multiple predicted miRNAs from different species and autophagy. The Venn diagram includes 375
predicted miRNAs in the analysis. According to species, we assigned the miRNAs to 9 groups during the different steps of autophagy, and the data intersection is shown in the
Venn diagram. The pie chart presents the different species involved in this biological miRNA prediction and the representative predicted miRNAs that are involved in autophagy.
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overlap among the databases and the literature, these predicted
noncoding RNAs may undergo biological regulation at certain
key steps (Fig. 4). An integrative analysis of these databases and
resources may provide new insights for solutions to the tough
issues being investigated by small- to moderately-sized auto-
phagy research groups. The new unconfirmed regulatory mech-
anisms between noncoding RNAs and the autophagy
regulation network may be clarified by analyzing these pre-
dicted noncoding RNAs in different species. Reality, however,
may prove different. On the one hand, we may amass a large
number of predicted autophagy-related noncoding RNAs. On
the other hand, these noncoding RNAs may be related to auto-
phagy regulation. Confusion may lie in revealing specific regu-
latory mechanisms to connect the 2.

Predicted noncoding RNAs have been compiled from the 4
noncoding autophagy-associated RNA databases (Table 4 and
Table S2), and the development of sequencing instruments
with greater depth and breadth will allow us to identify many
more unknown RNAs associated with autophagy. These non-
coding RNAs are merely nodes in the autophagy regulation
network. The interactions between them require analysis on
multiple levels. Thus, we urge the development of affordable
bioinformatics tools to solve these problems as well as the con-
struction of computational databases or the analysis of noncod-
ing RNA transcriptome sequences, as detailed in Table 5. Such
resources will allow us to predict putative, related upstream or
downstream noncoding RNAs and proteins in a relatively
objective manner. In particular, computational analysis will act
as a beacon to guide us. However, these methods alone are not
sufficient for us to carry out the research. In practice, there are
many uncertainties; therefore, we will likely need to carry out
bioinformatics analyses to calculate and analyze potential cor-
relations in the autophagy regulation network to narrow our
research scope as much as possible. For example,MIR188–3p is
predicted to take part in autophagy regulation, but we lack
knowledge of its upstream and downstream relationships.
Given these circumstances, bioinformatics tools such as RNA-
hybrid and bioinformatics analyses were used to predict hidden
relationships, followed by experimental verification, and
researchers ultimately identified an autophagy regulatory axis:
APF-MIR188–3p-ATG7.104 In this way, research methodology
matches technological progress: we not only rely on upgraded
technology to discover novel autophagy-related noncoding
RNAs but also use this methodology in combination with
experimental technology to explore specific regulatory
mechanisms.

Discussion

As described in the sections above, autophagy in response to
stress is an evolutionary mechanism for survival that involves
protein and organelle recycling.122 Noncoding RNAs, consid-
ered “transcriptional trash,” participate in many biologic pro-
cesses and play important roles in autophagy.38 The field
investigating autophagy regulation by noncoding RNAs contin-
ues to grow both in terms of volume and impact. However,
autophagy and noncoding RNA research is still in its infancy,
and a great deal of information remains to be elucidated, such
as the paradox of autophagy effects versus noncoding RNA

control, deficiencies in research methods, imperfect practical
applications and others.

The effects of autophagy directed by noncoding RNAs have
remained controversial for many years. Whether autophagy
regulated by noncoding RNAs is a cell death mechanism or a
cell survival mechanism, both sides of the argument are inde-
pendent.104,123,124 Meanwhile noncoding RNAs also appear to
exert bilateral regulation.125 The uncertainty of autophagy and
the dual roles of noncoding RNAs complicate our understand-
ing of associated regulatory mechanisms, making explanations
difficult. Quality control plays a critical role in cellular auto-
phagy and is involved in protein dynamics.126 Unfortunately,
the concrete mechanism of quality control and the full dynamic
process by which misfolded or damaged proteins are incorpo-
rated into phagophores still remains unclear.

Further improvements should allow us to visualize the
dynamic machinery of autophagy with higher spatiotemporal
resolution. The emergence of circRNAs exhibiting stronger sta-
bility and cytoplasm localization through molecular engineer-
ing will potentially result in the development of capture and
imaging devices that are superior to LC3 and SQSTM1 for
monitoring dynamics.127 However, the construction of genetic
animal models remains a research predicament. A major deficit
of traditional genetic animal models is the inability to repro-
duce major age-dependent characteristics starting from birth.34

Thus, it is impossible to compare the effects of impairing non-
coding RNAs on autophagy over time. The introduction of
conditional knockouts such as through CRISPR/Cas9 may par-
tially help us overcome this problem.128 Additionally, previous
studies exploring a single autophagy gene have given different
results for partial and nonsystematic interference. We should
turn to multidisciplinary and integrated public databases to
examine interference by single or multiple factors with noncod-
ing RNAs and to elucidate the multiple genes and steps
involved in the complex autophagy network regulated by non-
coding RNAs. In parallel with mechanistic research, the appli-
cation of dysregulated noncoding RNAs in autophagy has
received a great deal of attention.129,130

In terms of clinical applications to elicit selective cell death,
the induction of apoptosis via therapeutic targeting of the apo-
ptosis pathway demonstrates significant benefits.131 However,
given the resistance to traditional chemotherapeutic drugs that
induce apoptosis, it is not appropriate to simply abandon sur-
vival in favor of cell death.131 Autophagy features prominent
crosstalk between cell survival and death. Abnormal autophagy
regulated by noncoding RNAs is associated with the occurrence
of certain diseases, and these dysregulated noncoding RNAs are
latent therapeutic targets.132 The introduction of RNA interfer-
ence may shed light upon diseases involving deficient or suffi-
cient autophagy directed by noncoding RNAs.133 The
development of RNAi demonstrating high efficiency and speci-
ficity has proven valuable.134,135 However, there are concerns
regarding the biosafety and reliability of RNAi delivery sys-
tems.136 Technology optimization may help solve such prob-
lems. For example, a dual-purpose probe consisting of
magnetic nanoparticles and Cy5.5 dye conjugated to an RNAi
duplex may function as an imaging tracer.137 Such a design rep-
resents a new way of using dysregulated noncoding RNAs as
specific targets in autophagy-associated therapeutic strategies.
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More information regarding conformation errors and the
improper localization of lipid molecules during phagophore
nucleation and autophagosome formation caused by dysregu-
lated noncoding RNAs will be obtained, and structure, func-
tional polymer and genetic analyses of isolated membranes and
regulatory noncoding RNAs will be undertaken. Ultimately, a
complete understanding of autophagy and noncoding RNAs as
well as relevant applications should be an objective for all scien-
tists working in this field.
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