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Abbreviations
AIF	� Apoptosis inducing factor
ALL	� Acute lymphoblastic leukemia
AML	� Acute myeloid leukemia
ANT	� Adenine nucleotide translocator
Apaf1	� Apoptosis protease activating factor 1
API2	� Apoptotic protein inhibitor 2
Asp	� Aspartate
AVPF	� Alanine–valine–phenylalanine–for-

mic acid
AVPI	� Alanine–valine–phenylalanine–iso-

leucine
Bad	� Bcl-2 associated death promoter
Bak	� Bcl-2 antagonist and killer
Bax	� Bcl-2 associated X protein
Bcl-2 proteins	� B cell lymphoma 2 proteins
Bcl-Xl	� B cell lymphoma-extra large
Bid	� BH3 interacting-domain death 

agonist
Bim	� Bcl-2-like protein 11
BIR domain	� Baculovirus IAP repeat domains
BIRC	� Baculoviral inhibitors of apoptosis 

repeat containing proteins
Bmf	� Bcl-2 modifying factor
BRUCE	� BIR-containing ubiquitin conjugating 

enzyme
BZM	� Bortezomib
CAD	� Caspase activated DNAase

Abstract  Inhibitors of apoptosis (IAPs) are a family of 
proteins that play a significant role in the control of pro-
grammed cell death (PCD). PCD is essential to maintain 
healthy cell turnover within tissue but also to fight disease 
or infection. Uninhibited, IAPs can suppress apoptosis and 
promote cell cycle progression. Therefore, it is unsurpris-
ing that cancer cells demonstrate significantly elevated 
expression levels of IAPs, resulting in improved cell sur-
vival, enhanced tumor growth and subsequent metastasis. 
Therapies to target IAPs in cancer has garnered substantial 
scientific interest and as resistance to anti-cancer agents 
becomes more prevalent, targeting IAPs has become an 
increasingly attractive strategy to re-sensitize cancer cells 
to chemotherapies, antibody based-therapies and TRAIL 
therapy. Antagonism strategies to modulate the actions of 
XIAP, cIAP1/2 and survivin are the central focus of current 
research and this review highlights advances within this 
field with particular emphasis upon the development and 
specificity of second mitochondria-derived activator of cas-
pase (SMAC) mimetics (synthetic analogs of endogenously 
expressed inhibitors of IAPs SMAC/DIABLO). While we 
highlight the potential of SMAC mimetics as effective sin-
gle agent or combinatory therapies to treat cancer we also 
discuss the likely clinical implications of resistance to 
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CARD	� Caspase-recruitment domain
CDDP	� Cisplatin
CD95	� Cluster of differentiation 95
Chk1	� Checkpoint kinase 1
cIAP1	� Cellular inhibitor of apoptosis protein 

1
cIAP2	� Cellular inhibitor of apoptosis protein 

2
CK	� Creatine kinase
CLL	� Chronic lymphocytic leukemia
CML	� Chronic myelogenous leukemia
CypD	� Cyclophilin D
Cys	� Cysteine
Cyt c	� Cytochrome c
dATP	� Deoxyadenosine triphosphate
DISC	� Death-inducing signaling complex
DR4	� Death receptor 4
DR5	� Death receptor 5
FADD	� Fas-associated protein with death 

domain
FasL/R	� Fas ligand/receptor
FLASH	� Flice-associated huge protein
FPVA	� Formic 

acid–phenylalanine–valine–alanine
HCC	� Hepatocellular carcinoma cells
HER2	� Human epidermal growth factor 

receptor 2
HK	� Hexokinase
HIAP2	� Human inhibitor of apoptosis 2
hILP1/2	� Human IAP-like protein 1/2
HRPC	� Human refractory prostate cancer
IAPs	� Inhibitors of apoptosis proteins
IBM	� IAP binding motifs
ILP-1/2	� IAP-like protein 1/2
IMM	� Inner mitochondrial membrane
IPVA	� Isoleucine–phenylalanine–valine–ala-

nine
IV	� Intravenous
KIAP	� Kidney inhibitor of apoptosis protein
LRR domain	� Leucine-rich repeat domain
MALT Lymphoma	� Mucosa-associated lymphoid tissue 

lymphoma
MAP/Akt proteins	� Microtubule associated proteins/pro-

tein kinase B
Mcl-1	� Myeloid cell leukemia 1
MDS	� Myelodysplastic syndromes
MIHA/B/C	� Mammalian homolog of IAP A/B/C
ML-IAP	� Melanoma inhibitor of apoptosis
MOMP	� Mitochondrial outer membrane 

permeabilization
NACHT domain	� NAIP, C2TA, HET-E and TP1 

domain
NAIP	� Neuronal apoptosis inhibitory protein

NFkB pathway	� Nuclear factor kappa beta pathway
Omi/HtrA2	� Temperature requirement protein A2
OMM	� High outer mitochondrial membrane
PBR	� Peripheral benzodiazepine receptor
PBOX-15	� Pyrrolo-1,5-benzoxazepine
PM	� Plasma membrane
PTPs	� Permeability transition pores 

(mitochondrial)
RING domain	� Really interesting new gene domain
RIPK1	� Receptor-interacting serine/threo-

nine-protein kinase 1
RNAi	� Ribonucleic acid interference
ROS	� Reactive oxygen species
SADS	� Small accelerator of death signaling
SAHA	� Suberoylanilide hydroxamic acid
siRNA	� Small interfering RNA
SMAC/DIABLO	� Second mitochondrial derived activa-

tor of caspase/direct inhibitor of 
apoptosis-binding with a low isoelec-
tric point

tBid	� Truncated-bid
TNF	� Tumor necrosis factor
TNF-α	� Tumor necrosis factor alpha
TNFαR1	� TNF-α receptor 1
TNFR	� TNF-α receptor complex
TP53	� Tumor protein 53
TRADD	� TNFRSF1A-associated via death 

domain
TRAF2/5	� TNF-receptor associated factor 2/5
TRAIL	� TNF-related apoptosis-inducing 

ligand
TRAILRI/II	� TRAIL receptor I and II
Ts-IAP	� Testis-specific inhibitor of apoptosis 

protein
VDAC2	� Voltage-dependent anion channel 2
XAF1	� XIAP-associated factor 1
XIAP	� X-linked inhibitor of apoptosis 

protein
XLP	� X-linked proliferative disorder

Introduction

Cancer develops when cell growth exceeds cell death fol-
lowing a loss in control of the fundamental cellular check-
points required to maintain healthy tissue turnover. This 
uninhibited proliferative capacity follows a dysregulation 
in oncogenic expression that results in tumor formation. In 
healthy cells, many of these processes give rise to stimuli 
that promote the induction of apoptosis, most prominently 
regulated by the B cell lymphoma 2 (Bcl-2) family of pro-
teins [1]. However, in cancer pro-apoptotic factors are sup-
pressed and anti-apoptotic proteins, such as the inhibitors 
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of apoptosis proteins (IAPs) are upregulated, promoting 
uncontrolled cell division [2]. This excessive rate of cell 
proliferation gives rise to a hypoxic microenvironment and 
a dysregulation in growth factors, such as vascular endothe-
lial growth factor (VEGF), that promote angiogenesis and 
genetic adaptations that can permit a tumor to thrive [3].

In cancer treatment, this dysregulation is targeted via 
multi-therapeutic approaches that include antibody-based, 
chemo- and radio-therapy. Most recent data from clinical 
trials suggest that both chemotherapy and radiation remain 
best first line therapies for aggressive lung cancer [4], 
reducing tumor size via stress induced apoptosis following 
direct and irreparable physical or chemical damage to DNA 
[5]. Whilst these approaches can be effective in the short 
term, the maximal dosages required to maintain anticancer 
agent or radiation effectiveness can, over time, give rise 
to cancer cells that exhibit chemo- and radio-resistance. 
Evidence suggests that some high dosage chemotherapy 
leads to caspase-independent necroptotic cell death, but it 
remains unclear if toxicity to healthy cells may be a com-
promising factor in its effectiveness [6]. Some cancer cell 
types exhibit intrinsic resistance to chemotherapy drugs, 
often attributed to high endogenous expression of drug 
efflux transporters such as MDR1 [7] and therapies tar-
geting efflux systems are now in their third generation of 
development [8]. To combat both intrinsic and acquired 
chemoresistance, and thus prevent the eventual invincibil-
ity of cancer cells, it is important to better understand the 
role that caspase-mediated apoptosis plays in cancer agent 
mediated cell death pathways and chemoresistance.

In line with this, the expression and function of anti-
apoptotic and pro-apoptotic proteins have long been con-
sidered as potential strategies to target cancer pathogenesis 
via inhibitors and activators, respectively [9]. Already in 
combinatory cancer treatment, data from clinical studies 
suggest that classical chemotherapeutic drugs such as pacli-
taxel exert a synergetic action with pro-apoptotic agents 
like bortezomib to improve patient survival in radio-resist-
ant non-small cell lung cancer [10]. In the same regard, 
it has been proposed that targeting IAPs could be equally 
helpful in combinatory therapy against cancer. Further-
more, modulation of their expression can facilitate direct 
targeting of the cell’s apoptotic machinery to improve cell 
death [11]. In relation to chemo-sensitization, IAP modula-
tion is particularly attractive because it bypasses upstream 
signaling pathways that may be impaired by resistance 
focusing on target initiator and effector caspases.

This review focuses on the role of IAPs in drug resist-
ance and how to overcome it. To address this, the merits 
of mono-therapy with IAP-antagonists and combinatorial 
treatments with chemotherapeutic agents will be discussed. 
Within a wider perspective, the role of other small molecu-
lar inhibitors used in cancer treatment and their potential 

for co-treatment to target IAPs will be explored. Further-
more, given that some cancer cell types exhibit intrinsic 
resistance, it will explore the consequences of acquired 
resistance to IAP-antagonists and small molecular inhibi-
tors in cancer treatment.

The central questions of this review are:

1.	 How best to target IAPs to overcome drug resistance?
2.	 How to tackle acquired resistance to IAP antagonism?

These are important questions in the field of cancer treat-
ment and their answers will help to develop more efficient 
therapies for patients with acquired and intrinsic chemore-
sistance. Moreover, enhanced therapeutic approaches may 
improve patient survival in previously difficult to treat or 
aggressive cancers.

Apoptosis pathways and cancer

Cancer cells are more resistant to apoptotic cell death, 
allowing them to bypass critical biological checkpoints 
that normally maintain cell turnover in healthy tissues. 
Specifically, checkpoints can fail following an introduc-
tion of mutations in apoptotic genes such as p53, or DNA-
repair genes like Brac1/2 [12]. Given this, it is unsurprising 
that the administration of high dose anti-cancer therapies 
required to kill defective cells can indirectly induce apop-
totic cell death in ‘vulnerable’ healthy tissues, producing 
unwanted side effects. For example, the effect of platinum-
based chemotherapy on gastrointestinal tissue health is of 
particular concern and can be a major hindrance to the suc-
cess of therapeutic regimens in the clinic [13]. Taking this 
together, it is suggested that direct manipulation of apop-
totic pathways via IAP antagonism can offer a safer alterna-
tive that has limited effect on apoptosis in non-cancer cells 
that do not highly express IAPs [14].

There are two major ways in which caspase-dependent 
apoptosis can be induced; the first is via an activation of 
the intrinsic apoptotic pathway (also known as the mito-
chondrial apoptotic pathway) and the second involves 
activation of the extrinsic pathway (also known as the 
death receptor or transmembrane apoptotic pathway) 
[15] (Fig. 1). Though induced differently, cross-talk can 
facilitate amplification of the extrinsic pathway via the 
intrinsic pathway, known as the mitochondrial amplifica-
tion loop [16]. Crucially, both pathways converge at the 
effector caspase level. Initiator caspases involved in the 
extrinsic pathway are caspase 8 and caspase 10, while the 
caspases involved in the intrinsic pathway are caspase 9 
and 2. Caspase 3 and 7 are terminal effectors that execute 
apoptosis in response to stimuli from both intrinsic and 
extrinsic pathways. Evidence suggests the role of effector 
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caspases are extremely wide ranging and their protease 
activity has been demonstrated in >400 distinct sub-
strates. Examples include reduction of cellular adhesion 
proteins such as α-adducin and β-catenin to initiate cell 
detachment, to subsequent and systematic ‘cell demoli-
tion’ via targeting of scaffolding proteins like ROCK and 
chemotactic factor release that encourages the infiltration 
of phagocytic cells [17, 18].

The extrinsic apoptotic pathway

The extrinsic pathway is activated by the binding of ‘death’ 
ligands to transmembrane receptors. The most prominent 
examples of these include the trimeric Fas ligand (FasL) 
and tumor necrosis factor (TNF), which bind to the Fas 
receptor (CD95/apoptosis-1R) and the tumor necrosis fac-
tor receptor (TNFR), respectively (Fig. 1). During receptor 

Fig. 1   Schematic illustration of the extrinsic and intrinsic apoptotic 
pathways, as well as the inhibitory effect of various IAPs on pro-
apoptotic molecules. Extrinsic apoptotic pathway initiated by bind-
ing of death ligands, such as FasL or tumor necrosis factor (TNF) 
to death receptors located on the plasma membrane. This reaction is 
followed by the recruitment and binding of molecules like Fas-asso-
ciated death domain protein (FADD) or tumor necrosis factor recep-
tor type 1-associated death domain protein (TRADD) to the cytosolic 
domain of death receptors. Death-inducing signaling complex (DISC) 
is formed by death receptor, FADD and caspase 8. DISC formation 
initiates the signal transduction that culminates in apoptosis via cas-
pase 3/7 activation. Active caspases can enhance apoptosis via cleav-
age of Bid to tBid; a cross-talk facilitator that mediates the mito-

chondrial amplification loop. The truncated Bid (t-Bid) promotes the 
release of cytochrome c, via Bax, in mitochondria. The intrinsic path-
way, is initiated within at the outer mitochondrial membrane (OMM) 
in response to cellular stress. As a result, these mediate mitochon-
drial permeability via interaction ‘pro-apoptotic’ Bcl-2 proteins to 
stimulate release of cytochrome c and SMAC, which bind and inhibit 
IAPs. Cytochrome c, Apaf-1 and ATP binds to pro caspase 9 leading 
to apoptosome formation and activation of caspase 9, which in turn 
activate caspase 3 permitting the cell to proceed to apoptosis. IAPs 
are endogenous inhibitors of apoptosis identified in humans. The fam-
ily members XIAP, cIAP1, cIAP2, NAIP, Livin and Survivin and 
BRUCE can bind caspases to block apoptosis. Importantly, their dys-
regulated expression is associated with cancer and chemoresistance
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activation, the cytoplasmic domain of the ligand bound 
receptor complex associates with the death domain (FADD) 
of an adaptor molecule (Fas-associated protein) to enable 
binding to caspase 8. This facilitates oligomerization and 
association of death domains on the adaptor molecules with 
those on the zymogenic pro-caspase 8. Together they form 
the death-inducing signaling complex (DISC) [19]. DISC 
mediates autocatalysis and thus, activation of pro-caspase 
8 to caspase 8 which initiates the signaling cascade result-
ing in auto-activation of terminal effector caspases 3 or 7, 
responsible for the definitive apoptosis signal.

A similar pathway is activated when TNF binds to 
TNFR, instead promoting association of the TNFR 
cytoplasmic domain with adaptor molecule TRADD 
(TNFRSF1A associated via death domain) and pro-cas-
pase 8 [19]. Other intracellular signaling proteins associ-
ated with this pathway can either be pro- or anti-apoptotic 
in nature. For example, the Flice-associated huge protein 
(FLASH) and the small accelerator of death signaling 
(SADS) are understood to aid recruitment of pro-caspase 
8 to the DISC complex, promoting apoptosis [20]. On the 
other hand, dysregulation of expression of the protein Bid, 
responsible for cross-talk between the extrinsic and intrin-
sic apoptotic pathway (activating the mitochondrial ampli-
fication loop), has been shown to potentiate apoptotic sur-
vival in hepatocytes [21].

The intrinsic apoptotic pathway

The intrinsic apoptotic pathway is controlled by the Bcl-2 
superfamily that initiate the release of pro-apoptotic pro-
teins from the mitochondrial intra-membrane space [22] 
(Fig. 1). This includes the efflux of cytochrome c (Cyto c), 
second mitochondria-derived activator of caspase/direct 
inhibitor of apoptosis-binding protein with a low isoelec-
tric point (SMAC/DIABLO) and high temperature require-
ment protein A2 (Omi/HtrA2). Bax proteins, belonging to 
the Bcl-2 superfamily (discussed further, Fig. 1.) are under-
stood to mediate the opening mitochondrial permeability 
transition pores (PTPs), disrupting the mitochondrial trans-
membrane potential and permeability [22]. Often found to 
be upregulated in cancer and chemoresistance [23], anti-
apoptotic Bcl-2 proteins such as Bcl-2, Bcl-XL and Mcl-1 
inhibit Bax activation [22].

Currently, the exact mechanism of Cyto c release from 
the mitochondrial membrane space into the cytosol is not 
completely understood. Specifically, it is not clear if Cyto 
c release precedes or follows the opening of PTPs. While 
the general consensus suggests that Bcl-2 proteins facilitate 
pore opening [24], some research suggests that Cyto c play 
a role in maintaining the mitochondrial membrane potential 
and drives ATP synthesis following an opening of the pores 
[25]. There are three major types of Bcl-2 protein families; 

‘the Bcl-2 anti-apoptotic proteins’, ‘the multi-domain pro-
apoptotic proteins’ and the ‘BH3-only pro-apoptotic pro-
teins’. The most prominent, Bax and Bak, belong to the 
‘multi-domain’ family and their pro-apoptotic effect can 
be augmented by members of the ‘BH3-only’ family. BH3-
only proteins such as Bim, Bmf, Bad, Bid and Noxa also 
activate apoptotic machinery by neutralizing the anti-apop-
totic Bcl-2 proteins [26].

As previously noted, Bax proteins permeabilize the outer 
mitochondrial membrane and it is thought that this occurs 
following translocation of monomeric Bax from the cytosol 
to the mitochondria [27]. It is still unclear what promotes 
this translocation, but evidence suggests that alterations 
in pH may be of importance [28]. Evidence also suggests 
that Bax undergoes a conformational change, oligomer-
izes with Bak and undergoes insertion into the outer mito-
chondrial membrane via it carboxyl terminus [29]. This is 
a rapid association mediated by a pro-apoptotic Bcl-2 pro-
tein called tBid, which can sometimes be inhibited when 
tBid is bound to Bcl-XL [30]. Contrastingly, Bax can be 
anchored to voltage-dependent anion channel 2 (VDAC2) 
on the outer mitochondrial membrane, preventing pore 
opening [31]. Most recent evidence suggests that VDAC 
may provide the molecular platform for Bax retrotransloca-
tion to the cytosol following the initiation of pro-survival 
pathways [32].

Cyto c release into the cytosol is facilitated by its bind-
ing to dATP and apoptosis protease activating factor 1 
(Apaf1) to form a multimeric complex known as an apop-
tosome, which has a function similar to that of DISC in 
the extrinsic pathway (Fig.  1). This apoptosome recruits 
pro-caspase 9 by interacting with its caspase-recruitment 
domain (CARD) to cause autocatalysis and activation of 
caspase 9, initiating the caspase signaling cascade. Even-
tually, effector caspase 3 is activated and apoptosis is 
induced [22]. The intrinsic apoptotic pathway also initi-
ates caspase-independent apoptosis. Mitochondrial pro-
teins such as Omi/HtrA2 and the apoptosis inducing factor 
(AIF) are able to initiate caspase-independent apoptosis via 
programmed cell death (PCD) [33]. Whilst caspase-inde-
pendent mechanisms of PCD remain least well understood, 
in vitro evidence suggests that targeting these proteins and 
other caspase-independent signaling like RIPK-3 medi-
ated necroptosis could potentiate cancer cell death and thus 
supersede the requirement to modulate caspase activity, at 
least via the intrinsic pathway [33, 34]. However, the mech-
anisms governing the initiation of necroptosis mediated cell 
death are so far unexplored in vivo and the repercussions 
of its potential pro-inflammatory nature have not been fully 
elucidated [34, 35].

The extrinsic and intrinsic apoptotic pathways induced 
in response to chemotherapy or radiotherapy indirectly 
induce caspase-dependent apoptosis in cancer cells. 
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Terminal caspases 3 and 7 activate nucleases, cytoplas-
mic substrates and multiple degradation enzymes to trig-
ger PCD [36]. Importantly, IAPs prohibit the activation 
of caspase 3 and 7 following activation of extrinsic and 
intrinsic pathways of apoptosis, alike. Targeting molecules 
such as IAPs will relieve the inhibitory stress on caspases 
and encourage unhealthy chemotherapy-resistant cells to 
undergo cell death via apoptosis.

Inhibitors of apoptosis (IAPs)

The execution of extrinsic (death receptor) and intrinsic 
(mitochondrial) apoptotic signals are modulated by a fam-
ily of structurally distinct IAPs; X-linked (XIAP), cellular 
(cIAP1, cIAP2), neuronal (NIAP), testis specific (Ts-IAP), 
Bir-ubiquitin conjugating enzyme (BRUCE), Survivin and 
Livin. Structurally, IAPs are approximately 70 amino acids 
long and contain zinc finger Baculovirus IAP Repeat (BIR) 
domains that are responsible for the inhibitory properties 
of IAPs as they prevent the conversion of zymogenic pro-
caspases to active caspases [37]. Whilst IAPs are expressed 
basally, their expression is preferentially upregulated in 
both disease and drug resistance. For example, significantly 
higher expression of all IAP family members was reported 
in a subset of CD133+ glioblastoma stem cells exhibiting 
resistance to temozolomide, carboplatin and paclitaxel [38]. 
Notably, the expression of XIAP and cIAP1 was 21.9 and 
39.0-fold higher in resistant compared to sensitive cells, 
respectively [38]. The characteristics of each IAP member, 
inclusive of alternative names, structure and expression 
profiles are outlined in Table 1.

Therapeutic modulation of cells overexpressing IAPs 
can be approached in multiple ways; by down-regulating 
their expression to potentiate cell death when apoptotic 
stimuli are present, or via an up-regulation of natural pro-
apoptotic proteins such as Bax, TNF-α or FasL, or by direct 
inhibition of IAPs action on caspases [92]. Therapeutics 
that directly antagonize IAPs, or over-express, mimic and 
increase the potency of pro-apoptotic proteins have been 
the most widely accessible strategies to date. Dependent on 
their efficacy, these approaches could work mono-therapeu-
tically or to re-sensitize cancer cells to chemotherapeutic 
agents by synergizing with them with combinatorial thera-
pies (discussed later, see Table 2).

Modes of direct IAP antagonism

Studies assessing knockout strategies in cancer cells with 
high endogenous expression of IAPs have been essential in 
highlighting their role in the maintenance of resistance to 
various anti-cancer therapies. For example, shRNA medi-
ated knockdown of XIAP re-sensitized ovarian cancer 

cells to cisplatin therapy and suppressed tumorigenicity 
in nude mice via increased apoptosis [113]. Similar find-
ings of reduced tumorigenicity, reduced angiogenesis and 
improved apoptosis were reported following shRNA medi-
ated knockdown of Survivin in breast and ovarian carci-
noma in  vivo [114]. In the clinic, phase II trials initially 
reported successful outcome in acute myeloid leukemia 
(AML) patients undergoing therapy using antisense oligo-
nucleotide AEG35156 that target XIAP [115, 116]. Despite 
this initial success and confirmed on-target knockdown 
[116], a later trial failed to report a similarly improved out-
come in patients with advanced pancreatic cancer [117]. 
Whilst gene silencing is attractive prospect, its potential 
clinical relevance is limited by lower knockdown efficiency 
in patient samples, compared to those demonstrated in cell 
culture [115] and by the transient nature of XIAP repres-
sion [117]. Still, strategies for RNAi remain important tools 
to dissect the mechanistic and functional role of IAPs in 
cancer.

Primary IAP antagonists are SMAC mimetics. These are 
synthetic mimics of an endogenous second mitochondria-
derived activator of caspase/direct IAP binding protein 
with low pI (SMAC/DIABLO) protein, a natural inhibitor 
of IAPs [118, 119]. Endogenous SMAC/DIABLO exerts 
its inhibitory effect on IAPs by binding to the zinc-binding 
baculovirus IAP repeat (BIR) domain of X-chromosome-
linked IAP (XIAP) [120], competitively inhibiting its 
binding with effector caspases-9, 3 and 7, thus preventing 
their inhibition. Therefore, active caspases remain active 
and PCD can occur. SMAC binding to IAPs is facili-
tated by the interaction of its 4  N-terminal residues (ala-
nine–valine–phenylalanine–isoleucine) with BIR domains 
on XIAP [120] (Fig. 2).

SMAC/DIABLO can also bind to BIR domains of cel-
lular IAPs (cIAPs), promoting their ubiquitination and 
proteasomal degradation. In turn, this can stimulate the 
production of TNF-alpha which sensitizes the cell to TNF-
alpha dependent apoptosis, further promoting cell death 
[121]. Although SMAC/DIABLO targets both cIAP and 
XIAP, it has a greater affinity for the BIR3 domain of XIAP 
than for the BIR2 domain of cIAPs [122]. Therefore, antag-
onist action of SMAC mimetics may be optimal in target-
ing the BIR3 domain of XIAP. However, it is still unclear 
if single agent therapy is more effective than combinato-
rial therapy. Figure 2 schematically outlines the structural 
characteristics of two highly expressed and prominently 
targeted IAP proteins in cancer; XIAP and cIAP1/2. It 
also highlights various modes of therapeutic intervention 
explored to modulate their actions.

Survivin and BRUCE are other prominent IAPs. Out-
lined in Table 1, these are structurally unique owing to only 
one BIR domain and therefore, are less easily targeted via 
SMAC mimetics. Survivin and BRUCE are mechanistically 
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different to other IAPs in that they regulate cytokinesis and 
multiple mitochondria-mediated signaling pathways, rather 
than apoptosis (reviewed in [92]). It has been reported that 
survivin can form a complex with XIAP to improve its sta-
bility as an apoptosis suppressor [123] and metastasis pro-
motor [124]. However, it was shown that XIAP antagonist 
XAF1 can displace survivin to improve tumor cell death 
[125]. High survivin expression has been reported as the 
cell’s “Achilles heel” in chemoresistance and it has been 
suggested as a prominent gene to target anti-cancer ther-
apy resistance in neuroblastoma [126, 127]. shRNA medi-
ated knockdown of survivin is an effective strategy to re-
sensitize H292 lung cancer cells to cisplatin therapy [110]. 
Ardisianone, a natural benzoquinone, demonstrated a time-
dependent a degradation of survivin and upregulation of 
cLAP1/2 expression in human refractory prostate cancer 
(HRPC) cell lines PC-3 and DU-145 following [128]. In 
a concentration-dependent manner, this molecule inhib-
ited cell proliferation and induced both caspase-dependent 
and caspase-independent apoptosis via down-regulating 
Bcl-2 proteins, producing ROS, disrupting the mitochon-
drial membrane potential and interfering with the PI3K/Akt 
signaling pathway [128]. Given its ability to upregulate IAP 
expression, ardisianone might be a promising candidate for 
acquired chemotherapy- or IAP-antagonist resistance.

Novel SMAC mimetic design

Whilst endogenous SMAC/DIABLO exerts its actions 
within micromolar ranges, SMAC mimetics such as 
AT-406 are more efficacious. This monomeric class of 
SMAC inhibitors exhibit strong binding affinities with 
XIAP and cIAP1/2 at nanomolar ranges [93]. To exert sup-
raphysiological effects, researchers are continually working 
to improve the potency and apoptotic efficiency of novel 
SMAC mimetics to abolish drug resistance [129]. Reports 
of improved analogs resulted from the development of a 
second class of bivalent SMAC mimics that targeted more 
than one BIR domain region on XIAP, improving the rate 
of apoptosis [130]. A good example of a successful biva-
lent SMAC mimetic is ‘Birinapant’, currently undergoing 
phase 1 and 2 clinical trial for the treatment of ovarian can-
cer (Medivir, 2017) (outlined in Table 2).

Alternatively, researchers mutated the AVPI N-terminal 
sequence of SMAC which binds to the BIR domains of 
IAPs to IPVA (isoleucine–phenylalanine–valine–alanine) 
and FPVA (formic acid–phenylalanine–aline–alanine) 
using predictive computational analysis and induced fit 
docking models (Gold-score software). By doing so, the 
l-amino acids were substituted to d-amino acids, stabiliz-
ing the hydrophobic interaction of the SMAC mimetic 
within the IAP binding pocket whilst also preventing pro-
teolytic action via XIAP BIR3 domains [131]. Results Ta
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suggested that FPVA and AVPF were able to induce sig-
nificantly improved apoptosis in L1236 cells and AVPF and 
AVPI sensitized etoposide resistance in L136 cells [131]. 
This computational approach provided an accurate predic-
tive model for mutational analysis and as more information 
regarding SMAC mimetics becomes available, this can be 
further improved upon in future. Furthermore, the ability 
to dock inhibitors to the BIR3 domain of XIAP, instead of 
BIR2, better mimics the endogenous SMAC protein which 
has a higher affinity for BIR3 than BIR2 [131]. In this man-
ner, apoptosis mediated by the binding between the retro-
inverse SMAC peptide and the BIR3 domain of XIAP 
was greatly optimized. Favorably, these authors utilized 
Hodgkin Lymphoma cell lines L1236 and L428, with high 
endogenous expression of XIAP [131]. In going forward, it 
will be useful to assess the efficacy of retro-inverse SMAC 
peptides in alternative cancer cells types with varying lev-
els of XIAP expression.

Specificity of SMAC mimetics

As discussed, SMAC peptides that utilize XIAP as an IAP 
of interest whilst focusing on targeting the BIR3 domain of 
XIAP are most favorable as direct inhibitors of downstream 
caspases. XIAP inhibits both the extrinsic and intrinsic 
apoptotic pathways via direct inhibition of caspases, unlike 
cIAP1/2 which acts via proteasomal degradation or ubiq-
uitination and may be limited by its initiation of cell pro-
tective effects via NF-kB signaling [132]. Critically, XIAP 
expression is up-regulated in a number of different types of 
cancers, some of which are intrinsically resistant to chem-
otherapy. Therefore, XIAP antagonism can be a powerful 
strategy to overcome chemo-resistance across a variety of 
cancers and a number of current IAP-antagonist strategies 
involve XIAP down-regulation or inhibition to promote 
cancer cell survival. Examples of compounds in develop-
ment that target XIAP include SM-12d, Compound 21, 
AT-406 (Ascenta Therapeutics), LCL-161 (Novartis Phar-
maceuticals), GDC-0152 (Genentech), GDC-0197 (Genen-
tech), SM-164, Birinapant/ TL32711 (Tetralogic Pharma-
ceuticals), HGS1029, LBW-242, Compound 10 (Aegera 
Therapeutics), Compound 24 (Allist Pharmaceuticals) and 
Compound 1A (Genentech). Table 2 further outlines a list 
of prominent SMAC mimetics, their targets, cancer treat-
ment profiles and progress in clinical trials.

It is important to note that whilst SMAC/DIABLO has 
better affinity for BIR3 and thus is a direct inhibitor of 
caspase 9 activation, the BIR2 domain is responsible for 
inhibiting terminal caspases 3 and 7 [133]. This research 
suggests that it could be advantageous to design novel, 
eqipotent mimetics that can target BIR2, thus facilitating 
modulation of both the intrinsic and extrinsic apoptotic 
pathways to amplify its effect. The specificity of various 

SMAC mimetics for BIR3 and its subsequent increased 
potency is outlined in detail in recent a patent review [134]. 
Some examples of patented potent molecules include the 
monovalent SMAC mimetic WO2014060767 (Astex Phar-
maceuticals) which demonstrated 100% inhibition of cIAP1 
BIR3 activity at concentrations as low as 12 nM, and 94% 
inhibition of XIAP BIR3 activity at 40 nM [134]. Interest-
ingly, WO2014060767 is one of the few AVPI IAP antag-
onists without an alanine warhead in the SMAC peptide 
sequence. This approach is purported to create a more bal-
anced binding affinity between XIAP and cIAP via a slight 
alteration in H-bond charge affinity that does not interfere 
too heavily with the conserved backbone of the molecule 
[135]. Other SMAC mimetic without an alanine warhead 
include WO2014060768 (Astex Pharmaceuticals) and 
WO2014060770 (Astex Pharmaceuticals), which are both 
potent SMAC inhibitors able to inhibit cIAP 1 and XIAP 
activity at low concentrations via binding at their respective 
BIR3 domains [134].

An example of a potent monovalent SMAC mimetic 
selective for cIAP1 BIR3 is Takeda’s JP2012176934 Com-
pound 21. This small molecule inhibited 99% of cIAP1 
activity at 3 µM whilst also inhibiting the proliferation of a 
MDA-MB-231 breast cancer cell line by 93% at concentra-
tions as low as 0.1 µM [134]. Although claimed to exhibit 
substantial steric hindrance, some XIAP BIR2 selec-
tive monovalent SMAC mimetics also display extremely 
high potencies. Examples of these include Roche’s 
WO2014023708 Compound ‘1d’ and WO2014026882 
which demonstrate IC50s as low as 0.029 and 0.013  µM, 
respectively [134]. Importantly, these molecules might be 
excellent candidates for combination therapy with anti-
cancer agents, especially given that some are shown to 
reduce cell proliferation which can slow, or even halt tumor 
growth. However, their potential to overcome acquired and 
intrinsic chemotherapy resistance is so far unreported.

Some researchers suggest that the involvement of IAP 
regulation in bone metastasis and osteoclast differen-
tiation might demonstrate significant clinical implications 
for patients undergoing IAP antagonist treatment [136]. 
They discussed the implications of targeting cIAPs and its 
actions on the alternative NF-kB signaling pathway that 
promote osteoclastogenesis via NIK stabilization and sub-
sequent activation of differentiation inducing transcription 
factors such as NFATc1 [136]. These observations followed 
their study on the use of SMAC mimetic, BV6, in mouse 
model demonstrating both osteoporosis and increased 
tumor growth when 4T1 breast cancer cells were injected 
into the tibia [137]. Importantly, this tumorigenesis was 
limited to the bone-microenvironment and could be over-
come by combining IAP antagonists with the antiresorp-
tive drug, zoledronic acid [137]. Given that recent in vitro 
data reveals BV6 as a promising and effective single or 
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Fig. 2   Downstream apoptotic pathways decide cell fate. In physi-
ological conditions, IAPs mediate cell and tissue homeostasis by 
mediating apoptosis. a In normal conditions, caspases are uninhibited 
and the cell under goes apoptosis and b In cancer pathology, the cell 
escapes apoptosis and proceeds to tumor formation. IAPs are endog-
enous proteins that inactivate caspases via direct binding, preventing 
apoptosis thus contributing to oncogenesis and resistance to therapy. 

c Strategies to target IAPs for anti-cancer therapy include RNA 
knockdown, small molecule inhibitors and SMAC mimetics. SMAC 
mimetics are listed by their affinity for either XIAP or cIAP1/2 
(RED). Also highlighted are various pro-apoptotic factors, often used 
as parameters, and targets, of successful combinatory therapies that 
promote apoptosis
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combinatory therapeutic agent in re-sensitizing acute 
lymphoblastic leukemia (ALL) cells to chemotherapies 
[138], more information on the efficacy of SMAC mimetic 
in in vivo settings will be essential as this field progresses.

SMAC mimetic resistance

Despite the fact that SMAC mimetics are designed to 
mimic their endogenous counterparts, albeit with improved 
potency, there are some cell types that exhibit intrinsic 
resistance to these synthetic compounds—often alongside 
resistance to chemotherapeutic agents.

An example of this phenomenon includes chronic lym-
phocytic leukemia (CLL) cells that are especially resistant 
to SMAC mimetics targeting cIAP1/cIAP2 activity [139]. 
It is understood that their resistance to SMAC mimetics, 
and possibly to chemotherapeutic agents, may be attrib-
uted to an elevation in aberrant NF-kB activity in ripop-
tosome-lacking CLL cells [139]. In cells lines sensitive 
to cIAP1/2 antagonizing SMAC mimetics, resistance to 
chemotherapy drugs can be overcome by TNF-α-mediated 
apoptosis following ripoptosome formation [140]. As the 
SMAC mimetic antagonizes, ubiquitylates and degrades 
cIAP1/2, a ripoptosome complex is formed via the assem-
blage of RIPK1 (receptor-interacting serine/threonine-pro-
tein kinase 1), FADD (Fas-associated protein with death 
domain), FLICE-like inhibitory protein and caspase-8, 
and can initiate autocatalysis and activation of caspase-8, 
which, in turn results in a sensitization to TNF-α-dependent 
apoptotic cell death [141]. However, resistant-CLL cells 
are unable to associate with one another to form a ripto-
some complex, despite degradation of cIAP1/2 by SMAC 
mimetic to induce TNF-α production and the presence of 
RIPK1, FADD, FLICE-like inhibitory protein and cas-
pase-8 [139]. In this case, caspase-8 activation is reduced 
and the apoptosis-inducing caspase-cascade is minimized, 
rendering CLL cells resistant to SMAC mimetics.

Studies have reported that prolonged exposure (>3  h) 
of cancer cells to SMAC mimetic treatment results in 
increased expression levels of cIAP2 in CLL cells [139], 
lung carcinoma cells [140], colon carcinoma and mela-
noma carcinoma cells [142]. It was hypothesized that an 
increase in cIAP2 may be required for maintenance of 
resistance in these cell lines and therefore, this was more 
closely examined via PI3K inhibitor LY294002, known to 
suppress cIAP2 expression [139]. Whilst SMAC mimetic 
sensitivity was restored in lung carcinoma cells [140], it did 
not yield similar results in CLL cells [139]. These results 
suggest that targeting PI3K and NF-kB may be more use-
ful in some cancer cell types than others, and that other 
factors modulating cIAP expression may be of relevance 
to the development and maintenance of SMAC mimetic 
resistance in CLL cells. Although it is clear that CLL cells 

do not respond to cIAP specific SMAC mimetics such as 
Compound A [139], the BIR3 specific SMAC mimetic (i.e. 
XIAP targeted) Smac066 improves sensitivity in CLL cells 
[143].

Of note, the implications of targeting cIAP1/2 mediated 
cell death in hematopoietic malignancies, such as CLL, 
remain controversial. Authors Lau and Pratt proposed that 
the effect of cIAPs on a cells physiological state is largely 
context-dependent, suggesting that whilst targeting cIAPs 
largely suppress tumorigenesis via their classical signaling 
action on caspases, the subsequent ubiquitination of cIAP 
can lead to constitutive NF-kB signaling, NIK ubiquitina-
tion, cell proliferation and tumor progression via a down-
regulation in pro-apoptotic p53 signaling [132]. Others 
suggest that cIAP targeting may have positive therapeutic 
synergy with cancer vaccines following a rapid sensitiza-
tion to TNF-α signaling [144]. It will be important to con-
sider targeting alternative pathways to address resistance 
to cIAP targeted SMAC mimetics in going forward. These 
might include further research into TNF-α mediated cas-
pase-independent necroptosis, reported in apoptotic resist-
ant cells lacking both FADD and caspase-8 expression that 
were stimulated and re-sensitized with the bivalent SMAC 
mimetic BV6 [145].

Combinatory therapies to overcome resistance

IAP antagonism and chemotherapy resistance

In recent years, in  vitro studies have demonstrated that 
SMAC mimetics, in combination with anticancer drugs 
and TRAIL (TNF-related apoptosis-inducing ligand) can 
effectively enhance apoptosis and cell death in numerous 
cancer cell types, including T98G glioblastoma cells [146], 
HeLa cells [147] and lung adenocarcinomas [148]. Early 
research suggested that SMAC mimetics could enhance the 
sensitivity of anticancer agents’ paclitaxel, etoposide and 
doxorubicin in MCF-7 breast cancer cells [149]. Subse-
quently, researchers continued to investigate novel analogs 
of SMAC mimetics, revealing that SMAC mimetic also 
sensitized breast cancer cells to TRAIL-induced apoptosis 
treatment [150]. These results showed that growth was sup-
pressed but apoptosis was not induced in some cell lines, 
such as T47D and MDA-MB-453, questioning their rel-
evance to apoptosis-related cell death pathways [150].

Promising results have been shown for AT-406, an oral 
SMAC mimetic, in the sensitization of platinum based 
chemotherapy drugs such as carboplatin, cisplatin and 
paclitaxel in ovarian cancer cells [109]. Whilst AT-406 
was an effective single agent for the treatment of OVCAR-
8, SKOV-3, and OVCAR-3ip carboplatin-resistant ovarian 
cancer, the most promising results indicated sensitization 
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to platinum resistant phenotypes in vitro and in vivo [109]. 
Induction of AT-406 mediated apoptosis in chemoresist-
ance is understood to occur via downregulated expression 
of cellular XIAP, whereas cIAP1/2 degradation occurs in 
both sensitive and resistant cell lines [109]. XIAP dysregu-
lation highlights AT-406 as an attractive SMAC mimetic, 
given that XIAP is an inhibitor of both intrinsic and extrin-
sic apoptotic pathways. Targeting both expression and inhi-
bition via one compound truly maximizes its potential as an 
antagonist of IAPs. Refer to Table 2 for a clinical profile of 
AT-406.

Research to compare the effectiveness of SMAC 
mimetic analogs across differential cancer cell types are 
currently lacking. Bockbrader and colleagues demon-
strated similar responses across multiple breast cancer cell 
types, and this is promising for broad spectrum breast can-
cer treatment [150]. However, future studies encompass-
ing SMAC mimetic treatment across various cancer cell 
types will be essential. Within the last 5 years, potential 
therapeutic indications for small molecule inhibitor FL118 
understood to act via inhibition of survivin, XIAP, cIAPs 
and Mcl-1 was reported [151]. This study demonstrated 
superior anti-tumorigenic activity in colon, lung, breast and 
prostate cancer cells exhibiting resistance to a range of first 
line chemotherapies. Moreover, these findings were rep-
licated in a mouse model of head and neck cancer [151]. 
Researchers have now begun to investigate clinically com-
patible formulations of FL188, improving its toxicity and 
bioavailability [152].

In some instances, the discussed therapies may be inef-
fective as single-agents. When this occurs, combinatorial 
treatments should be explored. For example, the orally 
active SMAC mimetic LCL161 has been demonstrated to 
synergize with paclitaxel to restore chemosensitivity in 
hepatocellular carcinoma cells (HCCs) [110]. Other stud-
ies have demonstrated that the effectiveness of LCL161 
was dependent on a low level of Bcl-2 protein expression 
in HCC cells [153]. However, despite relatively low Bcl-2 
expression, hepatocellular carcinoma cell lines SNU423 
and HuH7 were both intrinsically resistant to LCL161 
[110]. This suggests that there may be more mechanisms 
contributing to SMAC resistance in hepatocellular carci-
noma. This is currently unclear and research into alterna-
tive SMAC mimetic resistant cell types is needed. Even 
in combination with paclitaxel, apoptosis via LCL161 
was induced with markedly low potency in SNU423 and 
HuH7 cells (>100  µM), [110]. Interestingly, as apopto-
sis increased, a decrease in cell proliferation was also 
reported, but XIAP and cIAP1/2 levels were unchanged. 
This might suggest that whilst combinatorial treatment 
enhanced the anti-proliferative effects in HCC cells, the 
pro-apoptotic effects may not solely be a result of IAP 
inhibition [110]. Of most concern, a recent study reported 

of a lymphoma mouse model that exhibited accelerated 
disease growth following treatment with LCL161, sug-
gesting major contraindications for cLAP1/2 targeting 
via LCL161 in lymphoma [154]. In these instances, it 
is important to question the clinical relevance of SMAC 
mimetics targeting cIAPs for caspase-mediated apopto-
sis, given their potential to garner off-target effects via 
NF-kB signaling. Despite these concerns, several ongo-
ing clinical trials are currently exploring LCL161 as a 
single and combinatory agent in the treatment of various 
cancers (Table 2).

TRAIL resistance

TNF-related apoptosis-inducing ligand (TRAIL) binds 
to death receptors DR4 (TRAILRI) and DR5 (TRAIL-
RII) on the cell membrane to induce apoptosis in can-
cer cells (refer to Fig.  1 for more detail on the cellular 
mechanism of TRAIL-induced apoptosis). When TRAIL 
associates with its receptor, there is a caspase-8 mediated 
cleavage of Bid, which becomes truncated-Bid (t-Bid) 
and promotes the activation of Bax [155]. This provides 
cross-talk between the extrinsic and intrinsic pathways, 
known as the mitochondrial amplification loop [15, 16]. 
Subsequently, mitochondrial PTPs release cytochrome 
c and the apoptosome is formed after aggregation of 
cytochrome c, pro-caspase-9, dATP and Apaf-1. This 
apoptotic caspase-cascade is initiated via the intrinsic 
apoptotic pathway [155].

Cells that respond to TRAIL signaling are categorized 
into two types; ‘type 2’ cells, such as hepatocytes and 
HCT-116 cells, require mitochondrial amplification (via 
intrinsic pathway) of the TRAIL death signal and ‘type 1’ 
cells, such as thymocytes, do not [156, 157]. Importantly, 
type 2 cells can become resistant to TRAIL therapy if 
anti-apoptotic members of the intrinsic apoptosis path-
way, like Bcl-2, become dysregulated [158].

Cancer cells are reported to highly express TRAIL 
receptors, specifically DR4 and DR5, while healthy cells 
merely express ‘decoy’ receptors DcR1 and DcR2 [156]. 
Thus, TRAIL-induced apoptosis is an attractive way to 
combat cancer since it is highly specific for cancer cells 
and takes advantage of the patient’s immune cells, which 
also highly express these receptors [159]. Importantly, 
this minimizes cytotoxicity to normal, healthy tissue. 
Regardless of the immuno-modulatory function and spec-
ificity of TRAIL-therapy, many cancer cells are resist-
ant to TRAIL following inadequate signal amplification 
via the intrinsic apoptosis pathway. A primary example 
of TRAIL resistance exists in ‘type 2’ colon cancer cells 
HCT-116 harboring a deficiency in Bax [160].
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IAP antagonism to overcome TRAIL resistance

The importance of XIAP antagonism in cancer treatment is 
additionally demonstrated by its ability to overcome TRAIL 
resistance. XIAP is responsible for the inhibition of effector 
caspases-3/7 via proximity induced proteasomal degrada-
tion at their active sites (Fig.  1) [161]. To sensitize ‘type 
2’ cells to TRAIL therapy researchers have investigated 
the merits of repressing XIAP activity via SMAC mimet-
ics [162], shRNA knockdown [162, 163] and Mithramycin 
A [164]—all with good success. Results demonstrate that 
SMAC mimetic, Sm-164 (a duel target of XIAP and cIAPs 
with a higher affinity for XIAP), was 1000-fold more potent 
in inducing apoptosis and restoring sensitivity to TRAIL 
than a cIAP specific SMAC mimetic [130]. Additionally, 
TRAIL-resistant prostate cancer cells expressed exces-
sive amounts of XIAP and cIAP and exhibited improved 
TRAIL sensitivity when XIAP expression was knocked 
down [162]. Data supporting the involvement of XIAP in 
TRAIL resistance suggests that neutralizing XIAP might 
be critical for TRAIL sensitivity and an attractive target for 
potential combinatory therapy in the treatment of ‘type 2’ 
cancer cells. Additionally, XIAP also protects healthy ‘type 
2’ cells from uncontrolled cell death. It has been suggested 
that broadly antagonizing XIAP as a sensitization strategy 
could lead to healthy hepatocyte death and subsequent liver 
damage [165].

TRAIL receptors in TRAIL resistance

In addition to XIAP over-expression, insufficient expres-
sion of TRAIL receptors also contributes TRAIL resist-
ance in many cancers, including in acute lymphoblastic 
leukemia cells (ALL). ALL cells demonstrate significantly 
altered cell-surface expression of DR4 in TRAIL resist-
ance. Here, authors suggested that dysregulated receptor 
trafficking and increased receptor glycosylation may be 
of importance to TRAIL sensitivity [166]. Other condi-
tions that hamper apoptosis include mutations in the death 
domain of TRAIL receptors or in the ligand binding pocket 
[167], and high expression of decoy antagonistic recep-
tors [168]. The apoptotic potential of TRAIL has shown to 
improve via combinatory treatment with etoposide, doxo-
rubicin or paclitaxel mediated upregulation of both DR4 
(TRAILI) and DR5 (TRAILII) expression in numerous 
breast cancer cells types in vitro, as well as in tumorigenic 
mice [169]. The anti-tumor antibiotic Bleomycin and the 
histone deacetylase inhibitor MS-275 have also upregulate 
DR4 and DR5 to sensitize cancer cells to TRAIL-induced 
apoptosis [170, 171]. Lastly, microtubulin targeting com-
pound PBOX-15 (pyrrolo-1,5-benzoxazepine) treatment in 
myeloma in Jurkat ALL cells also resulted in an upregula-
tion of DR5 to enhance TRAIL-induced apoptosis [172].

Bcl‑2 expression in TRAIL resistance

Relating specifically to activation of the intrinsic apoptotic 
pathway, HCT-116 wild type cells demonstrated a sen-
sitization to apoptosis when Mcl-1 was inhibited. Mcl-1 
selectively inhibits Bax/Bak signaling, preventing cross-
talk between the death receptor pathway and the intrinsic 
apoptotic pathway [26]. Improved sensitivity to TRAIL 
was reported following release of endogenous SMAC when 
Mcl-1 was found to be overexpressed [173]. This might 
highlight further therapeutic implications for ‘pan’ inhibitor 
FL118 targeting both XIAP and Mcl-1, alongside survivin 
and cIAP1/2 [151]. Interestingly, it was recently shown that 
Bax activation is Mcl-1 independent in some cell types 
(including HCT-116 cells), rendering its inhibition an inef-
fective single agent treatment [174].

Sensitivity to TRAIL resistance is further demonstrated 
by upregulated expression of pro-apoptotic agents as Bax/
Bak. In 2011, increased Bax expression and subsequent 
improved sensitivity to TRAIL was reported in colon can-
cer cells following exposure to the plant derived compound 
Nimbolide [175], although it is important to note that this 
article has since been retracted by the publisher. Other 
research suggests that Nimbolide exerts its anti-tumori-
genic effects via a downregulation in cell proliferation and 
metastasis [176]. Whilst these strategies promote apoptotic 
cell death, they do not appear to be effective in switching 
‘type 2’ cells to mitochondrial pathway independent ‘type 
1’ cells.

Other than XIAP repression, Mcl-1 inhibition and pro-
teasome inhibition, resistance to TRAIL may be overcome 
by either kinase inhibitors or BH3 mimetics. Kinase inhibi-
tors such as Roscovitine and Sorafenib (approved for HCC 
treatment) suppress activation of Mcl-1 [177], downregu-
late expression of c-FLIP [178], and aid in DISC-pro-cas-
pase-8 activation to facilitate apoptosis [179]. In a similar 
fashion, BH3 mimetic ABT-737 represses pro-survival 
Bcl-2 proteins, such as Mcl-1, to further exert a pro-apop-
totic effect via Bax/Bak signaling in chemoresistance [180]. 
However, ABT-737 is Bax/Bak dependent and would not 
be effective in double deficient HCT-116 cells, or Mcl-1 
independent cells [174].

For Bax-/Bax-deficient HCT-116 cells, proteasome 
inhibitors MG132 and Bortezomib (BZM) sensitized 
TRAIL resistance in HCT-116 Bax-/Bak-double defi-
cient cells [181]. Some TRAIL-resistant cancer cells are 
neither Bax/Bak deficient, nor do they have abnormally 
low expression of DR4 and DR5. Herein, protein analy-
sis revealed high levels of c-FLIP, anti-apoptotic Bcl-2 
members and IAPs [182]. It is likely that c-FLIP (cel-
lular FLICE inhibitory protein), Mcl-1 and IAPs such 
as XIAP and cIAP all contribute to TRAIL resistance. 
c-FLIP tends to promote TRAIL-resistance in malignant 
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cancer cells by preventing the formation of DISC [183]. 
TRAIL resistance was improved via siRNA knockdown 
or drug induced downregulation of c-FLIP via rocagla-
mide combined with SMAC mimetic AT406 [182]. 
Enhanced TRAIL-induced apoptosis was previously 
demonstrated using the flavonoid kurarinone by down-
regulating cFLIP in HeLa cells [184].

IAPs and antibody‑based therapy resistance

Drozitumab is a human monoclonal antibody that binds 
specifically to TRAIL receptor DR5 on cancer cells 
to induce apoptosis [185]. Most breast cancer cells, 
including the basal-like MDA-MB-231-TXSA cells, are 
extremely sensitive to drozitumab-induced apoptosis, but 
prolonged exposure can induce acquired resistance to the 
cytotoxic agent [186]. There is no correlation between 
sensitivity to Drozitumab and expression of DR4/5 in 
cancer cells, unlike in TRAIL resistant cells. However, 
like TRAIL resistant cells, these resistance-causing fac-
tors may, in part, be mediated by IAPs. Demonstrating 
this, the pan IAP antagonist SMAC mimetic BV6 used 
in combination with Drozitumab restored its sensitivity 
and completely inhibited the growth of MDA-MB-TXSA 
tumors in a mouse model [112]. Interestingly, this drug 
combination was independent of TNF-α and was suc-
cessful in the direct activation of effector caspase-3 and 
-7, suggestive of XIAP antagonism [112]. Moreover, this 
combination bypassed activation of the mitochondrial 
amplification loop, commonly required in overcoming 
TRAIL receptor related resistance [112].

The chemotherapeutic agent doxorubicin has 
also been reported as an effective sensitizer to Dro-
zitumab via suppressive IAP expression, as well as 
increased cell-surface expression of DR5 [186]. This 
also improved sensitivity in  vivo whereby inhibited 
tumor growth, delayed tumor progression and improved 
chances of survival were reported in mice treated with 
both doxorubicin and Drozitumab [186]. Given that part 
of its improved sensitivity was via differential expres-
sion of DR5, it could be suggested that this combina-
tion might exhibit less toxicity in healthy cells that do 
not normally express this receptor. Interestingly, Dro-
zitumab-resistant cells also demonstrated sensitivity to 
taxol, etoposide, cisplatin, and the deacetylase inhibi-
tor, SAHA [186]. Unsurprisingly, patients with acquired 
resistance to TRAIL are also reportedly cross-resistant 
to drozitumab-induced apoptosis and the authors suggest 
potential benefits for patients with drozitumab resistance 
that switch to TRAIL therapy or explore combination 
therapies [186].

Conclusion

Our dependency upon a core group of chemotherapeu-
tics as first line treatment is continually reflected by the 
generation of acquired chemoresistance across all cancer 
types. The ever-growing burden of resistance highlights 
the requirement for a more diverse set of therapeutics in 
cancer treatment. Though the development of resistance 
to anticancer agents involves multiple differential path-
ways, often dependent on drug and tissue type, they share 
commonality in an overall reduction in cancer cell death. 
Apoptosis is the primary mediator of chemotherapy 
mediated cell death and its regulation is not unaffected 
in the development of resistance. In this review, we have 
discussed the recent advances in research toward target-
ing apoptotic pathways in cancer treatment and resist-
ance, with a central focus on the modulation of IAPs. 
Whilst various combinatorial therapeutic approaches for 
use of antagonists of IAPs following the development of 
resistance to chemotherapy, antibody-based therapy and 
TRAIL resistance were discussed [150, 151, 185], we 
also focused upon resistance to IAP antagonism itself 
which may have future implications in the clinic [139, 
141].

Research characterizing the expression and regulation 
of IAPs in disease has facilitated the identification of novel 
therapeutic options within this field, particularly in rela-
tion to the expression and inhibition of XIAP and cIAP1 
and 2 [14]. The use of SMAC mimetics as means to exploit 
IAP overexpression has advantages for specific tumor types 
[187].

Although original research and clinical studies suggest 
that IAPs may be effective as single agents in cancer, ongo-
ing clinical studies mostly assess the usefulness of IAP 
antagonists in combination with alternative cancer treat-
ments to re-sensitize chemotherapy in relapsed cancers 
[188]. As research progresses, improvements in their thera-
peutic design may enhance their affinity and specificity for 
IAP mediated cell death.

This review also highlights the implications for treat-
ment in relation to the development of acquired resistance 
to IAP antagonists and, indeed, intrinsic resistance that is 
demonstrated in CLL cell types [139, 143]. These potential 
limitations warrant scientific discussion to devise strategies 
for overcoming resistance to IAP antagonism before they 
become an issue in the clinic. In regards to sensitizing cells 
to IAP-antagonists, or augmenting the cytotoxic activity 
of other agents, a wealth of scientific data is available to 
suggest combinatorial treatments offer the most practical 
solution.
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