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SUMMARY

Extracorporeal membrane oxygenation (ECMO) is a lifesaving procedure used in neonates, 

children, and adults with severe, reversible, cardiopulmonary failure. On the basis of single-center 

studies, the incidence of AKI occurs in 70%–85% of ECMO patients. Those with AKI and those 

who require renal replacement therapy (RRT) are at high risk for mortality, independent of 

potentially confounding variables. Fluid overload is common in ECMO patients, and is one of the 

main indications for RRT. RRT to maintain fluid balance and metabolic control is common in 

some but not all centers. RRT on ECMO can be performed via an in-line hemofilter or by 

incorporating a standard continuous renal replacement machine into the ECMO circuit. Both of 

these methods require specific technical considerations to provide safe and effective RRT. This 

review summarizes available epidemiologic data and how they apply to our understanding of AKI 

pathophysiology during ECMO, identifies indications for RRT while on ECMO, reviews technical 

elements for RRT application in the setting of ECMO, and finally identifies specific research-

focused questions that need to be addressed to improve outcomes in this at-risk population.

Introduction

Extracorporeal membrane oxygenation (ECMO) is a lifesaving procedure used in neonates, 

children, and adults with severe, reversible, cardiopulmonary failure. These patients are at 

high risk of developing AKI and fluid overload (FO). Renal replacement therapy (RRT) is 
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commonly used to maintain fluid balance and metabolic control; however, the optimal 

timing, methodology, and prescriptions to support ECMO patients with renal dysfunction 

have not been extensively studied. This review summarizes AKI pathophysiology in ECMO 

patients, appraises epidemiology data, discusses indications for RRT, explains technical 

aspects of concomitant RRT and ECMO, and proposes future research to improve outcomes 

in this vulnerable population.

Epidemiology of AKI and RRT Use in ECMO

Until recently, one of the main problems with AKI epidemiology studies was the lack of 

consensus definitions. The RIFLE (1,2) (risk, injury, failure, loss, and end stage) and Acute 

Kidney Injury Network (3) classification definitions have stratified patients by AKI severity 

using absolute or percentage changes in serum creatinine. Single-center studies using the 

RIFLE definition in ECMO patients show the incidence of AKI as follows: 71% of neonates 

with congenital diaphragmatic hernia (4), 71% of children with a cardiac indication for 

ECMO (5), 78% of adults with respiratory failure (6), and 81% of adults post-cardiotomy 

(7). The incidence of AKI using contemporary categorical definitions in other neonatal and 

pediatric patients on ECMO has not been conducted, but a multicenter retrospective analysis 

is underway (8).

These single-center studies also suggest an association between AKI and poor outcomes. 

Adults with AKI had a 78% mortality compared with 20% in non-AKI patients (6). 

Congenital diaphragmatic hernia infants on ECMO who developed severe AKI were more 

likely to die, had increased time on mechanical ventilation, and increased ECMO duration 

than those without AKI (4). These small, single-center studies show the strong association 

between AKI and mortality. However, sample size limits the ability to determine if AKI is an 

independent risk factor for mortality in these studies.

In a single-center study of 121 children and adults, those with AKI (serum creatinine .1.5 

mg/dl or dialysis) had higher independent odds of death after controlling for confounders, 

with an adult odds ratio of 12.1 (95% confidence interval, 2.5–59) and a pediatric odds ratio 

of 24.0 (95% confidence interval, 4.2–137)] (9). Although there seems to be a significant 

association between AKI and mortality in these groups, the small sample size provides for 

an imprecise estimate of the true odds of mortality in those with AKI. Larger cohorts are 

needed to better understand the true effect size.

Recent evaluation of the Extracorporeal Life Support Organization (ELSO) registry sheds 

light on the independent association between renal dysfunction and mortality. The ELSO 

registry captures data from 170 centers around the world and is divided into cardiac and non-

cardiac indications. To determine the effect of AKI and RRT on mortality, Askenazi et al. 

(10) evaluated 7941 non-cardiac neonates (aged 30 days, at initiation) and 1962 non-cardiac 

children (aged 19 years) from the ELSO registry between 1998 and 2008. For this analysis, 

AKI was defined as an International Classification of Diseases (Ninth Revision) code for 

ARF or serum creatinine $1.5 mg/dl, and RRT was determined by Current Procedural 

Terminology codes. The incidence of AKI and/or RRT in neonates and children was 25% 

and 46%; respectively. Patients with AKI and those who received RRT had higher mortality 
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than similar patients without AKI or RRT independent of potential confounders 

(demographics, ECMO characteristics, comorbidities, and physiologic parameters). Despite 

the po-tential limitations inherent to registry studies and the imprecise methods to define 

AKI in this population, these data suggest that therapies to prevent/ameliorate AKI and 

optimization of RRT could improve outcomes.

Pathophysiology of AKI in ECMO

Before patients are placed on ECMO, aggressive life-sustaining interventions have been 

implemented, yet the patient continues to have severe cardiopulmonary insufficiency. 

Indications for ECMO include reversible patient conditions with a high predicted mortality 

rate $80%. Before ECMO initiation, these critically ill patients are at high risk of AKI due to 

their condition (sepsis, ischemia, respiratory failure, cardiac failure, vasopressor 

requirements) and prevalent use of nephrotoxic medications.

In veno-arterial ECMO, cardiac output is a mixture of native cardiac (pulsatile) and ECMO 

pump flow (non-pulsatile). Although mechanical flow may be non-pulsatile, institution of 

venoarterial ECMO usually increases BP and flow to the vital organs including the kidneys. 

Veno-venous ECMO maintains native pulsatile cardiac output, and changes in renal 

perfusion are less than in veno-arterial ECMO. During initiation of ECMO, patient 

oxygenation improves, oxygen consumption is reduced, and hemodynamics improve in most 

patients. However, ECMO initiation with subsequent adjustments in vasopressors/ionotropes 

can cause rapid hemodynamic fluctuations that alter renal blood flow leading to ischemia/

reperfusion-associated AKI (11).

Other factors associated with ECMO initiation predispose patients to incident or 

exacerbation of AKI. Blood exposure to artificial surfaces causes systemic inflammation 

(12, 13), a hypercoagulable state (11,14,15), and hemolysis/hemoglobinuria, which may be 

exacerbated by air/fluid interface and the generation of excessive negative pressure (16–20).

Indications for RRT on ECMO

As for other critically ill patients, classic RRT indications in patients on ECMO include 

uremia, acidosis, electrolyte abnormalities, and FO. Center-specific staff availability, local 

expertise, and experience with RRT on ECMO currently drive decisions to initiate RRT. We 

conducted a survey of participating ELSO centers that revealed tremendous inter-center 

variation for initiating RRT. The most common reported RRT indications were FO (43%), 

FO prevention (16%), AKI (35%), and electrolyte disturbances (4%) (21). These data 

suggest that treatment/prevention of fluid accumulation plays a major role in decision 

making for RRT initiation.

Cumulative FO should be calculated and assessed daily in ECMO patients to determine if 

RRT could benefit the overall care. The following simple formula to measure cumulative FO 

has been evaluated in multiple studies: [Cumulative Fluid Intake since Intensive Care Unit 

(ICU) Admission (in liters) – Cumulative Fluid Output since ICU Admission (in liters)/ICU 

Admission Weight (in kilograms)] 3 100 (22–27). Using changes in daily weight to express 

fluid balance provides a similar estimate of FO (28).
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Cumulative FO is independently associated with mortality, worse oxygenation, longer length 

of stay, and mechanical ventilation in critically ill patients receiving continuous RRT, as well 

as in those who do not receive RRT (25,29–35) (Table 1). Early studies investigating the 

development of FO using radio-labeled isotopes showed an elevation in both the total body 

water and extracellular fluid space in ECMO patients (36). Cumulative FO and failure to 

return to dry weight are associated with higher mortality (28,37) and prolonged ECMO 

duration (38). Moreover, improvement in FO or improving fluid balance is associated with 

improved lung function and time to weaning of ECMO (36,39). Neonates and children who 

receive concomitant RRT on ECMO compared with ECMO alone have decreased 

cumulative FO (37,40,41). On the basis of these studies, the international ELSO guidelines 

recommend to “return the extracellular fluid volume to normal (dry weight) and maintain it 

there” (42). These studies suggest that early RRT to prevent FO may improve out-comes and 

warrants further investigation.

The overall treatment goals, and whether RRT would help to achieve these goals, should 

factor into the decision to initiate RRT. Initiation of RRT may allow for the administration of 

adequate nutrition, medications, and blood products, while avoiding further fluid 

accumulation. Likewise, if high diuretic doses are being used to maintain urine output, the 

risk of long-term ototoxicity and lack of data that diuretics improve outcomes in critically ill 

patients (43,44) should be balanced with the potential benefits of managing fluids with RRT.

Finally, when deciding to initiate RRT and evaluating overall patient prognosis, one should 

be aware that the likelihood of long-term ESRD in ECMO survivors requiring RRT is 

extremely low. Two large ECMO center studies have independently reported their 

experience with concomitant RRT and ECMO over a combined 20-year period and showed 

no incidence of ESRD in the absence of primary renal disease (45,46).

Technical Aspects of RRT While on ECMO

In unstable patients with multiple organ failure, ECMO can improve hemodynamic stability 

by increasing cardiac output via an ECMO pump (in veno-arterial ECMO) or by increasing 

native cardiac output by improved myocardial oxygenation (47). The extracorporeal circuit 

can serve as a platform for additional organ support therapies, including RRT. Currently, the 

US Food and Drug Administration has not approved any RRT device for use in conjunction 

with ECMO and such use is off label. Several RRT techniques are available to support 

ECMO patients with AKI and/or FO. Because there are no comparison studies of these 

techniques, practice is based on expert opinion and local experience. We therefore do not 

recommend a particular method to provide RRT.

RRT options during ECMO include peritoneal dialysis, intermittent hemodialysis, and 

continuous RRT (CRRT). Each has its own advantages and disadvantages (48–50). Patient 

factors, treatment goals, and center experience play a role in the RRT selected. RRT on 

ECMO is usually provided as a continuous modality because of hemodynamic instability. 

Continuous peritoneal dialysis may achieve the desired fluid management goals but provide 

less efficient management of electrolyte imbalance and clearance. CRRT is the most 
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common modality because it offers the ability of making rapid changes to targeted fluid 

balance and provides excellent solute clearance.

The two most common methods to provide CRRT are via the use of an in-line hemofilter or 

via a traditional CRRT device connected to the extracorporeal circuit. A recent international 

survey of 65 ECMO centers showed that 50.8% of centers exclusively use CRRT, 21.5% 

exclusively use an in-line hemofilter, and 23% use no RRT during ECMO (21).

RRT Using an In-Line Hemofilter

One method to provide CRRT is by incorporating an inline hemofilter into the ECMO 

circuit. The hemofilter is typically placed after the pump (to provide forward blood flow 

through the hemofilter) and before the oxygenator (to maintain the oxygenator’s use as a clot 

and air trap in case of complications) (Figure 1). After passing through the hemofilter, the 

blood is returned to the prepump limb of the circuit. In this configuration, the shunt creates a 

disparity between the pump measured flow and the flow being delivered to the patient. An 

ultrasonic flow probe on the arterial return line is needed to determine the actual flow 

delivered to the patient. The hemofilter blood flow rate can be derived by subtracting the 

flow delivered to the patient from the total ECMO blood flow rate. The hemofilter blood 

flow rate can be adjusted via the use of a stopcock or other flow-restricting device; however, 

the potential for hemolysis and thrombus formation due to turbulent flow limit this practice.

Some centers use this technique to provide only slow continuous ultrafiltration. Other 

centers provide continuous convective clearance with replacement fluids delivered to the 

patient directly or through the ECMO circuit. Diffusive clearance can be achieved running 

countercurrent fluid using standard infusion pumps. Because these hemofilters are designed 

for use with high pressure systems, the fiber characteristics make diffusive clearance less 

effective than conventional membranes. In addition, the amount of ultra-filtration made is 

limited by the infusion pumps that maximize at approximately 1 L/h.

The hemofilter has the potential to generate large amounts of ultrafiltrate that can be 

regulated using a standard intravenous infusion device connected to the effluent port of the 

hemofilter. There are several methods to determine the amount of fluid being removed. The 

most precise method is to measure the actual volume of ultrafiltration removed using weight 

or a volumetric measuring device (such as a collection kit used when documenting urine 

output with a Foley catheter). The other method is to assume that the ultrafiltrate removed is 

equal to the rate programmed into the infusion device. This assumption may be inaccurate as 

these infusion devices (commonly referred to as “pumps”) are not really pumps but are flow 

restrictors. Individual infusion devices (tested under low pressures) report volume delivery 

accuracy of 62%–10%. Studies show higher inaccuracies when these devices infuse 

medication via central venous catheters in patients with elevated central venous pressure 

(51,52). The little data available on the accuracy of these intravenous devices to regulate 

ultrafiltration in an ECMO circuit suggest error rates as high as 12.5% (53). In laboratory 

experiments using pressure settings typical of ECMO, the differences between the 

prescribed and the actual ultrafiltration rate were as high as 34 ml/h (.800 ml/d) (54). 

Therefore, when using in-line hemofilters, it is imperative to precisely measure or closely 

monitor ultrafiltration volumes.
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RRT Using a CRRT Machine

Alternatively, a commercially available CRRT machine can be connected in-line to the 

ECMO circuit (Figure 2). The CRRT machine is typically connected to the venous limb of 

the roller-head ECMO circuit before the pump. The blood is then returned from the CRRT 

machine to the ECMO circuit near the venous CRRT connection and before the ECMO 

pump (40,55). If a centrifugal ECMO pump is used, the CRRT machine should not be 

placed before the ECMO pump because there is a very risk of air entrainment. Instead, the 

CRRT machine should be placed after the pump.

Dialysis or replacement fluid (prefilter or postfilter) is used to efficiently clear solutes, and 

ultrafiltrate can be generated to remove the desired fluid.

Additional anticoagulation is not routinely used for the CRRT circuit, because 

heparinization of the ECMO circuit anticoagulates the entire circuit. Unusual situations in 

which bleeding on ECMO is excessive, activated clotting time goals are very low, or heparin 

has been temporarily discontinued require consideration of regional citrate anti-coagulation 

of the CRRT circuit. Use of the heater on the CRRT device is typically not needed, but may 

be used.

The access pressure alarms inherent to commercially available CRRT have set limits based 

on the individual CRRT device. The default access pressure alarms are typically negative. 

However, when these machines are operated in series with ECMO, the positive pressure at 

the entry point of the CRRT machine will create pressures close to zero or positive. These 

pressures can lie outside the default pressures of the machine and thus the alarm settings 

may have to changed when using RRT on ECMO. Some machines (including the Gambro 

Prismaflex and the Braun Diapact) give the clinician the ability to adjust alarm settings. 

Other machines (including the NxStage System One, the Fresenius 2008K, and the older 

Gambro Prisma) do not have these capabilities. If the machines are not able to change the 

default access pressure, flow restrictors placed on the outside of the tubing have been used to 

keep the pressures within the pressure alarm limits. These clamps are not recommended 

because they portend added risk of hemolysis and thrombosis.

There are advantages and disadvantages to using an inline hemofilter or a CRRT machine for 

RRT. In both of these techniques, the use of commercially prepared renal replacement fluid 

and limiting the use of ultrafiltration without replacement or dialysis fluids can reduce 

development of electrolyte abnormalities. With either type of circuit, return blood from the 

renal replacement machine should be connected before the oxygenator so that any air or clot 

will be trapped into the oxygenator and not sent to the patient. Careful attention to detail and 

development of protocols for RRT are critical to providing the best care and outcomes.

Future Research Needs

As outlined above, ECMO patients have a high incidence of AKI and RRT provision with 

associated poor outcomes. There is great opportunity to answer numerous questions to better 

understand the epidemiology of AKI. We must better understand how fluid provision and 

timing of RRT can affect patient outcomes. Evaluation of new AKI biomarkers and the 
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application of a “renal angina” concept (56) to determine how a combination of clinical risk 

factors in conjunction with laboratory evidence may better identify those with AKI are 

greatly needed. A better understanding of the pathophysiology of AKI as related to ECMO 

initiation is needed to design preventative studies. Prospective evaluations of different 

techniques of RRT could help develop specific protocols describing optimal circuit 

integration parameters. A novel RRT device made specifically to interact with the ECMO 

circuit in a safe, accurate, effective, and simple manner could greatly improve RRT in these 

complex patients. The prescription of RRT (i.e., what fluids, what dose, and what method 

[dialysis versus replacement]) needs to be systematically explored. Answers to these and 

other important questions are likely to lead to improved outcomes in this vulnerable 

population.

The Kidney Interventions During Extracorporeal Membrane Oxygenation (KIDMO) group 

is an international, multidisciplinary collaboration composed of pediatric intensivists, 

cardiologists, ECMO experts, and nephrologists. Thus far, this group has coordinated a 

survey to better understand current clinical RRT practices and have altered the ELSO 

registry data collection forms to better document AKI and RRT. Starting in 2012, the ELSO 

registry is collecting more detailed serum creatinine and fluid intake/output data before, 

during, and after ECMO. This will allow for better data to understand the true incidence of 

AKI/FO and its effect on outcomes. In addition, a multicenter retrospective analysis of 

neonates and children on ECMO is underway to explore how AKI and FO affect clinical 

outcomes. Ultimately, prospective multicenter evaluations and intervention trials will be 

needed to prevent AKI, ameliorate the effects of AKI, and optimize RRT in ECMO patients.

AKI, FO, and RRT are common and are associated with poor outcomes in critically ill 

patients on ECMO. Cumulative FO should be used to help make decisions about RRT 

initiation. RRT on ECMO can be safely performed, but issues unique to ECMO must be 

carefully addressed. Centers providing ECMO should have a multidisciplinary team 

(involving nurses, ECMO specialists, nephrologists, surgeons, and intensivists) to devise 

center-specific protocols for RRT on ECMO.
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Figure 1. 
Renal replacement therapy using an in-line hemofilter during extracorporeal membrane 

oxygenation (ECMO). As blood comes from the patient via the venous drain cannula, it goes 

through the ECMO bladder to the ECMO pump, to the membrane oxygenator, and back to 

the patient via a return cannula. Blood is shunted from the circuit to the in-line hemofilter 

and returned to the ECMO pump. Fluid (ultrafiltrate) can be controlled using an intravenous 

(IV) pump. Replacement or dialysis fluid can be used for solute clearance and/or to achieve 

metabolic control.
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Figure 2. 
Renal replacement therapy (RRT) using RRT machine during extracorporeal membrane 

oxygenation (ECMO). If the ECMO circuit uses a roller pump, a proportion of the circuit 

blood comes from the patient via the venous drain cannula and enters the RRT machine 

where replacement, dialysis, and ultrafiltration occurs. Blood from the RRT machine then 

goes back to the ECMO bladder to the ECMO pump, the membrane oxygenator, and back to 

the patient via a return cannula. If a centrifugal pump is used, the RRT machine must be 

connected after the ECMO bladder to prevent air entrapment.
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