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Abstract

Accurate prognosis of outcome events, such as clinical procedures or disease diagnosis, is central 

in medicine. The emergence of longitudinal clinical data, like the Electronic Health Records 

(EHR), represents an opportunity to develop automated methods for predicting patient outcomes. 

However, these data are highly dimensional and very sparse, complicating the application of 

predictive modeling techniques. Further, their temporal nature is not fully exploited by current 

methods, and temporal abstraction was recently used which results with symbolic time intervals 

represetnation. We present Maitreya, a framework for the prediction of outcome events that 

leverages these symbolic time intervals. Using Maitreya, learn predictive models based on the 

temporal patterns in the clinical records that are prognostic markers and use these markers to train 

predictive models for eight clinical procedures. In order to decrease the number of patterns that are 

used as features we propose the use of three one class feature selection methdos. We evaluate the 

performance of Maitreya under several parameter settings, including the one-class feature 

selection, and compare our results to that of atemporal approaches. In general, we found that the 

use of temporal patterns outperformed the atemporal methods, when representing the number of 

patterns occurrences.
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1 Introduction

Prognosis is central to the practice of medicine. Accurate forecasting of a patient’s disease 

state will help to identify the best course of treatment, mitigate side effects, ameliorate 

symptoms, and provide the patient with the best opportunity of recovery – effectively 

reducing morbidity and mortality. On the contrary, inaccurate forecasting may lead to 

mismanagement of the disease, increased pain and suffering, and increased costs to the 
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healthcare system. The availability of electronic health record systems represents a novel 

opportunity to model disease prognosis. The longitudinal nature of the data enables the use 

of temporal modeling strategies to follow and predict patient trajectories. In order to develop 

accurate prognostic models we must first identify historical patterns that are indicative of 

disease. The burgeoning field of temporal data mining has laid the ground for discovering 

these patterns.

Temporal data mining is a sub-field of data mining, applied to time-oriented data to discover 

temporal knowledge. Unlike typical data mining methods, which often ignore the temporal 

dimension or use only concise statistical abstractions of it, temporal data mining (Esling and 

Agon, 2012) faces additional computational and methodological challenges.

The data in medical record systems, however, exhibits unique characteristics that challenge 

these algorithms. Namely, they contain mainly thousands of variables and are largely 

missing (Hripcsak and Albers, 2013). Because of these challenges temporal data mining has 

focused on relatively small, complete data sets and prognostic modeling in the EHR 

typically ignores time (Jensen, 2012). In order to address these challenges we implement 

efficient time intervals mining and patterns detection algorithms.

Mining symbolic time-intervals is a subfield of data mining and has emerged over the last 

fifteen years. These methods typically use a subset of Allen’s temporal relations (Allen, 

1983). In their most expressive and complete form, these relations are computationally 

demanding due to the large combinations of symbols and temporal relations in potential 

patterns (Villafane et al., 2000; Hoeppner, 2001; Papapetrou et al., 2009; Winarko and 

Roddick, 2007; Wu and Chen, 2007; Pei et al, 2001; Patel et al, 2008; Wu and Chen, 2007; 

Papapetrou et al, 2009). Moskovitch and Shahar (2015a) introduced KarmaLego that 

introduces an efficient data structure and exploits the transitivity property of the temporal 

relations to generate only realistic candidates. KarmaLego was faster than IE-Miner (Patel et 

al, 2008), ARMADA (Winarko and Roddick, 2007), and H-DFS (Papapetrou et al, 2009) 

methods. Unlike earlier methods, KarmaLego discovers the complete set of Time Intervals 

Related Patterns (TIRPs) (Moskovitch and Shahar, 2015b).

In this study we use only symbolic elements in the data, specifically conditions, procedures 

and drug exposures. Conditions are clinical diagnoses that are extracted from the physician’s 

notes for billing purposes. Procedures are protocols (e.g. surgeries) that are executed to treat 

conditions. Drug exposures are prescription medications used to treat the condition or 

ameliorate side effects. We then use the KarmaLego algorithm (Moskovitch and Shahar, 

2015a) for the discovery of frequent TIRPs from symbolic time intervals. Later to detect 

these TIRPs for a given patient in order to perform classification or prediction, we use 

SingleKarmaLego (Moskovitch and Shahar, 2015b), a highly efficient TIRPs detection 

algorithm that first indexes the time intervals to make the detection faster. Finally we 

introduce Maitreya, a framework for the prediction of outcome events that consists on 

KarmaLego and SingleKarmaLego, and demonstrate it on several Electronic Health Records 

(EHRs) datasets.
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Maitreya discovers TIRPs using KarmaLego from a cohort of patients with the outcome 

event, and trains a predictive model learning only on this cohort. A control group of patients 

without the outcome event is selected for evaluation purposes. Due to that scheme we 

propose in this study a method for one class feature selection based on two strategies: those 

that are less correlated with other TIRP features; and those that increase the homogeneity of 

the cohort. Finally, we demonstrate the use of Maitreya on eight cohorts of patients derived 

from the New York-Presbyterian/Columbia University Medical Center Clinical Data 

Warehouse. We compare Maitreya to atemporal methods (i.e. ignoring the temporal order of 

the symbols) and also evaluate multiple TIRP representation methods. We found that 

Maitreya outperforms methods that do not account for temporal order of events, and that in 

some cases, one-class feature selection can be used to improve predictive performance.

2 Background

Multivariate temporal data exist across many scientific disciplines. These data are often 

characterized by sparse sampling, varying measurements frequencies and types of events, 

and having variable duration. The use of Symbolic Time Intervals representation, the 

development of fast and efficient Time Intervals Related Patterns algorithms, and their use 

for classification and prediction in multivariate time series to analyze these data will be 

covered in this section.

2.1 Outcome Events Prognosis in EHR

The development of predictive modeling in clinical medicine through data mining is an 

important and developing field (Bellazi and Zupan, 2008). With the increase in access to 

EHR data in the recent years there is a growth in studies dealing with the prediction, or 

prognosis, or outcome events based on patient’s history (Jensen et al, 2012; Ng et al, 2014).

Ng et al. (2014) had introduced a distributed platform for healthcare analytics for EHR data 

that consists on the Map-Reduce principles and parallelizes the entire process of cohort 

construction, feature construction and selection and classification in a cross validation 

fashion. There was no temporal analysis among the varying predictive events, and while 

several classifiers used the Random Forest was the best. Sun et al. (2014) used this 

framework to predict hypertension transition points in EHR data. They used the Random 

Forest and no temporal representation. Rana et al. (2015) had introduced a framework that 

models the change in interventions over time to predict outcome events considering the 

temporal evolution of the events, which was shown to be useful.

2.2 Symbolic Time Intervals Data and Mining

Conceptual representation in biomedicine is common for various purposes (Moskovitch et 

al, 2004; Boland et al, 2015). Representing multivariate temporal data using (conceptual) 

symbolic time intervals is becoming more common in the data mining literature too. This is 

especially true when applied to biomedical data (Patel et al, 2008; Batal et al, 2012) in 

which the variables, or concepts, are represented by time intervals in their raw form, or after 

some transformation process (Hoepenner, 2001; Moerchen, 2007). Methods for 

transformation from time point series into meaningful symbolic time intervals data, a 
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process often called Temporal Abstraction, were proposed in the past decade by several 

researchers (Shahar, 1997; Hoppner, 2001; Lin et al, 2003; Moerchen and Ultsch, 2005; 

Moskovitch and Shahar, 2015c). In raw datasets in which the data is already represented by 

multivariate symbolic time intervals, other forms of abstractions are performed. In this case 

events that occur within a predefined gap will be concatenated into a single time interval. In 

this paper we followed the standard aggregation process as defined in the Observational 

Medical Outcomes Partnership (OMOP, 2009) to abstract EHR data. Additionally, we used 

the SNOWMED hierarchy to use more general concepts achieving higher generalizability 

and enabling the discovery of more temporal patterns. Whether the data is raw symbolic 

time intervals or abstracted from time point series, it can be mined to discover frequent time 

intervals patterns. In the past decade and a half several algorithms were proposed that 

improve the efficiency of the mining. Most of the methods use a subset of Allen’s temporal 

relations (Allen, 1983) Early studies defined a pattern in an ambigious way (Villafane et al., 

2000; Kam and Fu, 2000), while later studies defined a non ambigious definintion using a 

conjunction of all the pairwise relations. In this study we use KarmaLego that was 

introduced by Moskovitch and Shahar (2015a) that improves Papapetrou et al. (2009) and 

Patel et al (2008) by an efficient data structure and exploiting the transitivity property of the 

temporal relations. KarmaLego was found to be faster than IEMiner (Patel et al, 2008), 

ARMADA (Winarko and Roddick, 2007), and H-DFS (Papapetrou et al, 2009) methods.

2.4 Classification and Prediction with Temporal Patterns

Once temporal patterns, i.e., TIRPs, are discovered from longitudinal data they can be used 

for regression and classification. Quite simultaneously several groups had proposed using 

TIRPs, as features for classifying multivariate time series (Patel et al, 2008; Moskovitch et 

al, 2009; Batal et al, 2012), followed by recent studies (Moskovitch and Shahar, 2015b,c). 

Interestingly, all of the studies that reported the use of temporal abstraction and the use of 

TIRPs for classification applied to biomedical data (Patel et al, 2008; Batal et al, 2012; 

Moskovitch and Shahar, 2015b,c). Patel et al. (2008) proposed IEClassifier to classify 

patients Hepatitis patients using TIRPs (Patel et al, 2008). Batal et al. (2012) performed 

knowledge based temporal abstraction, but used only two relations: before and co-occur, 

which is a specific case of an apriori sequential mining algorithm called STF-Mine. They 

compared recent patterns and older to detect outcome events. Moskovitch and Shahar 

(2015a) introduced a framework for classification of multivariate time series using several 

discretizations, such as Equal Width Discretization (EWD), and SAX (Lin et al, 2003; 

Keogh et al, 2005).

Later proposed a supervised Temporal Discretization for Classification method that 

increases the accuracy by learning the cutoffs that increase the differences in the states 

according to their distribution in the classes (Moskovitch and Shahar, 2015c). This approach 

outperformed the unsupervised EWD and SAX methods. Several studies had shown the 

advantages of using TIRPs over atemproal representation in classifying multivariate 

temporal data (Patel et al, 2008; Batal et al, 2012; Moskovitch et al, 2015). Recent studies 

introduced several heuristics to decrease the number of discovered patterns that still 

maintain the same level of accuracy (Shknevsky et al., 2014).
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2.5 One Class Feature Selection

Feature selection, the identification of the most informative variables, is an important step in 

supervised machine learning, especially when the number of possible features is very large. 

Often these are the features that correlate best with the classes. There has been a meaningful 

work on feature selection that takes into consideration the data of both classes, and several 

methods were proposed (Guyon and Elisseeff, 2003). However, in some cases there is only 

one class available, or the model is based only on one class. This is the case in our study in 

which we have a cohort of patients with an outcome, but no real alternative class, but rather 

a control group of patients that are for the evaluation and we would not like to base our 

models on. The other patients in our data, which we use as a comparator group, are not 

healthy individuals, but have their own conditions and outcomes. In our case we want to 

perform the selection based on the cohort class only, since the controls are for evaluation and 

not to rely the predictive model upon.

Thus, we learn only from the cohort class the patterns, and for that, perform feature selection 

only based on that one class. While one class classficiation were developed in the past years, 

one class feature selection is a new field with only few available studies (Jeong et al, 2012). 

In one class classification the intention is to learn to classify an instance into a single class 

and determine whether it belongs to it or not. The need for one class classifiers (Khan and 

Madden, 2004) is essential, since in many real world problems there is only one genuine 

class to learn, while the alternative class is all the rest, or the not-class, which is infinite. 

Through the development of classifiers, it was mainly binary classifiers that were developed, 

but real world problems aim at classifying into a specific class, rather than among two 

classes, or more. This is true for diagnosis of diseases, or almost any real concept learning. 

Another problem caused by the use of binary classifiers is that many classes have low rates 

of occurences, which result in the imbalance problem. Being able to learn a predictive model 

based only on the learned class examples without requiring having alternative class 

examples is ideal. Some “one class” classifiers were indeed developed based on binary 

classifiers, such as based on SVM (Manevitz and Yousef, 2001) or based on regression 

model (Sokolov et al, 2016) and more. However, this a research field with a lot of room for 

contribution. In this study we examine the ability to select features, or temporal patterns in 

our case, based only on the learned class, since we want to avoid relying on informatoin 

from the other class (controls), since in our case they are used for evaluation purposes and 

not for learning. Thus, the selection has to be done based solely on the predicted class 

examples. In a recent paper Lorena et al (2014) had proposed several methods for one class 

feature selection based on the minimizing the heterogeneity of the dataset after a feature is 

removed, or by selecting features with low correlations with the other features.

3 Methods

3.1 Definitions

We start with presenting the definitions underlying the presented framework and the 

algorithms. These definitions are based on the definitions framework presented in 

(Moskovitch and Shahar, 2015a,b,c). In our framework a symbolic time interval, I = <s, e, 

sym>, is an ordered pair of time points, start-time (s) and end-time (e), and a symbol (sym) 
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that represents one of the domain’s temporal concepts. In our study concepts can be a 

clinical procedure, a condition, or a drug exposure. Given a patient record the symbolic time 

intervals should be ordered lexicographically based on the start-time, end-time and the 

symbols.

To represent the temporal relations among a pair of symbolic time intervals, we use an 

abstracted version of Allen’s temporal relations (1983). Allen proposed seven temporal 

relations to relate a pair of time intervals (i.e., before, meets, overlaps, contains, finished-by, 
starts, equal and their inverse (for example, after is the inverse of before), which are used by 

KarmaLego and described in details in (Moskovitch and Shahar, 2015a). Ordering the 

symbolic time intervals lexicographically, as defined in definition 3, enables the use of only 

the seven temporal relations, without their inverse. In previous work (Moskovitch et al, 

2015) three broader temporal relations defined by disjunctions of Allen’s temporal relations, 

including BEFORE [before ∨ meets], OVERLAP [overlaps] and CONTAIN [contains ∨ 
finished-by ∨ starts ∨ equal] were proposed. Since they were found to be more effective than 

the seven temporal relatioins (Moskovitch and Shahar, 2015b,c) or similar (Moskovitch et al, 

2015) we used in this study the three relations.

Definition 1—A non-ambiguous lexicographic Time Intervals Related Pattern (TIRP) P is 

defined as P = {I, R}, where I = {I1, I2,.., Ik} is a set of k symbolic time intervals and

defines all the temporal relations among each of the (k2 − k)/2 pairs of symbolic time 

intervals in I.

Figure 1 presents a typical TIRP, represented as a half-matrix of the conjunction of the 

temporal relations. On the left there is an illustration of a four sized symbolic time intervals 

TIRP, and on the right there is a half matrix that presents the temporal relations among them. 

For example, the relation among A and B is overlap (o), while the relation between C and D 

is finished-by.

Definition 2—Given a database of |E| distinct entities (e.g., different patients), the vertical 
support of a TIRP P is denoted by the cardinality of the set EP of distinct entities for which P 
holds, divided by the total number of entities (e.g., patients) |E|: ver_sup(P) = |EP| / |E|.

The vertical support is actually what is commonly used as support in association rules, 

itemset and sequential mining. A TIRP having above minimal vertical support threshold is 

referred to as frequent.

3.2 The KarmaLego Algorithm

The KarmaLego algorithm is a fast time intervals mining algorithm for the discovery of 

TIRPs through exploiting the transitivity of temporal relations that enables an efficient 
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candidate generation mechanism (Moskovitch and Shahar, 2015a). KarmaLego consists on 

two main steps: Karma, in which the entire set of entities’ time intervals data are scanned 

and indexed. Through that all the symbols are counted, and each pair of symbolic time 

intervals and the temporal relation among them are indexed in an index called DharmaIndex 

that contains all the frequent 2-sized TIRPs (k=2). The DharmaIndex (Moskovitch et al, 

2015) will be used laterin the Lego phase to retrieve the relevant pairs through the TIRPs 

extension process.

In the second phase, referred to as the Lego algorithm, a recursive process extends the 2-

sized TIRPs that are frequent. Based on the symbol and the relation r, a set of candidate 

TIRPs are generated highly efficiently, by exploiting the transitivity of the temporal 

relations, into a tree of longer frequent TIRPs. These consist of conjunctions of the 2-sized 

TIRPs that were discovered in the Karma phase. Lego receives a TIRP t that is extended by 

any of the frequent symbols in T1 (S), and any temporal relation r of the R temporal 

relations, which holds between the new symbolic time interval and the last one in the 

extended TIRP. The result of this process is a frequent TIRPs enumeration tree (Moskovitch 

and Shahar, 2015a). More details about the Karma algorithm are in (Moskovitch and Shahar, 

2015a). Unlike in previous studies, in this study we had thousands of types of symbols, thus, 

we implemented the DharmaIndex using hash-tables, instead of arrays as described in 

(Moskovitch et al, 2015).

3.3 The SingleKarmaLego Algorithm

In order to classify a patient based on TIRPs as features they have to be detected at the 

patients’ records. For that we use SingleKarmaLego (Moskovitch and Shahar, 2015b)., an 

algorithm for fast TIRPs detection. Compared to a naïve TIRPs detection algorithm, due to 

the first phase of indexing the pairs of symbolic time intervals, SingleKarmaLego was 

shown to be much faster, especially when the number of TIRPs to detect is larger. Single-

KarmaLego indexes all the pairs of the entity’s symbolic time intervals into an efficient data 

structure that we call DharmaIndex. Similar to KarmaLego, this allows accessing the pairs 

index fast in the detection of longer TIRPs. SingleKarmaLego is applied on a single entity, 

thus, the DharmaIndex in this case does not contain the entity id.

3.4 Maitreya - Prediction of Outcome Events

In this paper we propose a methodology for the prediction of outcome events using time 

intervals related patterns. Figure 2 illustrates the Maitreya framework workflow. Our 

methodology consists of discovering TIRPs only in the set of the cohort entities (i.e., 

patients) having the outcome event (the outcome cohort). This is in order to base the 

prediction model only on the cohort information, while the controls data will be used only 

for evaluation purposes. Since the discovered TIRPs can vary from different cohort of 

patients, so for that we are divide the data into three folds, on which we perform three 

iterations of mining. Thus, the TIRPs are discovered and consist only on one fold in the 

outcome cohort. Then the TIRPs that were discovered in the Cohort patients are going 

through a one class feature selection process, and the TIRPs that were selected are detected 

using Single-KarmaLego on the other two folds both in the cohort and in the control. The 

output of applying SingleKarmaLego is a matrix of patients and TIRPs and the appearances 
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in three levels: Binary, Horizontal Support and Mean Duration. The classification model is 

induced from the matrix containing both the cohort and controls. Thus, the TIRPs are 

discovered from one fold that are detected in the other two folds and on which we perofrm a 

ten folds cross validation experiments. Finally after a prediction model is induced a new 

patient can be classified.

3.4.1 Data Creation—A control set of entities (i.e., patients) is defined that are patients 

from the rest of the database, who do not have the outcome in their records and were 

selected randomly. In the cohort we took data from a prediction-time before the outcome 

event to an observation-time prior to the end of the prediction time. For the controls the 

same was made relatively to a procedure (that is not the outcome) in the patients data.

3.4.2 Model Learning and Evaluation Scheme—As mentioned, since in TIRPs 

mining in each fold, or different population, a different set of frequent TIRPs may be 

discovered. Additionally, in order to avoid overfitting, we perform a rigorous evaluation 

strategy, in which the cohort and control datasets are divided into three folds. Then, in each 

iteration one fold of the cohort patients is mined for TIRPs and then the TIRPs are detected 

in the other two folds for the later classificiation experiment that includes ten folds cross 

valdidation. Note, the TIRPs are not discovered initially from the entire dataset (Moskovitch 

and Shahar, 2015b). Thus, in each iteration TIRPs are discovered from 1/3 of the cohort (one 

fold). Then SingleKarmaLego is applied to detect these TIRPs in the other 2/3 (two folds) of 

the cohort and the other 2/3 (two folds) of the control. Once the TIRPs’ instances were 

detected a matrix of TIRP-features is created.

Thus, the TIRPs are learned from a distinct cohort population than the one used for the 

classification evaluation that includes ten folds cross validation. Overall each experiment 

includes three folds mining and ten fodls classiciation cross validation, which results in 

thirty prediction experiments. As an additional step, to avoid over-fitting we limit the 

number of features to the root of the number of patients in the cohort.

3.5 TIRPs Features Representation

After we apply SingleKarmaLego to the cohort and control to detect TIRPs’ instances in the 

patient data, a matrix is constructed. The rows of this matrix are the entities, which in our 

case are patients, and the columns are the TIRP features. Each matrix entry will have a value 

representing the TIRP for a given patient. The default value is Boolean, which was used in 

previous studies (Patel et al, 2008; Batal et al, 2012). We used in addition to the default 

Boolean more expressive metrics, such as the Horizontal Support and MeanDuration that 

were introduced in (Moskovitch and Shahar, 2015b,c). Horizontal Support is the number of 

the TIRP’s instances that were detected at the patient’s records, and the Mean Duration is 

the average of the time length. These metrics are defined formally at (Moskovitch and 

Shahar, 2015b,c).

Note that what we refer to as horizontal support is the same as term frequency in text 

analytics (Salton et al, 1983), where the term frequency is the number of occurences of a 

term in text, horizontal support is the number of occurrences of a term in text, horizontal 

support.
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3.6 One Class Feature Selection

Due to the large number of TIRPs that are discovered in the mining process that will become 

the features for the classification, we want to avoid overfitting. For that we reduce the 

number of TIRP predictors to the root of the number of patients in the outcome cohort, using 

feature selection.

As was explained earlier, since we don’t want to rely on the controls in our modeling, we 

can not use traditional feature selection methods that consider both classes in their metrics. 

Thus, we wanted to apply feature selection that consists only on the data from the cohort 

class, which is called one class feature selection. For that we propose three strategies and 

evaluate them: (1) selecting those with the highest vertical support; (2) based on the 

correlation of the TIRP to other TIRPs, and selecting those with the lowest average 

correlation; (3) and based on the homogeneity of the cohort class (i.e., selecting those that 

their removal decreases the homogeneity). For that we used the following criterions.

3.6.1 Vertical Support based Selection—We used the vertical support that we defined 

in definition 2. Based on the vertical support metric each TIRP has its frequency in the 

cohort, and based on that sorted the TIRPs based on their vertical support in a descending 

order. The TIRPs having the highest vertical support were selected. This was our default 

criterion.

3.6.2 Correlation based Selection—For the Correlation based One Class Feature 

Selection the average correlation is measured using the Pearson measure for each TIRP 

using the following formula:

In the shown formula given a TIRPi, all the m TIRPs correlation with the given TIRPi are 

calculated. Thus, we would like to choose the TIRPs, or features, that have the lowest 

averaged correlation across all the other TIRPs.

3.6.3 Homogeneity based Selection—The idea behind the homogeneity score is that 

the more the (cohort) class homogeneity is higher it is expected to be better for the 

classification. For the Homogeneity based One Class Feature Selection we calculate the 

homogeneity of the patients vectors. Thus, a TIRP that has a high homogeneity score means 

that its removal decereases less the homogeneity. The homogeneity score is calculated based 

on the cosine similarity of any pair of the entities vectors, after the removal of each TIRP 

accordingly:

After that the TIRPs having the highest scores are selected, since the removal of the others 

(lowest) will decrase the homogeneity.
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4 Evaluation

4.1 Datasets

We extracted clinical data from the New York Presbyterian Columbia University Medical 

Center Hospital (NYP-CUMC) clinical data warehouse. In total, the CUMC-NYP EHR 

contains medical record data for approximately 1.5 million patients going back to 1989, 

containing approximately 30 million diagnosis billing codes, 20 million prescription orders, 

9 million procedures, and 500 million laboratory results. Only coded data used for this 

analysis, including drug exposures, conditions (billing codes), and procedures. These 

concepts were mapped to RxNorm, SNOMED-CT, and ICD-9-Procedure, respectively, to 

conform to the Common Data Model made available by the Observational Medical 

Outcomes Partnership (OMOP). Medical concepts are then transformed into symbolic time 

intervals (called “eras”) and further concatenated according to definition 3. Definition 3 is 

based on the OMOP standards, in which two time intervals (“eras”) having the same concept 

id (symbol) and having a gap less than a given period of time are concatendated into a single 

time interval having the same symbol.

Definition 3. Abstraction function—Given two symbolic time intervals having the 

same symbol Ii and Ij, and Ii is before Ij according to the lexicographical order, and Ijs – Iie < 

max_time holds, it will be abstracted into a new single time interval having the start time of 

Ii and the end time of Ij. In our case max_time was set to 30 days, according to the OMOP 

standard.

4.2 Research Questions

For the evaluation of the outcomes prediction, we selected eight commonly performed 

clinical procedures targeting different organ systems, shown in Table 1. Because most of 

these procedures would have been performed either in outpatient or inpatient setting, we 

assumed that these procedures would allow for inclusion of patients with a range of disease 

severity or acuity. We wanted to answer the following questions: (1) whether using TIRPs as 

features is better than symbols; (2) whether the use of the one class classification feature 

selection methods is better than using the most frequent TIRPs (vertical support); and (3) 

whether the TIRPs representation will be better than the default Boolean that were used in 

previous studies. We compared our methods to the work of Batal et al (2012), in which 

prediction models for diseases based on time intervals patterns were learnt. In their work 

they used as a baseline the symbols and when TIRPs were used they were represented by a 

Boolean representation. These two were used as baseline in our evaluation. We used 20% 

minimal vertical support for all the procedures and did not limit the maximal gap. All the 

experiments were performed with three folds of mining cross validation, as was explained in 

section 3.4 and ten folds of classification cross validation using weka 3.6.11. Thus, each 

result that is reported is based on thirty experimental runs.
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5 Results

We ran Maitreya on the eight clinical procedures prediction tasks datasets in Table 1, in 

order to answer the research questions in section 4.2. Table 2, 3 and 4 present the results of 

the procedures prediction with the three feature selection strategies. All the tables have the 

same structure of contents. Symbols (first column) refers to the use of no temporal analysis 

as features, thus, the symbols are the types of events in the data, and the next columns are of 

the TIRPs with three types of representations: Boolean, Horizontal Support and Mean 

Duration. The results are presented as means and 95% confidence intervals. The baseline 

methods: symbols and Boolean TIRPs are based on (Batal et al, 2012).

5.1 Outcomes Prediction Evalution

In this experiment the symbols and the TIRPs were selected having the highest vertical 

support. The results in Table 2 show that in average the use of Symbols was the worst, and 

when using the TIRPs with the Horizontal Support representation it was meaningfuly better, 

and for some procdures its signfiicant. However, for specific procedures the differences were 

bigger.

Table 3 presents the results when the homogeneity one-class feature selection was used to 

select the TIRPs. The magnitude of the results was similar in this experiment. Thus, the use 

of TIRPs with horizontal support was better than the Symbols and the others. The TIRPs 

with the Boolean representation was slightly worse than the Symbols. However, overall the 

use of the homogeneity one-class feature selection was less effective than the use of vertical 

support for feature selection.

Table 4 presents the results of the procedures prediction when using the correlation based 

one class feature selection to select the TIRPs features. Also here the behavior of the 

framework was the same, while the overall results were slightly worse than the use of 

homogeneity for selection. However, again the use of vertical support was more effective 

and the correlation based seems slightly worse than the homogeneity.

6. DISCUSSION AND CONCLUSIONS

The increasing availability of longitudinal data provides an opportunity for temporal 

knowledge discovery. However, it also brings many challenges due to the common sparsity 

and the various forms of temporal variables.

The first and default feature selection is based on the vertical support of each TIRPs, in 

which we favored the TIRPs having the highest vertical support to minimize the sparsity of 

the data. The second measures the homogeneity of the entire dataset by calculating the 

average similarity of each pair of patients after a TIRP, or feature, were removed.

In this paper we described a framework, called Maitreya, for the prediction of outcome 

events and applied it to Electronic Health Records. Maitreya was designed to learn a model 

based on the cohort class of the outcome event, while a control class of entities (i.e. patients) 

is selected for evaluation purposes.
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Maitreya discovers TIRPs from the cohort using Karma-Lego, a fast TIRPs discovery 

algorithm, and later detects the TIRPs, which are used as features for classification, using 

SingleKarmaLego, a fast TIRPs detection algorithm. To avoid over-fitting Maitreya selects 

TIRPs features for which we proposed three approaches for one class features selection. 

Finally, the TIRPs are represented using three TIRP representations in addition to the 

previous used Boolean representation (Batal et al, 2012).

In this case the TIRPs that after their removal the homogeneity was the highest were 

removed first. The third method measured the average correlation between a given TIRP and 

the rest of the TIRPs. The TIRPs that were less correlated were chosen.

We evaluated Maitreya on eight procedures from the EHR domain for which we created 

datasets from Columbia University Medical Center EHR. We compared the use of TIRPs as 

features to the use of symbols without any temporal representation, and to the use of TIRPs 

with Boolean representation as proposed by (Batal et al, 2012). Our results show that 

representing TIRPs with Boolean representation, describing whether a TIRP was detected 

for the patient or not, performed slightly better than the symbols baseline. Representing the 

TIRPs using the horizontal support performed the best and was significantly better than the 

Symbols, and using it with mean duration was better than the Symbols but slightly worse 

than the Horizontal Support. However, our experiments had shown that using the one class 

feature selection approaches did not improve the performance relatively to the use of the 

vertical support for feature selection. For future work would like to further explore other one 

class feature selection approaches, as well as analyze the clinical meaning of the predictive 

TIRPs.
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Figure 1. 
An example of a Time Intervals Related Pattern (TIRP), containing a sequence of four 

lexicographically ordered symbolic time intervals and all of their pair-wise temporal 

relations shown on the right half matrix.
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Figure 2. 
Maitreya, a framework for outcomes prediction. A cohort set of patients having the outcome 

is constructed, and a corresponding control group of patients who don’t have the outcome. 

One fold is used to discover frequent TIRPs using KarmaLego. SingleKarma-Lego detects 

the TIRPs that were selected by the One Class Feature Selection at the other two folds of the 

cohort and controls are used to detect these TIRPs. Then a matrix is constructed on which 10 

folds cross validation classification is performed. Finally, once a new patient arrives his 

TIRPs are detected using SIngleKarmaLego and given to the induced classifier classifier.
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Table 1

The outcome clinical procedures datasets

Procedure Code Procedure Description #cases

VEN_CATH Venous catheterization 4264

ENDS_SML Endoscopy of small intestine 1420

COLONSCPY Colonoscopy 2506

ABDMN_ULTRA Abdomen diagnostic ultrasound 1798

BRAN_IMAG Brain Magnetic resonance imaging 1808

INTRW_EVAL Interview and evaluation 1364

CRD_VAS_TST Cardiovascular stress test 1194

MECH_VENT Continuous invasive mechanical ventilation 1210
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Table 2

Using the vertical support as one class feature selection.

Procedure Symbols [baseline] (mean AUC −/+ 95% ci)
TIRPs (mean AUC −/+ 95% CI)

Boolean [baseline] Horizontal Support Mean Duration

VEN_CATH 0.684 −/+ 0.012 0.688 −/+ 0.018 0.727 −/+ 0.015 0.714 −/+ 0.015

ENDS_SML 0.644 −/+ 0.024 0.669 −/+ 0.027 0.685 −/+ 0.021 0.649 −/+ 0.032

COLONSCPY 0.577 −/+ 0.015 0.574 −/+ 0.021 0.609 −/+ 0.023 0.588 −/+ 0.026

ABDMN_ULTRA 0.656 −/+ 0.028 0.618 −/+ 0.030 0.676 −/+ 0.028 0.664 −/+ 0.034

BRAN_IMAG 0.655 −/+ 0.027 0.678 −/+ 0.020 0.699 −/+ 0.025 0.673 −/+ 0.025

INTRW_EVAL 0.790 −/+ 0.025 0.801 −/+ 0.023 0.834 −/+ 0.021 0.799 −/+ 0.023

CRD_VAS_TST 0.601 −/+ 0.035 0.637 −/+ 0.027 0.699 −/+ 0.026 0.660 −/+ 0.027

MECH_VENT 0.659 −/+ 0.031 0.668 −/+ 0.031 0.694 −/+ 0.031 0.684 −/+ 0.039

Mean 0.658 −/+ 0.025 0.667 −/+ 0.025 0.703 −/+ 0.024 0.679 −/+ 0.028
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Table 3

Using the homogeneity one class feature selection.

Procedure Symbols [baseline] (mean AUC −/+ 95% ci)
TIRPs (mean AUC −/+ 95% CI)

Boolean [baseline] Horizontal Support Mean Duration

VEN_CATH 0.684 −/+ 0.012 0.693 −/+ 0.014 0.732 −/+ 0.016 0.712 −/+ 0.015

ENDS_SML 0.644 −/+ 0.024 0.638 −/+ 0.031 0.662 −/+ 0.030 0.654 −/+ 0.028

COLONSCPY 0.577 −/+ 0.015 0.571 −/+ 0.021 0.614 −/+ 0.015 0.602 −/+ 0.027

ABDMN_ULTRA 0.656 −/+ 0.028 0.658 −/+ 0.022 0.691 −/+ 0.021 0.672 −/+ 0.028

BRAN_IMAG 0.655 −/+ 0.027 0.658 −/+ 0.023 0.689 −/+ 0.022 0.660 −/+ 0.026

INTRW_EVAL 0.790 −/+ 0.025 0.799 −/+ 0.024 0.834 −/+ 0.019 0.792 −/+ 0.028

CRD_VAS_TST 0.601 −/+ 0.035 0.632 −/+ 0.032 0.685 −/+ 0.027 0.631 −/+ 0.030

MECH_VENT 0.659 −/+ 0.031 0.662 −/+ 0.028 0.716 −/+ 0.033 0.677 −/+ 0.035

Mean 0.658 −/+ 0.025 0.664 −/+ 0.025 0.703 −/+ 0.023 0.675 −/+ 0.027
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Table 4

Using the one class correlation based feature selection.

Procedure Symbols [baseline] (mean AUC −/+ 95% ci)
TIRPs (mean AUC −/+ 95% CI)

Boolean [baseline] Horizontal Support Mean Duration

VEN_CATH 0.684 −/+ 0.012 0.688 −/+ 0.018 0.736 −/+ 0.016 0.713 −/+ 0.015

ENDS_SML 0.644 −/+ 0.024 0.685 −/+ 0.018 0.698 −/+ 0.025 0.684 −/+ 0.024

COLONSCPY 0.577 −/+ 0.015 0.570 −/+ 0.021 0.606 −/+ 0.021 0.596 −/+ 0.024

ABDMN_ULTRA 0.656 −/+ 0.028 0.649 −/+ 0.031 0.697 −/+ 0.022 0.668 −/+ 0.025

BRAN_IMAG 0.655 −/+ 0.027 0.676 −/+ 0.022 0.686 −/+ 0.020 0.673 −/+ 0.027

INTRW_EVAL 0.790 −/+ 0.025 0.802 −/+ 0.023 0.841 −/+ 0.019 0.799 −/+ 0.025

CRD_VAS_TST 0.601 −/+ 0.035 0.560 −/+ 0.036 0.592 −/+ 0.030 0.564 −/+ 0.034

MECH_VENT 0.659 −/+ 0.031 0.664 −/+ 0.033 0.692 −/+ 0.031 0.686 −/+ 0.029

Mean 0.658 −/+ 0.025 0.662 −/+ 0.025 0.693 −/+ 0.023 0.673 −/+ 0.025
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