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Abstract

Selective attention supports the prioritized processing of relevant sensory information to

facilitate goal-directed behavior. Studies in human subjects demonstrate that attentional

gain of cortical responses can sufficiently account for attention-related improvements in

behavior. On the other hand, studies using highly trained nonhuman primates suggest that

reductions in neural noise can better explain attentional facilitation of behavior. Given the

importance of selective information processing in nearly all domains of cognition, we sought

to reconcile these competing accounts by testing the hypothesis that extensive behavioral

training alters the neural mechanisms that support selective attention. We tested this hypo-

thesis using electroencephalography (EEG) to measure stimulus-evoked visual responses

from human subjects while they performed a selective spatial attention task over the course

of ~1 month. Early in training, spatial attention led to an increase in the gain of stimulus-

evoked visual responses. Gain was apparent within ~100 ms of stimulus onset, and a quan-

titative model based on signal detection theory (SDT) successfully linked the magnitude of

this gain modulation to attention-related improvements in behavior. However, after exten-

sive training, this early attentional gain was eliminated even though there were still substan-

tial attention-related improvements in behavior. Accordingly, the SDT-based model required

noise reduction to account for the link between the stimulus-evoked visual responses and

attentional modulations of behavior. These findings suggest that training can lead to funda-

mental changes in the way attention alters the early cortical responses that support selective

information processing. Moreover, these data facilitate the translation of results across dif-

ferent species and across experimental procedures that employ different behavioral training

regimes.

Author summary

Selective attention can enhance processing of sensory information via sensory gain and

neural noise reduction. However, the extent to which these 2 mechanisms contribute to

improvement in perceptual performance during attention is still debated. We hypothesized
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that the mechanisms that support selective attention depend on the duration of training for

the task. Using electroencephalography (EEG), we measured over the course of 1 month

visual responses from human subjects while they performed a selective spatial attention

task and showed that attentional gain plays a dominant role early in training, but neural

noise reduction dominates later in training. This observation has important implications

for understanding attentional mechanisms as well as for generalizing results from studies

using different model systems (e.g., human versus nonhuman primates) that often require

substantially different amounts of training.

Introduction

Selective attention influences sensory processing such that relevant information is preferen-

tially encoded at the expense of irrelevant information. Over the last several decades, multiple

electrophysiological and neuroimaging studies in humans and nonhuman primates have

shown that attention selectively increases the amplitude, or the gain, of visual responses evoked

by attended stimuli compared to responses evoked by unattended stimuli [1–35]. Many of

these studies used electroencephalography (EEG) to measure population-level attentional gain

in the human visual cortex by tracking changes in the amplitude of a visually-evoked event-

related potential (ERP) waveform that peaks ~100 ms poststimulus, termed the P1 component

[7,9,12,17–21, 31–32]. With respect to behavior and perception, attentional gain of the P1

component is correlated with improved target detection [19], with improved contrast discrim-

ination thresholds [9], and with changes in perceived contrast [31], and taken together, these

findings suggest that the amount of attentional gain in the human visual cortex has a signifi-

cant impact on both perception and behavior during tasks that require selective attention.

In addition to the extensive literature on attention-related gain modulations, recent

electrophysiological studies in nonhuman primates demonstrate that attention can also reduce

the trial-by-trial variability of single neuron spike rates and the magnitude of correlated spik-

ing between neurons [36–44]. Moreover, these modulations of neuronal noise may improve

the signal-to-noise ratio of sensory codes more than attentional gain [37,40] and may be better

predictors of improvements in behavioral performance [37]. While gain and noise modula-

tions are not mutually exclusive, the degree to which each type of modulation impacts behav-

ioral performance is difficult to evaluate given differences in experimental methods and

training regimes used by different research groups [45–48]. For example, studies that focus on

attentional gain as the dominant mechanism of selective attention typically use human partici-

pants who are trained for brief periods of time before data collection begins (typically less than

1 hour) [12,17–21, 31–32]. On the other hand, studies that focus on noise reduction typically

use nonhuman primates who are trained for many months prior to recording neural activity

[37,40,43]. Thus, training may play a key role in shaping how selective attention impacts corti-

cal responses to facilitate goal-directed behavior, and characterizing training effects is also crit-

ical for generalizing results across tasks and species.

To directly test the influence of training on the neural mechanisms that support selective

attention, we had human participants repeatedly perform a spatial attention task over the

course of approximately 1 month (20 data recording sessions). Throughout training we used a

standard psychophysical approach to measure behavioral performance, and we used EEG to

measure stimulus-evoked responses over the visual cortex. Using human participants and

EEG enabled us to immediately acquire data with relatively little initial practice so that we

could monitor changes in both behavior and neural activity across training sessions. In addi-

tion, with EEG, we could measure changes in the amplitude of the P1 component as a marker
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of population-level gain modulations in extrastriate regions of the visual cortex [7,9,12,17–21,

31–32]. We focused on the P1 component because it is sensitive to changes in stimulus inten-

sity and to attentional manipulations [7,9,12,17–21, 31–32]. Moreover, recent studies have

demonstrated that sensory and attentional modulations of spiking activity in the extrastriate

visual cortex are correlated with modulations of population-based measures such as the local

field potential (LFP) in the same temporal window as the P1 in both nonhuman primate and

human subjects [49–50]. Given that the P1 is thought to be closely correlated with LFP modu-

lations, the present approach thus provides access to both behavioral and cortical responses

across a wide range of training phases.

Consistent with prior results in human subjects using EEG and spatial attention tasks, early

in training we observed attentional facilitation of behavioral performance and a robust atten-

tional gain modulation of the P1 component [7,9,12,17–21,31–32]. However, later in training,

there was still an attentional facilitation of behavioral performance even though attentional

gain of the P1 component vanished. Next, we adopted a standard quantitative model, based on

signal detection theory (SDT), to infer whether attentional gain or noise reduction best pre-

dicted the relationship between attentional modulations of the P1 component and behavior

across training sessions [5,9,28,47,51–53]. Over the course of training, the SDT model suggests

a link between P1 gain and behavioral gain early in training but noise reduction later in train-

ing. This putative transformation from attentional gain to noise reduction suggests that differ-

ent neural mechanisms may support selective attention at different phases of training.

Results

Behavioral results

Human participants performed a 2-interval forced choice (2IFC) contrast discrimination task

(Fig 1A). We used this task to make contact with previous studies in both humans and nonhu-

man primates that have employed similar paradigms [5,9,36–38]. At the start of a trial, subjects

were cued to attend to either the left or right lower visual quadrant (termed focused attention

trials), or they were cued to attend to both locations (termed divided attention trials). The

cue was followed by 2 successive stimulus intervals, and each interval contained 1 sinusoidal

Gabor stimulus to the left and 1 to the right of fixation. In 1 of the 2 stimulus-presentation

intervals, the contrast of each stimulus was pseudorandomly drawn from 0%–61.66% Michel-

son contrast. We refer these contrast values as “pedestal” contrast values. In the other stimulus

interval, we added a slight contrast increment to the pedestal contrast value of 1 of the 2 sti-

muli, and participants then had to report whether the first or the second interval contained the

stimulus with a higher contrast. In the focused attention condition, the 2 successive stimuli at

the cued location were always rendered at different contrast values. At the uncued location,

the 2 successive stimuli were always rendered at the same contrast. We refer to stimuli pre-

sented in the cued location as “focused target” stimuli and stimuli presented in the uncued

location as “focused nontarget” stimuli. In the divided attention condition, both locations

were equally likely to contain the contrast change, yielding “divided target” and “divided non-

target” stimuli. Importantly, the pedestal contrast value presented in the target location was

paired an equal number of times with nontarget stimuli rendered at each possible contrast

value. The main dependent measure was the change in contrast (i.e., contrast threshold or Δc)

from each pedestal contrast that was required to achieve an accuracy level of 76% (perceptual

sensitivity or d’ of approximately 1). When paired with simultaneous EEG recording, this

psychophysical approach allowed us to derive both psychometric and neurometric response

functions so that we could directly link attentional modulations in neural responses with atten-

tional modulations in behavior (see also [5,9,28,47,51–53]).

Attentional mechanisms change with training
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To evaluate the effects of training on attentional modulations of cortical responses, 12

human participants participated in 20 EEG sessions over the course of approximately 1 month

(Fig 1B, see Materials and methods, subsection Subjects). Note that on most days, most sub-

jects participated in 2 EEG sessions (10 subjects completed 2 sessions every day, 1 subject com-

pleted 2 sessions most days except for 1 session for 1 day and 3 sessions for another day, and

the other subject completed 2 sessions most days except for 1 session for 3 days and 3 sessions

for another day). In each experimental session, we estimated the incremental contrast value

(Δc) required to reach criterion performance at each pedestal contrast and attention condition

(Fig 2A; mean hit rate: 76.6% ± SEM 0.3%, yielding d’ = ~1).

Fig 2B illustrated the psychophysical contrast thresholds (Δc) required to achieve a fixed hit

rate (Fig 2A) as a function of pedestal contrast in the focused attention and divided attention

conditions (to produce a threshold versus contrast [TvC] curve). The behavioral data pre-

sented here were divided into 2 training phases in order to match the data from the main EEG

analysis, in which we tried to obtain ~400 trials for each experimental condition (10 EEG ses-

sions for each training phase) as suggested by Luck [54]. In line with previous studies, Δc

increased as a function of contrast (F(5, 55) = 143.38, p< 0.001) [9,28,52,55–58] and decreased

with focused compared to divided attention (F(1, 11) = 137.95, p< 0.001) [5,9,28,56]. These

attentional modulations occurred at all contrast levels (all t(11)’s� 5.03, all p’s< 0.001, data

collapsed across early and late training phases, false discovery rate [FDR]-corrected, 2-tailed).

In addition, there were significant attention effects on Δc in both training phases (t(11)’s =

11.23 and 9.28 for early and late training phases, respectively, collapsed across contrasts, all

Fig 1. Task design. (A) A 2-interval force choice (2IFC) contrast discrimination task that required either

focused or divided spatial attention. (B) Training regime: 12 participants completed 1 session of behavioral

training and then completed 20 sessions of simultaneous behavioral testing and electroencephalography

(EEG) recording over an average of 32.25 days. For the main analysis, we defined the first 10 EEG recording

sessions as the “early phase” of training and the last 10 sessions as the “late phase” of training.

https://doi.org/10.1371/journal.pbio.2001724.g001
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p’s< 0.001). Finally, training also decreased Δc (F(1, 11) = 9.85, p = 0.009). This training effect

on Δc was driven primarily by improved performance in the divided attention condition

(F(1, 11) = 11.96, p = 0.005) for the stimuli of 0%–26.92% contrast levels (t(11)’s = 2.07–4.70;

p’s� 0.031, FDR-corrected, 1-tailed under an assumption that training should improve behav-

ioral performance).

To examine attention and training effects on a finer timescale, we sorted the behavioral

contrast discrimination threshold data into 10 time bins (2 EEG sessions or ~1 day for each

bin). Consistent with the main result, there were significant main effects of attention across all

Fig 2. Behavioral results. (A) The hit rate was fixed at ~76% (d’ = ~1) across all conditions so that contrast

discrimination thresholds could be measured as a function of attention and training. Error bars represent

within-subject SEM. (B) Psychophysical contrast discrimination thresholds (Δc) for stimuli across all pedestal

contrast levels in the focused and divided attention conditions split into early and a late training phases (10

electroencephalography [EEG] sessions for each phase). Error bars represent within-subject SEM. Green *,

**, and *** in (B) represent pairwise differences between contrast thresholds in the divided attention

condition across training phases with p’s < 0.05, < 0.01, and < 0.001, respectively (false discovery rate [FDR]-

corrected). (C) The day-by-day Δc data showing a faster learning rate in the focused attention condition

compared to the divided attention condition (2 EEG sessions or ~1 day of experiment per time bin). Error bars

represent within-subject SEM. Blue and green *, **, and *** in (C) represent significant changes in Δc across

days in the focused and divided attention conditions with p’s < 0.05, < 0.01, and < 0.001, respectively (FDR-

corrected). Data are available from the Open Science Framework (https://osf.io/pc7dr/).

https://doi.org/10.1371/journal.pbio.2001724.g002
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phases of training (Fig 2C). Paired t tests comparing data from the focused attention and

divided attention conditions, collapsed across all contrast levels, revealed significant mean

differences in behavioral contrast thresholds across all time bins (t(11)’s = 5.05–14.26, p’s<

0.001, FDR-corrected, 1-tailed under the assumption that focused attention should lead to

improved behavioral performance compared to divided attention). Moreover, we also found

that there were learning effects not only in the divided attention condition but also in the

focused attention condition. However, these learning effects occurred at a much faster rate

than in the divided attention condition. To evaluate these learning effects, we performed sepa-

rate 1-way, repeated-measures ANOVAs with day as a within-subject factor on data from each

contrast level in the divided attention and the focused attention conditions (12 tests in total,

FDR-corrected across all tests). In the divided attention condition, we found significant train-

ing effects for pedestal contrasts ranging from 0%–26.92% (F(9,99)’s = 2.47–7.61 with all

p’s� 0.014) but not for a pedestal contrast of 61.66% (F(9,99) = 1.28 with p = 0.259). In the

focused attention condition, we found significant training effects for pedestal contrasts ranging

from 2.24%–11.75% (F(9,99)’s = 2.43–4.71 with p’s� 0.015) but not for the other contrast levels

(F(9,99)’s = 0.49–1.92 with p’s = 0.058–0.877). The impact of training on behavior in the focused

attention condition primarily occurred in between the first day and the second day and was thus

earlier and more abrupt than training effects in the divided attention condition. Post hoc pair-

wise t tests revealed a significant effect between the first and the second days for pedestal con-

trasts of 2.24%–11.75% (t(11)’s = 3.82 to 4.52, p’s� 0.001, FDR-corrected, 1-tailed under the

assumption that training should improve behavioral performance). After the second day, behav-

ioral performance stabilized for the duration of the experimental sessions and post hoc pairwise t
tests revealed no significant differences between the second day and any of the following days for

pedestal contrasts of 2.24%–11.75% (t(11)’s = –0.58 to 2.45 with p’s = 0.016 to 0.483, nonsignifi-

cant after FDR correction, 1-tailed under the same assumption). Note that we only performed

post hoc t tests on the data associated with 2.24%–11.75% pedestal contrasts given that only these

conditions exhibited significant training effects, as evaluated earlier using 1-way ANOVAs.

EEG results: General analysis approach

To examine cortical responses evoked by attended and unattended stimuli, we focused on

quantifying the P1 response averaged across the first and second stimulus presentation inter-

vals (and note that we also examined the first and second intervals separately, see results

below). The early visual system has a contralateral mapping between external stimuli and their

cortical representation, such that stimuli presented in the left visual field evoke responses in

right occipital cortex and vice versa. However, EEG has relatively coarse spatial resolution,

thus ERPs recorded over the occipital lobe typically reflect a mixture of responses evoked by

both stimuli (unless a 0% contrast stimulus was presented in 1 hemifield). Thus, to better iso-

late the stimulus-evoked responses associated with stimuli presented on the left and right sides

of space, we first averaged ERPs on trials that had a 0% contrast stimulus in the visual field

contralateral to a given electrode of interest and a nonzero contrast stimulus in the ipsilateral

visual field. The resulting averaged ERP thus reflects the average degree of “spillover” from sti-

muli of all possible contrast levels, which were presented in the ipsilateral visual field. Next, we

subtracted this ERP from the ERPs on trials in which nonzero contrast visual stimuli were pre-

sented in the contralateral visual field (Fig 3) (see similar methods in [9,31,59]). This subtrac-

tion method was performed separately for each contralateral stimulus contrast level, each

attention condition, and each training phase. This method helped not only to isolate evoked

responses associated with a single stimulus from a bilateral stimulus array but also to control

for any spatially nonspecific anticipatory effects associated with the presentation of attention

Attentional mechanisms change with training
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cues [9,31,59]. As shown in Fig 4 and S1 Fig, the P1 components peaked in the contralateral

posterior–occipital electrodes ~80–130 ms poststimulus, consistent with previous ERP studies

[7,9,12,17–21, 31–32]. Note that the validity of this baseline subtraction method relies on an

assumption of linearity, which appears to be reasonable in this situation. First, we counterbal-

anced the contrasts of target and nontarget stimuli so that there were equal numbers of trials

in which each possible target contrast value was paired with each possible nontarget contrast

value (and vice versa). Therefore, this method amounts to subtracting out the average response

to ipsilateral stimuli across all contrast values. Next, to further ensure that the pattern of results

was not artificially influenced by the subtraction method, we also analyzed the data without

baseline subtraction and we observed the similar pattern of results, thus validating the linearity

assumption of the baseline subtraction method (see below).

Training attenuates attentional gain of the visual P1 component

Fig 5A shows the mean P1 amplitude from 80–130 ms poststimulus over the contralateral

posterior–occipital electrodes as a function of stimulus contrast, yielding contrast response

functions (CRFs) for focused target, focused nontarget (or ignored stimulus), and divided

attention conditions (averaged across the divided target and divided nontarget conditions).

We then characterized the shape of the CRF in each condition using a Naka–Rushton equation

(see Eq 1 and Materials and methods) to estimate the maximum response (response at 100%

contrast minus baseline) and the half-maximum contrast value that determines the horizontal

Fig 3. An example of the event-related potential (ERP) subtraction method. (A) Left column (in purple):

schematic of a 61.66% contrast divided nontarget stimulus presented in the left hemifield (termed the stimulus

of interest) and paired with target stimuli rendered in all different contrasts (down the rows). Right column (in

black): the divided nontarget 0% contrast stimulus in the left hemifield paired with the same set of target

stimuli in the right hemifield. (B) In this case, the ERP response evoked by the left divided nontarget stimulus

of 0% contrast (A, right; B, top, black dotted traces) was subtracted from the ERP response evoked by the left

divided nontarget stimulus of 61.66% contrast (A, left; B, top, dotted purple traces), resulting in the baseline-

subtracted ERP response (B, bottom, solid purple traces). A similar subtraction was done to compute the

ERPs associated with stimuli of interest rendered at all other contrasts. Note that the stimulus paired with the

stimulus of interest (in this case, the right divided target stimulus) was equally likely to have any of the 6

contrast values. Therefore, this method amounts to subtracting out the mean response to all ipsilateral stimuli.

https://doi.org/10.1371/journal.pbio.2001724.g003
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position of the CRF along the x-axis (Fig 5B). To examine changes in the CRF fit parameters,

we used resampling statistics (see details in Materials and methods). Note that averaging data

across the divided target and divided nontarget conditions was justified based on the fact that

there was no main effect of stimulus type, no main effect of stimulus interval, no main effect of

training, or no interaction between these factors on the maximum response and the half-maxi-

mum contrast of the P1-based CRFs (all p’s� 0.248, resampling tests, 2-tailed; see Materials

and methods) (Fig 5C and 5D).

Fig 4. Event-related potential (ERP) results. (A) ERP traces evoked by the focused target, focused nontarget, divided target, and

divided nontarget conditions across early and late training phases. The shading of the colors represents the contrast level of the

stimulus (dark to bright colors represent low to high contrast levels). The ERP subtraction method, which helped isolate the ERPs

evoked by the stimulus of interest, is illustrated in Fig 3. (B) Zoom-in figure of the visual P1 component. (C) Zoom-in figure of the late

positive deflection (LPD or P3). (D) Topographical maps of the P1 and the LPD component collapsed across all experimental

conditions. The left and the right sides of the topographical map depict the response in electrodes that are ipsilateral and contralateral

to the stimulus of interest, respectively. Data are available from the Open Science Framework (https://osf.io/pc7dr/).

https://doi.org/10.1371/journal.pbio.2001724.g004
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Fig 5. Modulations of the P1 component with baseline subtraction. The contrast response functions

(CRFs), based on the amplitude of the extracted P1 component, which was averaged over the contralateral

posterior–occipital electrodes from 80–130 ms poststimulus. During the early training phase, there was a

robust attentional gain amplification of the P1 component on focused attention trials compared to divided

attention trials (left panel). However, no attention-related gain modulations were present during the late

training phase (right panel). Error bars represent within-subject SEM. (B) Corresponding maximum response

(response at 100% contrast minus baseline) and half-maximum contrast for the P1-based CRFs in (A). Error

bars represent the 68% CIs; ** and *** represent significant pairwise comparisons between attention

conditions in each training phase with p < 0.01 and p < 0.001, respectively. Note that in this and subsequent

figures, we use 68% CIs for data that were analyzed via nonparametric bootstrapping methods (e.g., the fit

parameters) and within-subject SEM for data that were analyzed using standard parametric approaches. xx

represents a significant interaction between training (early and late) and attention (focused target and divided

attention), with p < 0.01. (C) The P1-based CRFs evoked by the divided target and divided nontarget stimuli

during the first and second stimulus intervals across the early and late training phases. There was no

significant change in the P1-based CRFs across these stimulus conditions and training phases. This justified

averaging between the P1 data elicited by the divided target and divided nontarget stimuli from both stimulus

intervals. Error bars represent within-subject SEM. (D) Corresponding maximum response and half-maximum

contrast for the P1-based CRFs in (C). Error bars represent the 68% CIs. (E) The day-by-day analysis of the

P1 data with baseline subtraction (2 electroencephalography [EEG] sessions or ~1 day per each time bin).

Left and right panels represent the estimated maximum response and half-maximum contrast parameters.

Error bars represent the 68% CIs. Blue *, **, and *** in (E) represent significant pairwise comparisons

Attentional mechanisms change with training
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Consistent with a recent report [9], early in training we found a significant increase in the

maximum response of the P1-based CRFs in the focused target condition compared to the

focused nontarget condition (p = 0.004) and a significant increase in the maximum response

in the focused target condition compared to the divided attention condition (Fig 5A left and

5B top, p< 0.001, resampling tests, 2-tailed). In contrast, later in training we found no differ-

ence in the maximum response between the focused target and the focused nontarget condi-

tions (p = 0.694) or between the focused target and the divided attention conditions (Fig 5A

right and 5B top, p = 0.687, resampling tests, 2-tailed). This overall pattern gave rise to a signif-

icant interaction between training (early and late) and attention conditions (focused target

and divided attention) (p = 0.006, resampling test, 1-tailed because of the assumed direction of

the interaction). Importantly, we found that the attenuated attentional gain after training was

due to a selective reduction of the maximum P1 response in the focused target condition

(p = 0.013), accompanied by no changes in either the focused nontarget condition (p = 0.795)

or the divided attention condition (p = 0.935, resampling tests, 2-tailed). The fact that the

training-related change in P1 amplitude was specific to the focused target condition suggests

that training specifically impacted neural modulations related to the deployment of focused

attention. Moreover, the specificity of these modulations indicates that training-related

changes in P1 amplitude were not due to general low-level sensory or perceptual learning

effects since training did not impact the magnitude of the P1 associated with any other condi-

tion (i.e., the focused nontarget and divided attention conditions).

We next performed a follow-up EEG analysis to more precisely characterize the timecourse

of training effects by sorting the EEG data into 10 time bins (2 EEG sessions per bin or ~1 day

per bin). Fig 5E shows the results of this analysis, which support the same conclusions as the

split-half data broken down into early and late training phases. In the day-by-day data, training

led to a significant reduction in the maximum response of the P1-based CRFs in the focused-

target condition (i.e., the slope of the linear fit across 10 time bins was significantly less than 0,

a resampling test with p = 0.004, 2-tailed, see Materials and methods), while the maximum

response of the focused nontarget and divided attention CRFs did not change with training

(resampling tests with p’s = 0.348 and 0.427, respectively, 2-tailed). Interestingly, the signifi-

cant effect of training in the focused target condition was driven by a marked increase in the

maximum CRF response on the second day, the same day that behavioral performance in the

focused attention condition dramatically improved (Fig 2C). On the third day, when behavioral

performance started to stabilize in the focused attention condition, there was a corresponding

drop in the maximum P1 response. Post hoc pairwise comparisons confirmed that the maxi-

mum response on the second day was significantly higher than the maximum response in the

first day (p = 0.030) and higher than the maximum response values on the fifth, sixth eighth,

ninth, and 10th days (all p’s� 0.029, resampling tests, FDR-corrected, 1-tailed; see Materials

and methods). This pattern of rising and falling early visual responses that occurred in parallel

with the improvement and stabilization of perceptual performance is consistent with findings

previously reported by a study on perceptual learning [60] (see Discussion).

While training had a significant impact on the attentional modulation of the maximum

response of the P1-based CRFs, we did not find changes in the half-maximum contrast across

between the maximum response on the second time bin in which the behavioral performance started to reach

a saturation level (Fig 2C) and the maximum response in other time bins with p < 0.05, p < 0.01, and p < 0.001

(false discovery rate [FDR]-corrected). Note that the contrast values on the x-axis in (A) and (C) are not

exactly the same across target and nontarget conditions because in the target conditions, we used the

averaged contrast values of the pedestal and incremental stimuli. Data are available from the Open Science

Framework (https://osf.io/pc7dr/). n.s., not significant.

https://doi.org/10.1371/journal.pbio.2001724.g005
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any comparison between the focused target, focused nontarget, and divided attention condi-

tions during the early or late training phase (Fig 5B, bottom, all p’s� 0.156; resampling test-

s,2-tailed). In addition, we did not find any training-related changes in the half-maximum

contrast of the P1-based CRFs in the focused target (p = 0.893), focused nontarget (p = 0.412),

or divided attention condition (p = 0.333, resampling tests, 2-tailed). The follow-up day-by-

day EEG analysis also revealed no changes in the half-maximum contrast across 10 time bins:

the slopes of the linear fit across 10 time bins were not significantly different than 0 (p’s = 0.655,

0.255, and 0.535 for the focused target, focused nontarget, and divided attention conditions,

respectively, resampling tests, 2-tailed). Collectively, these results suggest that training primarily

impacts the degree to which attention amplifies the maximum response of population-level

stimulus-evoked responses.

For comparison, we also analyzed the P1-based CRFs without subtracting the baseline

activity. As illustrated in Fig 6, the results were qualitatively similar to the results obtained

using the subtraction method (Fig 5). Thus, this validated the linearity assumption of the base-

line subtraction method. First, we fit the Naka–Rushton equation (Eq 1) to characterize the

CRFs, but this time we included an additional free parameter to account for baseline differ-

ences between conditions. We then performed a nested model comparison to assess the good-

ness of fit between the model that allowed baseline parameters to change freely and the model

that fixed the baseline parameter across all experimental conditions (see Materials and meth-

ods). This analysis revealed that allowing baseline parameters to change freely did not signifi-

cantly improve the goodness of fit (F(5, 11) = 0.97, p = 0.479, nested test). This suggests that

baseline parameters associated with the P1-based CRFs did not change with attention or with

training. Further supporting this result, a day-by-day EEG analysis comparing the P1 response

amplitude obtained from trials of 0% pedestal contrast across 10 time bins (2 EEG sessions or

~1 day each bin) also suggests that baseline activity did not change with attention or training

(Fig 6B). Specifically, a 2-way repeated-measures ANOVA showed no main effect of training

(10 time bins: F(9, 99) = 1.00, p = 0.447), no main effect of attention (focused target, focused

nontarget, and divided attention conditions: F(2, 22) = 0.71, p = 0.501), and no interaction

between these 2 factors on the P1 amplitude in trials with stimuli of 0% pedestal contrast (i.e.,

baseline activity) (F(18, 198) = 0.90, p = 0.574). The null attention and training effects on the

P1 baseline activity speaks against the possibility that attention and training might induce

changes in perceptual template in the early visual cortex, which may have caused subjects to

see stimuli when none were presented.

Consistent with the P1 data that was subjected to the baseline subtraction procedure (Fig

5), we observed the same pattern of response modulation with attention during the early train-

ing phase that dissipated after extended training. Thus, this further verified the linearity

assumption of the baseline subtraction method (discussed in the EEG results: General analysis

approach section). As illustrated in Fig 6C (top), there was a significant increase in the maxi-

mum response of the P1-based CRFs for the focused target condition compared to the focused

nontarget condition (p = 0.018) and a significant increase in the maximum response in the

focused target condition compared to the divided attention condition (p< 0.001, resampling

tests, 2-tailed). In contrast, later in training we found no difference in the maximum response

between the focused target and the focused nontarget conditions (p = 0.113) or between the

focused target and the divided attention conditions (p = 0.367, resampling tests, 2-tailed). This

training-induced reduction in the attentional modulation of the maximum P1 response gave

rise to a significant interaction between the training and attention conditions (p = 0.034,

resampling test, 1-tailed because of the assumed direction of the interaction). A follow-up

analysis of the day-by-day EEG data also revealed a trend toward decreasing amplitude of the

maximum response associated the P1 CRFs in the focused target condition across training

Attentional mechanisms change with training
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Fig 6. Modulations of the P1 component without baseline subtraction. (A) The P1 contrast response

functions (CRFs) based on event-related potentials (ERPs) without the baseline subtraction. Note that the

contrast values on the x-axis are not exactly the same across target and nontarget conditions because in the

target conditions we used the averaged contrast values between the pedestal and incremental stimuli. (B) The

P1 response amplitude obtained from 0% pedestal contrast stimuli (i.e., baseline activity) across training days

(2 electroencephalography [EEG] sessions or ~1 day per time bin). Error bars in (A) and (B) represent within-

subject SEM. There was no main effect of attention, no main effect of training, or no interaction between the 2

factors on the P1 baseline activity. (C) Corresponding maximum response (response at 100% contrast minus

baseline) and half-maximum contrast for the P1-based CRFs in (A). Overall, the results are consistent with

the P1 results with baseline subtraction (Fig 5), in which a gain modulation of the maximum response was

observed during the early training phase, but this attentional gain modulation disappeared after training. The

main difference between this result and the baseline-subtracted result is that the baselines of the P1 CRFs

across all experimental conditions were shifted down and were negative. This was due to an early negative

component induced by the stimulus that was ipsilateral to the electrode of interest. Error bars represent the

68% CIs; * and *** represent significant pairwise comparisons between attention conditions in each training

phase with p < 0.05 and p < 0.001, respectively. x represents a significant interaction between training (early

and late) and attention (focused target and divided attention) with p < 0.05. (D) The day-by-day analysis of the

P1 data without baseline subtraction (2 EEG sessions or ~1 day per each time bin). Left and right panels

represent the estimated maximum response and half-maximum contrast parameters. Error bars represent the

68% CIs. Blue *, **, and *** in (D) represent significant pairwise comparisons between the maximum

response on the second day, on which the behavioral performance started to reach a saturation level (Fig 2C),

and the maximum response on other time bins, with p < 0.05, p < 0.01, and p < 0.001 (false discovery rate

[FDR]-corrected). Data are available from the Open Science Framework (https://osf.io/pc7dr/). n.s., not

significant.

https://doi.org/10.1371/journal.pbio.2001724.g006
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sessions (p = 0.063, 2-tailed). In contrast, the maximum responses of the CRFs associated with

focused nontarget (p = 0.107) and divided attention conditions remained unchanged (p =

0.730, resampling tests, 2-tailed). Similar to the results with baseline subtraction, we also found

that the maximum response of the P1-based CRFs in the focused target condition was the

highest on the second day, and it was significantly higher than the maximum response values

on the first day (p = 0.010) and later days, including the fourth, sixth, seventh, eighth, ninth,

and 10th days (all p’s� 0.023, resampling tests, FDR-corrected, 1-tailed; see Materials and

methods).

In addition, the half-maximum contrast associated with the P1 without baseline subtraction

was unchanged across attention conditions and training phases (all p’s� 0.425, resampling

tests, 2-tailed). Also, the day-by-day EEG analysis revealed no changes in the half-maximum

contrast across 10 time bins: the slopes of the linear fits across 10 time bins were not signifi-

cantly different than 0 (p’s = 0.600, 0.841, and 0.351 for the focused target, focused nontarget,

and divided attention conditions, respectively).

Quantitative modeling suggests a transition from gain to noise reduction

after training

Overall, the P1 results suggest that attentional gain is a prominent mechanism that supports

attentional selection early in training. However, the absence of attentional gain later in training

suggests that training may alter the neural mechanisms that support attentional selection. For

example, recent studies propose that noise reduction or efficient decoding schemes can facili-

tate selective processing even in the absence of gain [5,28,36–37,40,43–44,51]. To evaluate

these alternative accounts, we adopted a quantitative modeling framework based on SDT to

evaluate the impact of gain and noise modulations on behavioral performance [5,9,28,47,51–

53]. Later, we also evaluated possible contributions of efficient decoding [5,28].

As illustrated in Fig 7 and Eq 3, The SDT-based model posits that perceptual sensitivity (or

d’) is determined by the difference between the mean neural responses evoked by 2 different

stimuli (ΔR) divided by the trial-by-trial variability of those responses (σ) [5,9,28,47,51–53].

Attentional gain can increase d’ by increasing ΔR (Fig 7, left), and noise reductions can in-

crease d’ by decreasing σ (Fig 7 right). Thus, this framework allowed us to make inferences

Fig 7. Competing attention mechanisms based on signal detection theory (SDT). According to SDT,

perceptual sensitivity (d’) increases via increasing gain (ΔR) and via reducing noise (σ). (A) Attentional gain

models posit that selective attention enhances the magnitude of early visual responses (ΔR), which leads to

an increase in perceptual sensitivity (d’). (B) Noise reduction models hold that attention reduces trial-by-trial

neuronal variability and improves d’ by reducing σ. We hypothesized that training might qualitatively alter the

neural mechanisms that support attentional selection, with a shift from attentional gain (A) to noise reduction

(B) over time.

https://doi.org/10.1371/journal.pbio.2001724.g007
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about the importance of gain and noise modulations even though direct measures for neuronal

noise are not available because of the noninvasive nature of EEG. We then used this model to

formally link observed contrast discrimination thresholds with observed modulations of the

P1 response. For example, when d’ is fixed and there is a decrease in psychophysical contrast

thresholds (Δc) with attention, a model based solely on changes in attentional gain predicts an

increase in the maximum response of the neural CRFs in the focused target compared to the

divided attention conditions. In turn, if the predicted neural gain changes are too large or too

small compared to the observed data, then the model can incorporate changes in σ to improve

the link between neural CRFs and behavior.

Consistent with a recent study [9], the gain model effectively linked changes in contrast

thresholds and changes in the slope of the P1-based CRFs during the early training phase

(compare a cyan curve and blue circles in the left panel of Fig 8A and see Table 1 for corre-

sponding fitting parameters). Moreover, the noise model did not significantly improve the fit

between the behavioral data and the P1-based CRFs compared to the gain model (compare

orange and cyan curves; F(1, 8) = 1.12, p = 0.322, nested test). This suggests that attentional

gain sufficiently accounts for the relationship between attentional modulations in neural and

behavioral data early in training. However, later in training there was no attentional modula-

tion of P1 amplitude (the right panel of Fig 8A) even though there was still an improvement in

behavior with focused attention (Fig 2B). Thus, the gain model overestimated the slope of the

P1-based CRFs in the focused target condition during the late training phase (compare the

cyan curve and blue circles in the right panel of Fig 8A and see Table 2 for corresponding fit

parameters). Instead, the noise model provided a significantly better fit compared to the gain

model (compare orange and cyan curves; F(1, 8) = 89.18, p< 0.001, nested test). Importantly,

we observed consistent results when we used the P1 data averaged across the divided target

and divided nontarget conditions (Fig 8A and 8D), the P1 data from the divided target condi-

tion only (Fig 8B and 8E), the P1 data from the divided nontarget condition only (Fig 8C and

8F), and the P1 data from the divided target condition from just the first stimulus interval (Fig

8A–8F). Moreover, we obtained similar results using P1 data without baseline subtraction (Fig

8G–8L and Tables 1 and 2).

According to the day-by-day analysis of the behavioral and the P1 data, there was an

increase in the maximum P1 response evoked by the focused target during the training interval

in which behavioral performance significantly improved (from the first to the second day).

Afterward, the maximum P1 response dropped and behavioral performance reached an

asymptotic level (after the second day; Figs 2C, 5E and 6D). Using the modeling framework

based on SDT described above, we also found that a pure gain model can account for the link

between P1 responses and behavior across the first 2 sessions, whereas a noise reduction

model was required to better account for the link between the P1 and behavioral data in most

of the subsequent training sessions (S2A Fig and S1 Table). Also, note that the modeling data

are qualitatively similar for the P1 data with and without baseline subtraction (S2B Fig and S2

Table).

In addition to attentional gain and noise reduction, attention is also thought to impact

behavior by enhancing the efficiency with which sensory responses are decoded or readout by

later sensorimotor and decision-related mechanisms [5,28,61–62]. Therefore, we also consid-

ered a variant of an efficient decoding model that is based on a max-pooling rule (Eq 11) to

account for behavior during the late training phase [5,28]. However, given that the noise and

gain models almost perfectly predicted behavior, using efficient readout actually impaired

model predictions in this data set (Fig 9). Note that the negative values of goodness of fit (R2)

presented in Fig 9 indicate that the efficient decoding model accounted for less variance than a

horizontal line. Collectively, these results suggest that training reduced the impact of gain
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Fig 8. Linking changes in the psychophysical data and the P1 data using gain and noise models. A quantitative model based on signal detection

theory (SDT) revealed that, early in training, attention-induced improvements in behavioral performance were sufficiently explained by the gain model,

and the noise model did not significantly improve the fit (left panels in all subfigures). However, later in training, the noise model provides a significantly

better prediction than the gain model (right panels in all subfigures). The modeling results are consistent across all modeling routines in which the

Attentional mechanisms change with training
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mechanisms and that noise modulations gradually come to play a more dominant role in pre-

dicting behavior.

Training does not attenuate attentional gain of the late positive deflection

(LPD) component

In addition to our main analysis of the P1 component, we also examined attentional modula-

tions of another common ERP component referred to as the late positive deflection (LPD or

P3), which emerged about 230–380 ms after stimulus onset in central–posterior electrodes

(Fig 4). This later ERP component is thought to index postsensory processes such as evidence

evaluation during decision making [9,17,63–66]. As shown in Fig 10A, we found robust atten-

tional gain of the LPD in both the early and the late training phases. The maximum response

of the LPD-based CRF associated with the focused target condition was significantly higher

than the maximum response values in the focused nontarget and divided attention conditions

(Fig 10B top, p’s< 0.001 for both early and late training phases, resampling tests, 2-tailed).

Importantly, we observed no significant changes in the maximum response across early and

late training phases in any experimental condition (all p’s� 0.208, resampling tests, 2-tailed).

In addition, in both early and late training phases, the half-maximum contrast value associated

with the focused nontarget condition was significantly higher than those elicited by the

focused target (p< 0.001 and p = 0.027 for early and late training phases, respectively, resam-

pling test, 2-tailed) and the divided attention conditions (p = 0.002 and p = 0.027 for early and

late training phases, respectively, resampling tests, 2-tailed). Moreover, we observed no signifi-

cant changes in the half-maximum contrast across early and late training phases in any experi-

mental condition (all p’s� 0.259, resampling tests, 2-tailed). Consistent with the main results,

the day-by-day analysis of the LPD data revealed that attentional modulations of the maximum

P1-based contrast response functions (CRFs) in the divided attention condition were obtained from the average between the divided target and divided

nontarget conditions (A, D, G, and J), from the divided target condition only (B, E, H, and K), from the divided nontarget condition only (C, F, I, and L), from

the average between 2 stimulus intervals (A–C and G–I), and from the first stimulus interval only (D–F and J–L). Last, (A–F) show data with the baseline

subtraction and (G–L) show data without baseline subtraction. ** and *** represent significant improvements with the noise reduction model p < 0.01

and p < 0.001 (false discovery rate [FDR]-corrected). See corresponding model parameters in Tables 1 and 2. Data are available from the Open Science

Framework (https://osf.io/pc7dr/).

https://doi.org/10.1371/journal.pbio.2001724.g008

Table 1. Corresponding modeling results during the early training phase in Fig 8.

Figure Early training phase

Gain model Noise model Nested model

R2/baseline/noise R2/baseline/noise F value/p-value

8A 0.956/–0.015/0.158 0.961/–0.015/0.151 1.116/0.322

8B 0.942/0.010/0.151 0.943/0.010/0.148 0.121/0.737

8C 0.948/–0.030/0.167 0.967/–0.030/0.153 4.543/0.066

8D 0.924/0.087/0.151 0.941/0.087/0.137 2.347/0.641

8E 0.884/0.113/0.143 0.893/0.113/0.134 0.654/0.442

8F 0.918/0.071/0.158 0.951/0.071/0.139 5.480/0.047

8G 0.957/–0.534/0.159 0.960/–0.534/0.153 0.676/0.435

8H 0.942/–0.511/0.151 0.942/–0.511/0.150 0.018/0.898

8I 0.950/–0.547/0.167 0.966/–0.547/0.154 3.615/0.094

8J 0.933/–0.447/0.151 0.943/–0.447/0.141 1.306/0.286

8K 0.888/–0.407/0.143 0.894/–0.407/0.135 0.454/0.520

8L 0.935/–0.476/0.158 0.952/–0.476/0.145 2.810/0.132

https://doi.org/10.1371/journal.pbio.2001724.t001
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response of the P1 CRF and the half-maximum contrast were relatively stable throughout

training (Fig 10E). Specifically, the slopes associated with the linear fits of the maximum

response and the half-maximum contrast were not significantly different than 0 in any condi-

tion, indicating no changes in these parameters across training (all p’s� 0.090, resampling

test, 2-tailed; see Materials and methods).

In the P1 data, there were no changes in response amplitude across divided target and

divided nontarget conditions or across the first and second stimulus intervals (Fig 5C and 5D).

However, we did observe differences in the LPD responses in the divided target and divided

nontarget conditions in the second stimulus interval during the late training phase (p = 0.010

and p = 0.003 for the maximum response and the half-maximum contrast, respectively, resam-

pling tests, 2-tailed). We did not observe any target or nontarget differences in any other

condition (Fig 10C and 10D, all p’s� 0.283, resampling tests, FDR-corrected, 2-tailed). In

addition, we found a significant 3-way interaction between stimulus type (divided target and

nontarget), stimulus interval (first and second), and training (early and late) on the half-maxi-

mum contrast of the LPD-based CRFs (p = 0.001, resampling test, 2-tailed). Consistent with

this finding, the day-by-day EEG analysis showed a significant separation of the half-maxi-

mum contrast values between the divided target and divided nontarget conditions across

training but only in the second stimulus interval (the slopes of linear fits between the 2 condi-

tions were significantly different from each other, with p = 0.016; p = 0.722 for the first interval,

resampling tests, 2-tailed). We did not observe any significant differences in the maximum

response in either of the stimulus intervals (all p’s� 0.496). The separation of the responses in

the divided target and divided nontarget conditions in the second stimulus interval is consis-

tent with the idea that the LPD indexes postsensory or postperceptual processes [9,17,63–66].

For instance, there should not be a separation of target and nontarget responses during the

first stimulus interval because subjects could not yet know whether the left or the right stimu-

lus was the increment target until the second stimulus interval. The separation of the divided

target and divided nontarget LPD responses (Fig 10C, 10D and 10F) also suggests that postper-

ceptual processes can improve with training without concomitant changes in early sensory

responses (Fig 5C and 5D), consistent with reports from previous studies of perceptual learn-

ing [67–68].

Table 2. Corresponding modeling results during the late training phase in Fig 8. ** and *** represent significant improvement in modeling predictabil-

ity of the noise reduction model, with p < 0.01 and p < 0.001 (false discovery rate [FDR]-corrected).

Figure Late training phase

Gain model Noise model Nested model

R2/baseline/noise R2/baseline/noise F value/p-value

8A 0.413/–0.015/0.158 0.952/–0.015/0.096 89.184/<0.001***

8B 0.452/0.010/0.151 0.918/0.010/0.093 45.431/<0.001***

8C 0.326/–0.030/0.167 0.965/–0.030/0.098 147.593/<0.001***

8D 0.248/0.087/0.151 0.882/0.087/0.083 43.087/<0.001***

8E 0.265/0.113/0.143 0.812/0.113/0.080 23.311/0.001**

8F 0.178/0.071/0.158 0.903/0.071/0.085 59.573/<0.001***

8G 0.741/–0.534/0.159 0.970/–0.534/0.118 61.002/<0.001***

8H 0.768/–0.511/0.151 0.946/–0.511/0.115 26.545/<0.001***

8I 0.674/–0.547/0.167 0.978/–0.547/0.119 108.367/<0.001***

8J 0.675/–0.447/0.151 0.943/–0.447/0.107 37.549/<0.001***

8K 0.644/–0.407/0.143 0.880/–0.407/0.102 15.624/0.004**

8L 0.648/–0.476/0.158 0.956/–0.476/0.111 56.283/<0.001**

https://doi.org/10.1371/journal.pbio.2001724.t002
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As illustrated in Fig 11A, there were robust modulations of the baseline activity of the LPD

component. Thus, for comparison, we also analyzed the LPD data without subtracting the

baseline activity levels. A nested model comparison analysis confirmed that allowing the base-

line parameter to change freely significantly improved the goodness of fit compared to fixing

the baseline parameter across experimental conditions (F(5, 11) = 18.70, p<0.001, nested

test). In addition, a resampling analysis revealed that the baseline activity of the LPD changed

across experimental conditions and across training phases (bottom panel in Fig 11B). In both

training phases, baseline activity in the focused nontarget condition was significantly higher

than baseline activity in the focused target condition (p’s< 0.001 for both training phases) and

the divided attention condition (p< 0.001 and p = 0.014 for early and late training phases,

Fig 9. Linking changes in the psychophysical data and the P1 data using the efficient readout model.

(A) The psychophysical contrast-discrimination thresholds estimated from the P1 data using the max-pooling

rule (Eq 11) with different k values and with the noise values that yielded the best fits for those k values. (B)

Corresponding R2 values. Overall, the efficient readout model did not effectively capture the link between

behavior and the P1 responses in this data set, as R2 values are below 0 for all k and noise values. Negative

values of the goodness of fit (R2) metric indicate that fits are worse than a horizontal fit line. Data are available

from the Open Science Framework (https://osf.io/pc7dr/).

https://doi.org/10.1371/journal.pbio.2001724.g009
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Fig 10. Modulations of the late positive deflection (LPD) component with baseline subtraction. (A) The

contrast response function (CRF), based on the amplitude of the LPD component, which was averaged over

posterior electrodes from 230–380 ms poststimulus. Focused attention increased the LPD amplitude by a

comparable amount across early and late training phases. Error bars represent within-subject SEM. (B)

Corresponding maximum response (response at 100% contrast minus baseline) and half-maximum contrast

parameters of the CRFs shown in (A). Error bars represent the 68% CIs; *, **, and *** represent significant

pairwise comparisons between attention conditions in each training phase, with p <0.05, p < 0.01, and

p < 0.001, respectively. (C) The LPD-based CRFs evoked by the divided target nontarget stimuli during the

first and second stimulus intervals across the early and late training phases. We observed a separation

between the divided target and nontarget responses only during the second stimulus interval of the late

training phase, consistent with the idea that the LPD reflects postperceptual decision-making processes that

can be enhanced with training [67–68]. Error bars represent within-subject SEM. (D) Corresponding

maximum response and half-maximum contrast parameters of the CRFs shown in (C). Error bars represent

the 68% CIs; **, and *** represent significant pairwise comparisons between attention conditions in each

training phase with p < 0.01 and p < 0.001, respectively. (E) The day-by-day analysis of the LPD data with
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respectively, resampling tests, 2-tailed). We believe that this increase in baseline activity in the

focused nontarget (or unattended) condition is due to contamination from responses in the

focused target condition, which on average were higher in amplitude than the LPD associated

with the focused nontarget condition. This contamination occurred because the LPD is a cen-

trally generated component that is not spatially selective. Thus, unlike the P1, isolating the

baseline subtraction (2 electroencephalography [EEG] sessions or ~1 day per each time bin). Top and bottom

panels represent the estimated maximum response and half-maximum contrast parameters. (F) The day-by-

day analysis of the LPD data shown in (C) and (D). Error bars in (E) and (F) represent the 68% CIs. Note that

the contrast values on the x-axis in (A) and (C) are not exactly the same across target and nontarget

conditions because, in the target conditions, we used the averaged contrast values between the pedestal and

incremental stimuli. Data are available from the Open Science Framework (https://osf.io/pc7dr/).

https://doi.org/10.1371/journal.pbio.2001724.g010

Fig 11. Modulations of the late positive deflection (LPD) component without baseline subtraction. (A)

The LPD contrast response functions (CRFs), based on event-related potentials (ERPs) without baseline

subtraction. Note that the contrast values on the x-axis are not exactly the same across target and nontarget

conditions because in the target conditions, we used the averaged contrast values between the pedestal and

incremental stimuli. Error bars represent within-subject SEM. (B) Corresponding maximum response

(response at 100% contrast minus baseline), half-maximum contrast, and baseline parameters. Error bars

represent the 68% CIs; *, **, and *** represent significant pairwise comparisons between attention

conditions in each training phase, with p < 0.05 and p < 0.001, respectively. (C) The day-by-day analysis of

the LPD data without baseline subtraction (2 electroencephalography [EEG] sessions or ~1 day per each time

bin). Left, middle, and right panels represent the estimated maximum response, half-maximum contrast, and

baseline parameters, respectively. Error bars represent 68% CIs. Data are available from the Open Science

Framework (https://osf.io/pc7dr/).

https://doi.org/10.1371/journal.pbio.2001724.g011
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response uniquely associated with the focused target and with the focused nontarget stimulus

was more challenging.

In addition to the attention effect on baseline activity, we also observed a significant

increase in the LPD baseline activity across training phases in the divided attention condition

(p = 0.021) but not in the focused target (p = 0.438) or focused nontarget condition (p = 0.661,

resampling tests, 2-tailed). The day-to-day EEG analysis also revealed similar results, as the

slope of the linear fit of the LPD baseline activity in the divided attention condition across time

bins was significantly higher than 0, indicating an increase in baseline activity across training

days (right panel in Fig 11C; p = 0.010, a resampling test, 2-tailed). However, no training-

related change in baseline activity was found in the focused target (p = 0.450) or focused non-

target condition (p = 0.787, resampling tests, 2-tailed). Training effects of the baseline activity

in this late ERP component, which is thought to track decision-related processes that are not

spatially specific, suggest that improved behavior in the divided attention condition occurred

at postperceptual stages of processing rather than in earlier sensory or perceptual stages.

While the LPD results without baseline subtraction revealed some differences in baseline

activity, modulations of the maximum response and the half-maximum contrast parameters

were consistent with the results reported using the subtraction method (compare Fig 11B and

11C and Fig 10B and 10E). For example, for both early and late training phases, the maximum

response associated with the LPD-based CRF elicited by the focused target condition was sig-

nificantly higher than those associated with the focused nontarget (p’s< 0.001 for both early

and late training phases) and the divided attention conditions (Fig 11B top, p’s< 0.001 for

both early and late training phases, resampling tests, 2-tailed). In addition, the half-maximum

contrast associated with the LPD-based CRF elicited by the focused nontarget condition was

significantly higher than those elicited by the focused target (p’s = 0.012 and 0.010 for early

and late) and the divided attention conditions (Fig 11B bottom, p’s = 0.007 and 0.025 for early

and late, respectively, resampling tests, 2-tailed). Importantly, we observed no significant

changes in the maximum response and the half-maximum contrast across early and late train-

ing phases in any experimental condition (all p’s� 0.128, resampling tests, 2-tailed). In addi-

tion, the day-by-day analysis of the LPD data showed that attentional modulations of the

maximum response and the half-maximum contrast were relatively stable throughout training

(left and middle panels on Fig 11C). The slopes associated with the linear fits of the maximum

response and the half-maximum contrast in all experimental conditions were not significantly

different than 0, indicating no changes in these parameters across days (all p’s� 0.086, resam-

pling tests, 2-tailed). Overall, the attentional modulations of the maximum response and the

half-maximum contrast persisted across training phases and stood in contrast to the attention

effects associated with the P1 results.

Discussion

Recent studies using quantitative modeling suggest that there are several candidate mecha-

nisms that can link attentional modulations in the visual cortex with attentional modulations

of behavior [5,9,28,37,47,51,53]. While some discrepancies between the putative mechanisms

are likely due to differences in stimulus display properties, task designs and methods of mea-

suring neural activity [15,45–48,69–71], we show here that another important factor is the

duration of training. Similar to previous studies, we found that early in training, attentional

gain of the visual P1 component accurately predicted attention-induced behavioral benefits

[9,19,31]. However, this attentional gain was abolished later in training, and our SDT-based

model suggested that a reduction in noise was required to explain behavior. This later result is

consistent with recent reports that highlight the importance of noise reduction by using highly
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trained nonhuman primates [37,40,43]. Together, these findings suggest that training can

change the way that modulations of cortical responses influence behavior, and they underscore

the importance of considering training when generalizing empirical observations across meth-

ods and species.

In the main analysis that split the data evenly into 2 parts, training had a minimal effect on

behavioral performance in the focused attention condition. However, when we examined the

behavioral data on a day-by-day basis, we found that there was a change in behavioral perfor-

mance in the focused attention condition that happened at a much faster rate than in the

divided attention condition. As shown in Figs 5E and 6D, we found that the maximum

response of the P1-based CRF in the focused-target condition increased from the first to the

second day. This increase in the P1 response also tracked a significant improvement in behav-

ioral performance (Fig 2C). However, the maximum P1 response dropped significantly after

the second day and behavioral performance started to stabilize. This early modulation followed

by a period of relative stability is consistent with reports from a perceptual learning study by

Yotsumoto and colleges [60]. In addition, the SDT-based model that we used suggests that

attentional gain modulations for visual responses play a substantial role in explaining behav-

ioral performance early on in training but that noise reductions play a dominant role later in

training. Recent studies using pharmacological manipulations and electrophysiology in non-

human primates suggest that attention-related changes in neural gain and neural noise in the

visual cortex rely on distinct receptor pathways. Herrero and colleagues found that attentional

gain amplification was mediated by muscarinic acetylcholine receptors [72], while attention-

related noise reduction was mediated by N-methyl-D-aspartic acid (NMDA) receptor path-

ways, a critical receptor pathway that is involved in many learning and memory processes,

including long-term potentiation [73]. Taken together, these findings suggest that the 2 differ-

ent temporal dynamics of perceptual learning are facilitated by selective attention and that

they may rely on changes in the balance between different receptor pathways that regulate dif-

ferent types of attentional modulations in the visual cortex.

In contrast to the P1 results, consistent gain modulations of the LPD were observed across

training. The LPD has been closely linked to postsensory decision-related processing and

is associated with factors such as response confidence, task difficulty, and decision times

[9,17,63–66,74–75]. Recent EEG studies [63–64] have demonstrated that the LPD also tracks

the accumulation of sensory evidence in a manner that is similar to the average response pro-

file of neurons in the lateral intraparietal area and the frontal eye fields in monkeys during

decision making [67,76–83]. Collectively, these findings suggest that while attentional modula-

tions of early sensory signals can shift substantially with training, gain modulations of postper-

ceptual processes remain relatively stable over time.

Horizontal eye movements towards an attended target position might play a role in modu-

lating the gain of P1 responses, especially if the eye movements were more frequent after train-

ing. However, we view this as unlikely because horizontal eye movements towards the cued

location would have attenuated P1 responses by moving the attended stimulus out of the con-

tralateral visual field (see the topographical maps in S1 Fig). In addition, we computed an eye

bias score based on the horizontal electrooculography (EOG) signals, and it indicated move-

ment of less than 0.1o visual angle for all individual subjects (see Materials and methods and

[54]). We did not observe any differences in the eye bias score across early and late training

phases (S3 Fig). Note that while we could control for horizontal eye movements, we could not

control for vertical eye movements using the EOG responses. However, the observation of

reduced P1 amplitude with training was selective to the focused target condition and not all the

other conditions. It is hard to explain this pattern of results based on vertical eye movements

because vertical eye movements would have impacted the amplitude of the P1 associated with
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both the focused target stimuli and the unattended stimuli that were presented on the other side

of fixation. In addition, vertical eye movements would likely have shifted the topography of the

P1 component to a more posterior site on the scalp, and no such shift was observed (see the

topographical maps in S1 Fig).

We implemented a baseline subtraction method to isolate evoked responses associated with

a single stimulus from a bilateral stimulus array and to minimize spatially nonspecific anticipa-

tory effects because of the attention cue. This subtraction assumes that EEG responses com-

bine linearly. To address this issue, we controlled stimulus presentation so that every contrast

value assigned to a target was counterbalanced with an equal number of nontarget stimuli ren-

dered at all other contrasts. In addition, we observed a qualitatively similar pattern of results

with and without the baseline subtraction, particularly with the P1 component. Thus, the sub-

traction method, and its assumption of linearity, did not spuriously cause the reported changes

in P1 amplitude that occurred with training.

Past studies have shown that the contrast of competing stimuli can have a significant impact

on the gain of visually evoked responses because of the bottom-up capture of attention and

divisive normalization [84–85]. Although evaluating the impact of contrast was not a main

goal of the current study, we performed a follow-up analysis to investigate. We found that the

attentional gain of the P1 response observed early in training was larger when competing sti-

muli were rendered at low-to-medium contrast levels (top panels of S4A and S4B Fig). No

attentional gain modulation of the P1 was observed when the competing stimuli were rendered

at high contrast values. Despite the influence of distractor contrast on P1 attentional gain early

in training, the lack of a P1 modulation was consistent across distractor contrast conditions

later in training. Future studies could carry out similar experiments with independently mea-

sured contrast thresholds for different distractor contrast levels to more formally compare the

relative contribution of different neural mechanisms to help better understand interactions

between the salience of relevant targets and irrelevant distractors.

Our SDT-based modeling relied on the assumption that attentional modulations of the

P1-based CRF primarily reflect neural responses pooled across large populations of neurons in

the visual cortex (like LFP). This assumption has been adopted by many previous studies

[7,9,12,17–21, 31–32] and has received recent empirical support showing a close connection

between the contrast and attentional modulations of spiking activity and those of LFP at the

same temporal window as the P1 component (~100 ms poststimulus) [49–50]. However, the

relationship between reductions of neuronal noise and the magnitude of the P1 is poorly

understood. Therefore, the translation of our modeling results to exact degree of noise reduc-

tions in single units must be done with caution. While it seems clear that attentional modula-

tions of the P1 component are decreasing with training, further work using invasive methods

will be needed to better describe the changes in single unit attention effects that evolve over

training. For example, pharmacological manipulation of different receptor pathways (e.g.,

muscarinic acetylcholine and NMDA receptors [72–73]) could be carried out to forge a more

direct link between attentional modulations in population-based measures and the gain and

noise modulations of single units.

In conclusion, our data demonstrate that attentional gain of the visually evoked P1 compo-

nent plays a prominent role in enhancing perceptual sensitivity early in training, but noise

reduction is required after extensive training. In contrast, attentional gain of the LPD compo-

nent persists throughout training. This pattern is consistent with an attention-related improve-

ment in the efficiency of the transfer of information across the cortical hierarchy, such that

earlier stages provide more stable information to downstream areas after training. Most

importantly, our data suggest that training does not simply change the magnitude of sensory

signals or the magnitude of attentional modulations of sensory signals [86–100]. However,
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training can qualitatively alter the relationship between attentional modulations of neural

responses and behavior, and this observation carries important implications for understanding

attention as well as for linking observations collected from different model systems that may

employ substantially different amounts of training (c.f. [45]).

Materials and methods

Ethics statement

All human participants provided written informed consent as required by the local institu-

tional review board at the University of California, San Diego (UCSD; IRB#110176), and the

experiment was conducted under the protocol that followed the Declaration of Helsinki.

Subjects

Twenty-three neurologically healthy human observers with normal or corrected-to-normal

vision were recruited from the UCSD community. Data from 10 subjects were discarded in the

main analysis because of failure to complete the experimental protocol (20 EEG sessions). One

subject only completed a behavioral training session. Among the other 9 subjects, 1, 1, 1, 3, 1,

and 2 subjects voluntarily withdrew after the second, sixth, eighth, 10th, 12th, and 14th EEG

sessions, respectively. In addition, 1 of 13 subjects who completed 20 EEG sessions was dis-

carded because of excessive small saccades (>90% of trials). This left 12 subjects in the main

analysis (7 female, 20–26 years old, all right-handed). Subjects were compensated at a rate of

US$10 and US$15 dollars per hour for behavioral training and EEG sessions, respectively.

Stimuli and task

Stimuli were presented on a PC running Windows XP using MATLAB (Mathworks Inc.,

Natick, MA) and the Psychophysics Toolbox (version 3.0.8) [101–102]. Participants were

seated 60 cm from the CRT monitor (which had a grey background of 34.51 cd/m2, 60Hz

refresh rate) in a sound-attenuated and electromagnetically shielded room (ETS Lindgren).

Subjects performed a 2IFC contrast discrimination task (Fig 1A). Each trial started with a

colored precue instructing subjects where to attend on each trial. A red cue corresponded to

the lower left quadrant, a blue cue corresponded to the lower right quadrant (focused atten-

tion), and a green cue indicated that subjects should attend to both lower quadrants (divided

attention). The focused attention cue was 100% valid and always indicated the location of the

target, whereas the divided attention cue indicated that the target was equally likely to be pre-

sented in the left or the right quadrant. The precue appeared for 500 ms, followed by a 400–

600ms blank interstimulus interval (ISI). This ISI was followed by 2 successive stimulus pre-

sentations (the first and second stimulus intervals), with each interval containing a pair of

sinusoidal Gabor stimuli (spatial frequency, 1.04 cycles per degree; SD of Gaussian window,

1.90˚) located in the lower left and right quadrants (±8.58˚ and −7.63˚ from the horizontal and

vertical meridians, respectively). Each pair of stimuli appeared for 300 ms, followed by a 600–

800 ms ISI (pseudorandomly jittered from a uniform distribution). The pedestal contrasts of

the Gabor stimuli were randomly selected from 6 values: 0%, 2.24%, 5.13%, 11.75%, 26.92%,

and 61.66% Michelson contrasts. Contrast values, except for 0%, were jittered ±0.01 log con-

trast from the mean contrast values. The orientations of the left and right Gabors were identi-

cal within each trial, and the orientation value on a given trial was randomly drawn from a

uniform distribution. During 1 of the 2 stimulus intervals, a contrast increment (Δc) was

added to either the left or the right Gabor stimulus for the entire duration of that interval.

After the second stimulus interval, the postcue appeared to inform subjects whether the left (a
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red cue) or the right stimulus (a blue cue) contained this contrast increment target. Subjects

reported whether the increment occurred during the first or second stimulus interval. They

were told to prioritize accuracy and there was no response deadline.

On the first day, subjects participated in a ~2.5-hour behavioral training session in which a

staircase procedure (3 down, 1 up) was applied to estimate the contrast discrimination thresh-

olds for each attention condition and each pedestal contrast level (see a similar method in [9,

56]). These thresholds were then used in the first EEG session. Subjects completed 20 EEG ses-

sions (2–3 days a week, 1–2 EEG sessions per day, with 2 sessions completed on an average of

12.08 days across subjects). Each EEG session contained a total of 8 experimental blocks and

contained 288 trials, in which all experimental conditions were counterbalanced: 2 (attention

conditions: focused, divided) × 2 (target locations: left, right) × 2 (target intervals: first, second)

× 6 (pedestal contrast levels of target) × 6 (pedestal contrast levels of nontarget). The contrast

threshold (Δc) for each attention condition and each target pedestal contrast was adjusted after

each EEG session so that accuracy was maintained at ~76% (d’ = ~1) across all experimental

conditions. Across the 12 subjects, the average time elapsed between the initial behavioral

training session and the first EEG session, between the first and the 11th EEG sessions (early

training phase), and between the 11th and the last EEG sessions was 3.33 ± 0.66, 17.41 ± 2.31,

and 11.50 ± 1.12 days (mean ± SEM), respectively (Fig 1B).

Behavioral analysis

Contrast discrimination thresholds were measured at ~76% hit rate (d’ = ~1) for all attention

conditions (focused and divided attention), training phases (early and late), and stimulus ped-

estal contrasts (0% to 61.66%). In the main behavioral analysis, we divided the data into 2

learning phases (the first 10 EEG sessions for the early phase and the last 10 EEG sessions for

the late phase) to match the main EEG analysis, in which we sought to obtain ~400 trials for

each data bin as suggested by Luck [54]. The within-subject SEM of the data for each contrast

level was calculated by removing the mean value of each attention and training condition from

the individual subject data before computing the SEM [103]. Three-way repeated measures

ANOVAs with within-subject factors of attention condition, training phase, and pedestal con-

trast were performed to test the main effect of each of these factors and their interactions on

contrast discrimination thresholds. Post hoc paired t tests were then used to examine attention

effects and learning effects on the contrast discrimination threshold data for each pedestal con-

trast level, and multiple comparisons were corrected by the FDR method with the α value of

0.05 [104]. We used 1-tailed statistics here under the assumption that the behavioral perfor-

mance should improve with attention and training.

To examine training effects on a finer temporal scale, we also performed a day-by-day

behavioral analysis in which the contrast discrimination thresholds were divided into 10 time

bins (2 EEG sessions per bin or ~1 day per bin since subjects completed 2 EEG sessions on

most days). We could only subdivide the data into 10 bins because after artifact rejection, there

were often missing values in the ERP data from a single EEG session for some of the 24 experi-

mental conditions (2 attention conditions x 2 stimulus types x 6 contrast levels, with 11 out of

20 EEG sessions having at least 1 missing value). Repeated-measures 1-way ANOVAs with

time as a within-subject factor were performed to test the effect of training on the contrast

discrimination thresholds separately for stimuli of different pedestal contrast levels in both

focused attention and divided attention conditions. Multiple comparisons were corrected by

the FDR method with the α value of 0.05 [104]. To statically evaluate day-by-day changes in

discrimination thresholds, post hoc paired t tests were performed to examine the difference in

the threshold on data between the first and the second days and between the second day and
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the remaining days. We used 1-tailed statistics here under the assumption that behavioral per-

formance should improve with training. Multiple comparisons were corrected by the FDR

method with the α value of 0.05 [104].

EEG preprocessing and analysis

We recorded EEG data with a 64 + 8 channel Biosemi ActiveTwo system at a 512-Hz sampling

rate. All signal offsets from the CMS-DRL reference were maintained below 20 uV. We

employed EEGlab11.0.3.1b [105] and custom MATLAB scripts to preprocess the EEG data off-

line. First, we rereferenced the continuous EEG data to the mean of the 2 mastoid electrodes

and applied 0.25-Hz high-pass and 55-Hz low-pass Butterworth filters (third order). Second,

the data were segmented into epochs extending from 500 ms before to 3,500 ms after the trial

onset. Third, prominent eye-blink artifacts were first rejected by independent component

analysis [106]. We then discarded epochs contaminated by residual eye blinks and vertical eye

movements (more than ±80–120 μV deviation from 0, with thresholds chosen for each indi-

vidual subject), horizontal eye movements (more than ±75–90 μV deviation from 0), excessive

muscle activity, or drifts using threshold rejection and visual inspection (11.23% of trials ±
1.74% SEM).

Lastly, the data were aligned to the stimulus onset and baseline corrected based on the

mean response from 0–200ms before stimulus onset. For all individual subjects, eye bias scores

computed by the difference between averaged horizontal EOG contralateral and ipsilateral to

the stimulus of interest divided by 2 were less than 1.6 μV, corresponding to less than 0.1o

visual angle, which is a standard criterion used in ERP studies [54]. Moreover, no difference in

eye bias scores were observed across early and late training phases (S3 Fig). These results sup-

port the notion that any residual horizontal eye movements did not contaminate attention-

related and training-related changes in ERPs.

The artifact-free EEG data were then sorted into the following bins: 2 attention conditions

(focused and divided attention) x 2 stimulus types (target and nontarget) x 2 training phases

(early and late) x 6 stimulus contrast levels x 2 stimulus intervals (first and second) x 2 stimulus

locations (left and right). The stimulus-locked ERPs were then computed by averaging the

EEG data in each bin. To extract ERPs evoked by the stimulus of interest (i.e., subtract out

responses evoked by stimuli paired with the stimulus of interest) and minimize confounds

from any anticipatory effect from the cue, we subtracted the ERPs evoked by the pedestal 0%

contrast stimulus (i.e., when no stimulus was present in the contralateral visual field with

respect to a given EEG electrode) from the ERPs in all other conditions [9,31,59] (Fig 3). Thus,

the response that was subtracted should be interpreted as “the mean response evoked by an

ipsilateral stimulus when no stimulus was presented in the contralateral visual field”, and this

served to help isolate the ERP specifically associated with the presentation of a contralateral

stimulus. It is critical to isolate the CRFs evoked by the stimuli of interest (the focused target,

focused nontarget, divided target, and divided nontarget conditions) from the stimuli that

were simultaneously presented on the other side of the display (e.g., if the stimulus of interest

was a focused target, then the stimulus that was paired with it would be a focused nontarget).

Thus, subtracting out the small response evoked by the ipsilateral stimulus helps to improve

the spatial selectivity of the ERP responses. Moreover, without subtracting this 0% contrast

ERP out, it is possible that any attentional modulations would be confounded by cue-related

and nonspatially selective anticipatory responses rather than attentional modulations of stimu-

lus-evoked responses (i.e., changes in arousal but not changes in selective spatial attention).

This issue has been addressed in a similar manner in many previous studies that use EEG and

fMRI [9,28,31,59]. However, we also include the results without this baseline subtraction to
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validate the linearity assumption of this method (Figs 6, 8G–8L and 11; see detailed methods

in later paragraphs).

The mean amplitude of the visual P1 component from 80–130 ms post-stimulus was com-

puted across the contralateral-posterior electrodes, where the P1 mean amplitude averaged

across all experimental conditions was the highest (PO7, P5, and P7 for the left hemisphere

and PO8, P6, and P8 for the right hemisphere). The selected temporal window was based on

previous ERP studies of visual attention [7,9,12,17–21,31–32], and the 50-ms window size is

suggested as the standard by Luck [54]. The mean P1 amplitude was then plotted as a function

of stimulus contrast to yield the P1-based CRF separately for each attention condition, each

stimulus type, and each training phase. In the main EEG analysis, we divided the data into 2

training phases (10 EEG sessions for each phase). This division of the data into 2 phases was

motivated by the desire to have ~400 trials in each experimental condition as suggested by

Luck [54]. However, as a supplement to this planned analysis, we also conducted an additional

analysis of the EEG data collected on each day and thus divided into 10 bins (with ~2 EEG ses-

sions for each time bin or ~1 day per bin given that subjects completed 2 EEG sessions on

most days). On the x-axis of the CRF, the stimulus contrast values for the focused and divided

nontargets were fixed at 0%, 2.24%, 5.13%, 11.75%, 26.92%, and 61.66% Michelson contrasts.

However, since the target sequence contained both pedestal and increment stimuli, we used

the averaged contrast values between the 2 stimuli for plotting the CRFs in the focused-target

and divided-target conditions. The within-subject SEM of the data for each contrast level was

calculated using the Loftus and Masson method [103] in which the mean value between atten-

tion, stimulus type, and training conditions was removed from individual data before comput-

ing the SEM for each contrast value. Next, the P1 data were bootstrapped by resampling

subjects, with replacement, 10,000 times. In each bootstrap iteration, the CRF data for each

attention condition, stimulus type, and training phase were fit with a Naka–Rushton equation:

R cð Þ ¼ Gr
cq

cq þ Gc
q þ b; ð1Þ

where R(c) is the P1 amplitude as a function of stimulus contrast, Gr is a multiplicative

response gain factor that controls the vertical shift of the CRF, Gc is a contrast gain factor that

controls the horizontal shift of the CRF, b is the response baseline offset, and q is the exponent

that controls the speed at which the CRF rises and reaches asymptote. Given that past EEG

studies of spatial attention have consistently reported no changes in response baseline of EEG-

based CRFs [3,9,10,13–14,33], and in the present study the evoked response to 0% contrast sti-

muli was subtracted from all trials (such that the ERP was flat on 0% contrast trials) b was

fixed as the average of the minimum amplitude across all experimental conditions. We then

used a least square error estimation method (fminsearch function in MATLAB) to estimate

the maximum response (the response at 100% contrast minus baseline), the half-maximum

contrast (contrast at which the response reached half-maximum), and the exponent (q) param-

eters. Since in many experimental conditions the CRFs did not fully saturate at the maximum

contrast level (100%), we constrained the fitting procedure so that the maximum response

value could not exceed 1.5 times as large as responses at the 61.66% contrast value (the highest

contrast in the stimulus set). Gr and Gc were constrained so that they could not be less than 0

and 1, respectively. The exponent q was also constrained within a range of –10 to 10. We used

the 30% contrast value (about half of 61.66% contrast) as the initial seed value for Gc, the differ-

ence between maximum and minimum responses as the seed value for Gr, and 1 and 5 for the

seed values of the exponent q when fitting the CRFs based on the P1 and the LPD (see below
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for LPD), respectively. The initial seed values for the exponent q were adopted from the esti-

mated values based on a previous study [9].

For each training phase, we first tested the effect of attention cueing (cued versus uncued)

on the maximum response of the P1-based CRF in the focused attention condition. To do so,

we computed the bootstrap distribution of the difference between the estimated fit parameters

in the focused target (i.e., attended) and the focused nontarget (i.e., unattended) conditions

and computed the percentage of values in the tail of this compiled distribution that were larger

or smaller than 0 (2-tailed to be conservative). Next, we tested the effect of attention cue type

(focused versus divided attention) on the maximum response of the P1-based CRF by comput-

ing the bootstrap distribution of the difference between the estimated fit parameters in the

focused target and the divided attention conditions. We then computed the percentage of val-

ues in the tail of this compiled distribution that were larger or smaller than 0 (2-tailed). Note

that in the divided attention condition, we collapsed the data between the divided target and

divided nontarget conditions since there was no difference in the P1 amplitude associated with

these 2 conditions (see Fig 5C). For the P1 maximum response, we observed a robust atten-

tional gain modulation early in training, but this gain modulation disappeared after training

(Figs 5 and 6). We statistically evaluated this observation by examining the interaction between

training (early versus late) and attention cue type (focused versus divided attention), and we

compared the distribution of the difference between the focused target and the divided atten-

tion conditions during the early training phase and the distribution of the difference during

the late training phase. We then computed the percentage of values for which the early-train-

ing-phase distribution was larger than the late-training-phase distribution (1-tailed because of

the assumed direction of the interaction). Lastly, we evaluated whether the maximum response

values in the focused target, focused nontarget, and divided attention conditions changed

across training phases. To do so, for each experimental condition, we computed the bootstrap

distribution of the difference of the estimated fit parameter in each condition across early and

late training phases and calculated the percentage of values in the tail of this compiled distribu-

tion that were larger or smaller than 0 (2-tailed). The same analysis was then performed on the

half-maximum contrast values associated with the P1-based CRFs.

For the LPD component, the mean amplitude from 230–380 ms poststimulus was com-

puted across the posterior and posterior–occipital electrodes (P5, P7, PO7, P1, Pz, P2, P6, P8,

and PO8). This analysis window and electrodes were selected based on the broad activation of

the LPD amplitude and averaged across all experimental conditions and stimulus contrast lev-

els. Also note that the analysis windows of both P1 and LPD components were chosen to mini-

mize contamination from the negative-going N1 component that emerged ~150–200 ms

poststimulus (see the zoom-in ERP traces for the P1 and LPD components in Fig 4B and 4C,

in which minimal negative potentials were observed across these windows). The same boot-

strapping, fitting, and statistical analyses described above were also performed on the LPD

data.

For comparison, we also analyzed the P1 and the LPD data without baseline subtraction

(see results in Figs 6 and 11). First, we obtained the P1 and LPD components in the same elec-

trodes and the same temporal windows as described above and plotted the CRFs based on the

P1 and LPD mean amplitudes. However, the baseline subtraction described above was not

implemented. Next, we fit the Naka–Rushton equation (Eq 1) to characterize the CRFs, but

this time we included an additional free parameter to account for baseline differences between

conditions. We then performed a nested model comparison to assess the goodness of fit

between the model that allowed baseline parameters to change freely (baseline-free model)

and the model that fixed the baseline parameter across all experimental conditions (baseline-
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fixed model) using the following equation:

R2
baseline� free � R2

baseline� fixed

Df1

�
1 � R2

baseline� free

Df2
ð2Þ

where R2
baseline� free and R2

baseline� fixed were obtained from the fits of the baseline-free and baseline-

fixed models (full and reduced models), respectively. Df1 is the number of free parameters in

the full model (24: 6 b’s, 6 Gr’s, 6 Gc’s, and 6 q’s for the focused target, focused nontarget, and

divided attention conditions in the early and late training phases) minus the number of free

parameters in the reduced model (19: 6 Gr’s, 6 Gc’s, and 6 q’s for the focused and divided and

target and nontarget conditions in the early and late training phases and 1 b shared across all 6

experimental conditions). Df2 is the number of observations (36: 6 contrast levels times 6

experimental conditions) minus the number of free parameters in the full model (24) minus 1.

The F distribution was used to estimate the probability that the full model differed significantly

from the reduced model. For the P1 data, the baseline-free model was not significantly better

than the baseline-fixed model (see Results), so we only evaluated the significance of the best fit

parameters estimated using Eq 1 with a fixed baseline parameter. On the other hand, the base-

line-free model was significantly better for the LPD data, so we reported statistical results

using a version of Eq 1 with a freely optimized baseline parameter.

For the daily analysis of the P1 and LPD data (with and without baseline subtraction), the

resampling and refitting routines followed the same approach as described above, except that

they were performed separately across 10 instead of 2 time bins (~1 day per bin or 2 EEG ses-

sions). To examine whether the fit parameters associated with the P1-based and LPD-based

CRFs changed with training, in each resampling and refitting iteration, we fit the estimated

CRF parameters across 10 time bins with linear functions to obtain the slopes of those linear

fits. Then, we computed the percentage of values in the tails of these compiled distributions

that were larger or smaller than 0 (2-tailed).

Modeling methods

We adopted a previously established model based on SDT [5,9,28,47,52–53] to determine the

degree to which attentional gain and noise reduction were needed to explain the relationship

between attentional modulations in the psychophysical and ERP data during the early and late

training phases. This modeling framework is based on the assumption that perceptual sensitiv-

ity (d’) is limited by the differential mean response: R(c+Δc(c))-R(c) or ΔR, evoked by 2 differ-

ent stimuli (i.e., standard and test stimuli) divided by the trial-by-trial variability of those

responses (σ):

d0 ¼ DR=s ð3Þ

where R is the hypothetical CRF estimated using the Naka–Rushton equation (Eq 1). With the

combination of the d’ and Naka–Rushton equations, the contrast discrimination thresholds

could be estimated based on the derivative (or slope) of the CRF as expressed in the following

equation:

Dc ¼ DR=ðdR=dcÞ; ð4Þ

where dR/dc is the derivative of the underlying CRF [52].

According to the attentional gain model, attention-induced reductions in contrast discrimi-

nation thresholds can be fully explained by an increase in the slope of the ERP-based CRF

(dR/dc), under the assumption that the neuronal noise (σ) is constant (gain model). In the

case where the amount of increase in the CRF slope is insufficient to explain shifts in the
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psychophysical TvC functions, the σ parameter must be reduced to explain changes in psycho-

physical contrast thresholds (noise model).

We applied this model using the following procedure: we first estimated the psychophysical

TvC functions for the divided attention and focused attention conditions for both the early

and late training phases using a polynomial function (power = 3) with least square error esti-

mation methods (fminsearch function in MATLAB). Next, we used the combination of the

Naka–Rushton and d’ equations to simulate the CRFs based on the P1 amplitude in the

divided attention condition during the early training phase in which the behavioral perfor-

mance was the poorest. Note that in the main analysis, the divided attention data were based

on the average between the divided target and divided nontarget conditions across 2 stimulus

intervals. However, we also performed modeling in which the divided attention data were

based on only the divided target data or on only the divided nontarget data, during the first

stimulus interval only, and with and without baseline subtractions. Importantly, all these dif-

ferent analyses yielded consistent results.

The fitting routine started by setting the first point of the estimated CRF (c0 = 0%) to be a

baseline parameter (b) as the following:

Rðc0Þ ¼ b ð5Þ

The next contrast (c1) was then defined as the following:

c1 ¼ c0 þ Dc0 ð6Þ

where Δc0 is the contrast threshold at 0% contrast. Accordingly, the response at c1 was esti-

mated using the d’ equation (Eq 2) as follows:

Rðc1Þ ¼ bþ s; ð7Þ

given that d’ = 1. The next contrast was defined the same way as the following:

ci ¼ ci� 1 þ Dci� 1 ð8Þ

where i is the current iteration that is> 1. The response at ci was then estimated as the follow-

ing:

RðciÞ ¼ Rðci� 1Þ þ s ð9Þ

These last 2 steps (Eqs 8 and 9) were continued until the full CRF was estimated. The base-

line and noise parameters (b and σ) were optimized by minimizing the least-squares errors

between the observed and the predicted CRFs based on the P1 amplitude in the divided target

condition. To test if attentional gain changes in the P1 CRFs in each training phase could

account for changes in the TvC functions, we estimated the P1 CRFs in the focused target con-

dition in the early and late training phases using the modeling routine described above but

with the b and σ parameters fixed based on the values obtained from the divided attention con-

dition during the early training phase. Next, we tested if allowing changes in the noise parame-

ter in the focused target condition in the early and late training phases could significantly

improve the prediction of the model based on SDT. To achieve this, we estimated the P1 CRFs

in the focused-target condition as described above, except that we allowed the σ parameter to

vary freely to find the best fit. The R2 value obtained from the gain model with the σ parameter

fixed across the divided target and focused target conditions (reduced model) was then com-

pared with the R2 value obtained using the noise reduction model in which the σ parameter

was also allowed to vary freely across attention conditions (full model). This comparison was
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done using a nested F test:

F Df1;Df2ð Þ ¼
R2

noise � R2
gain

Df1

�
1 � R2

noise

Df2
ð10Þ

where R2
gain and R2

noise were obtained from the fits of the attentional gain and noise modulation

models (reduced and full models), respectively. Df1 is the number of free parameters in the full

model (3: σ for focused attention, σ for divided attention, and b shared across attention condi-

tions) minus the number of free parameters in the reduced model (2: σ and b shared across

attention conditions). Df2 is the number of observations (12: 6 contrast levels times 2 attention

conditions) minus the number of free parameters in the full model (3) minus 1. The F distribu-

tion was used to estimate the probability that the full model differed significantly from the

reduced model.

To test if the gain model or the noise model could better account for the behavioral and the

P1 data on a day-by-day basis, we employed a similar modeling framework based on SDT as

described above. The modeling routine started by optimizing the noise and baseline parame-

ters to yield the best fit for the P1-based CRF evoked by the focused target condition on the

first day using Eqs 5–9 with least square error estimation methods, given the level of behavioral

contrast thresholds in the focused attention condition in the same day. Next, given the noise

and baseline parameters from that day, we estimated how much gain accounted for the rela-

tionship between the P1 data and behavioral data in the following time bins (the second to

10th days) and whether optimizing noise parameters could better account for this relationship

using the nested test F-test (Eq 10). Multiple comparisons were corrected using the FDR

method with the α value of 0.05 [104].

In addition to the gain and noise models based on SDT, we also adopted a variant of an effi-

cient decoding model to see how well it could explain the link between attentional modula-

tions in the P1 component and behavioral data across training stages. To start the procedure,

we first fit the neural CRFs based on the P1 amplitudes with the Naka–Rushton equation (Eq 1

and see the fitting procedure below the equation). Since the model requires all responses to be

positive values (because of the k exponent in the max-pooling rule; see Eq 11 below), we sub-

tracted the baseline values from the interpolated CRFs of all attention conditions and training

stages. Next, for each attention condition of each training phase, we simulated the perfor-

mance of an ideal observer in 72,000 randomly generated trials, which consisted of 12,000 tri-

als of each of the 6 levels of target pedestal contrasts. These 12,000 trials included 2,000 trials

of each of the 6 levels of nontarget contrasts. For each simulated trial, we determined the

response of each stimulus type (target or nontarget) and stimulus interval (the interval that

contains the test contrast or pedestal contrast) as a random draw from a Gaussian distribution

with mean values equal to the mean amplitude of the interpolated P1 CRFs at the correspond-

ing contrast value. The SD of the Gaussian distribution is the noise parameter in the d’ equa-

tion (Eq 3) and it was varied from 0.001 to 0.393 in fifty 0.008-unit incremental steps. Next, the

target and nontarget related responses (Rtg and Rntg) were pooled into a single response (Rp)

using the max-pooling equation [5,28]:

Rp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rk

tg þ Rk
ntg

k
q

2
ð11Þ

where k is an exponent that weights responses to each stimulus in a given interval. Under the

assumption that an ideal observer would select the interval that contained a larger pooled

response as the interval that contained the incremental target stimulus, we searched for the

contrast increment value that yielded 76% accuracy rate across the 12,000 simulated trials at
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each pedestal contrast level. Here, k was varied from 2 to 70 in sixty-nine 1-unit incremental

steps.

Supporting information

S1 Table. Corresponding modeling results in S2A Fig. � and ��� represent significant

improvement in modeling predictability of the noise reduction model with p<0.05 and

p<0.001 (FDR-corrected). V indicates that the noise model predicts a reduction in the noise

parameter.

(PDF)

S2 Table. Corresponding modeling results in S2B Fig. �� and ��� represent significant

improvement in modeling predictability of the noise reduction model with p<0.01 and

p<0.001 (FDR-corrected). V indicates that the noise model predicts a reduction in the noise

parameter.

(PDF)

S1 Fig. Topographical maps depicting the visual P1 component and the LPD component

during early and late training phases. The left and right sides of the head model represent

electrodes ipsilateral and contralateral to the stimulus of interest, respectively.

(TIF)

S2 Fig. The day-by-day SDT modeling results. The day-by-day SDT modeling results for the

P1 data in the focused target condition with (A) and without baseline subtraction (B), where

we found the rising and falling of the maximal response amplitude before and after the behav-

ioral performance reached the saturation point (after the 2nd time bin). The increase in the

P1 maximal response (Figs 5E & 6D) that occurred in parallel with the fast improvement in

behavioral performance from the 1st and 2nd time bins (Fig 2C) could be sufficiently explained

by the gain model without the need to optimize the noise parameter. However, in later time

bins when the P1 maximal response reduced back to the same level as the 1st time bin and

when the behavioral performance reached the saturation point, the noise model yielded better

predictions than that the gain model and it suggests that noise parameters after the 2nd time

bin need to be reduced to account for the relationship between behavioral performance and

the P1 data. See corresponding model parameters in S1 Table and S2 Table. Also note that any

negative value of the goodness of fit (R2) show that the model is worse than a horizontal fit

line.

(EPS)

S3 Fig. Horizontal EOG data. (A) Grand-averaged eye bias scores for the focused/divided tar-

get/nontarget conditions. (B-C) Corresponding t and p values describing comparisons of eye

bias scores across early and late training phases. We found no difference in eye bias scores

across training phases at any time point from -100 to 600ms relative to the stimulus onset.

Note that we applied an additional 22-Hz low-pass filter to plot the EOG data in (A) since the

EOG data are relatively noisier than the ERP data due to the higher impedance of the EOG

electrode but the statistic was performed on the data with the 55-Hz low-pass filter to be con-

servative.

(EPS)

S4 Fig. The P1-based CRFs in the contralateral posterior-occipital electrodes sorted by

the contrast of the ipsilateral stimuli. (A) The baseline-subtracted P1-based CRFs in the con-

tralateral posterior-occipital electrodes sorted by the contrast of the ipsilateral stimuli. Note

that the contrast values on the x-axis are not exactly the same across target and nontarget
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conditions because, in the target conditions, we used the averaged contrast values between the

pedestal and incremental stimuli. (B) Corresponding maximal response parameters shown in

(A). Overall, we found that the attentional modulations in the P1 maximal response during

early training phases were primarily driven by trails where the ipsilateral stimuli had low-to-

medium contrast levels, but not trials where the ipsilateral stimuli had high contrast levels. In

the later training phases, we observed no attentional modulations in any of ipsilateral contrast

conditions. (C) Note that we did not measure the psychophysical contrast threshold separately

for trials of different nontarget contrasts; therefore, the accuracy varied across nontarget con-

trast conditions. Error bars in (A) and (C) represent within-subject SEM. Error bars in (B) rep-

resent the 68% CIs. #, ��, and ��� in (B) represent marginal and significant increases in the P1

maximal responses between focused target and the average between in the focused nontarget

and divided attention conditions with p< 0.10, p<0.05 and p<0.001, respectively.

(EPS)
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