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Abstract

Cues in the environment can guide behavior in adaptive ways, leading one towards valuable 

resources such as food, water, or a potential mate. However, cues in the environment may also 

serve as powerful motivators that lead to maladaptive patterns of behavior, such as addiction. 

Importantly, and central to this article, there is considerable individual variation in the extent to 

which reward cues gain motivational control over behavior. Here we describe an animal model that 

captures this individual variation, allowing us to better understand the psychological and 

neurobiological processes that contribute to cue-evoked behaviors. When a discrete cue is paired 

with a food reward in a Pavlovian manner it acquires greater control over motivated behavior in 

some rats (“sign-trackers, STs) than in others (“goal-trackers”, GTs). We review studies that have 

exploited this animal model to parse the neurobiological mechanisms involved in learning 

associations between stimuli vs. those involved in attributing incentive salience to those same 

stimuli. The latter seems to be dependent on dopamine and subcortical circuits, whereas the 

former may engage more cortical “top-down” mechanisms.

Introduction

Cues (conditional stimuli, CSs) that predict the impending delivery of biologically 

significant events (unconditional stimuli, USs), such as a food reward, acquire the ability to 

control behavior, or produce a conditioned response (CR), via Pavlovian learning 

mechanisms [1]. The same is true for stimuli associated with aversive events, but here we 

will focus only on cues associated with rewards. The ability of a CS to evoke simple 

reflexive CRs, such as salivation in the case of Pavlov’s dogs, is well known. It is less well 

appreciated, however, that CSs can also acquire the ability to evoke complex emotional and 

motivational states [2–5]. This latter transformation is thought to occur if a CS is attributed 

with incentive salience and thus acquires the properties of an incentive stimulus [2–4, 6]. 
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Incentive stimuli: 1) bias attention towards them and can elicit approach into close proximity 

with them; 2) become desirable themselves, in the sense that an animal will work for access 

to the stimulus alone (i.e., they act as conditioned reinforcers); and 3) can instigate or 

invigorate reward-seeking behavior (as in Pavlovian-to-instrumental transfer effects, PIT). 

Incentive stimuli can guide behavior in adaptive ways, leading one towards valuable 

resources such as food, water, or a potential mate. However, such cues may also serve as 

powerful motivators that lead to maladaptive patterns of behavior, as in over-eating and 

addiction. Importantly, there is considerable individual variation in the extent to which CSs 

act as incentive stimuli and gain motivational control over behavior [7].

In the laboratory, if a discrete and localizable Pavlovian CS, such as presentation of a lever, 

is reliably paired with presentation of a food reward, some rats come to approach the CS 

(Figure 1), even though no response is required for delivery of the reward [8]. This is called 

“sign-tracking” [9, 10]. In contrast, upon presentation of the lever-CS, other rats go to the 

location of impending reward delivery (Figure 1) [8]. This CR is called “goal-tracking” [11]. 

It is important to note that the lever-CS is an equally effective predictive stimulus (CS) in 

both sign-trackers (STs) and goal-trackers (GTs) – they learn their respective CRs at the 

same rate – but only in STs does the lever-CS acquire the properties of an incentive stimulus 

[12]. That is, for STs, the CS is more attractive and elicits approach towards it, is a more 

effective conditioned reinforcer, and is more effective at instigating reward-seeking behavior 

relative to GTs [12–14]. Importantly, this variation in the ability of a CS to acquire incentive 

salience is captured best by a localizable CS (i.e. lever or light) [15], and is not apparent 

when the CS is a tone [16]. Furthermore, tone stimuli paired with a food reward are 

attributed with less incentive value than a lever-CS [16, 17].

Sign-trackers are also more resistant to extinction of their CR than GTs [18] and will 

continue to approach the CS even if contact with it results in omission of the reward [19], 

indicating that approach behavior is not contingent upon subsequent food delivery or 

maintained via response reinforcement processes [20]. It has also been shown that sign-

tracking behavior becomes more pronounced when the relationship between the CS and the 

reward is uncertain, such that the probability of the reward following CS presentation 

changes [21]. These findings provide further evidence for dissociation between the 

predictive vs. incentive value of the CS (see also [22]). Thus, a lever-CS acquires all of the 

properties of an incentive stimulus in some individuals (STs), but not others (GTs). 

Importantly, this individual variation in the propensity to attribute incentive salience to a 

discrete or localizable CS has been described not only for food predictive cues, but also for 

cues that predict drug rewards [7, 15]}. The current article will focus on what we have 

learned about the neurobiological mechanisms of stimulus-reward learning by exploiting this 

individual variation.
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Elucidating the Neurobiological Mechanisms Underlying Individual 

Differences in Stimulus-Reward Learning

Dopamine

There has been considerable research on the role of dopamine (DA) in stimulus-reward 

learning, and one popular hypothesis is that phasic DA signals serve as a prediction error 

signal necessary for learning associations (for recent review see [22]). Given that STs and 

GTs learn CS-US associations equally well, but differ in the degree to which they attribute 

incentive salience to the CS [12], we have used this animal model to parse the role of 

dopamine in stimulus-reward learning [23]. The classic evidence that DA provides a 

prediction error signal is the observation that a phasic DA signal transfers from the US to the 

CS over the course of learning [24]. We used in vivo voltammetry in the core of the nucleus 

accumbens to see if this shift in DA occurred as STs and GTs learned their respective CRs 

[23]. We found that the transfer of DA occurs only in rats that learned a sign-tracking CR, 

suggesting that the role of DA is to encode the incentive properties of reward cues, not the 

predictive properties [23] (for additional discussion see [22]). In agreement, Parker et al. 

[25] found that mice with disrupted phasic dopamine signaling were perfectly capable of 

learning a goal-tracking CR, even though there was no apparent transfer in dopamine 

signaling from the US to the CS.

Furthermore, a series of pharmacological studies support the notion that dopamine signaling 

is important for sign-tracking, but not goal-tracking behavior. Systemic injections of 

flupenthixol, a non-specific dopamine receptor antagonist, blocked the acquisition of a ST 

CR, but had no effect on the acquisition of a goal-tracking CR [23]. Similarly, flupenthixol 

administered directly into the core of the nucleus accumbens [26] attenuated the 

performance of an already learned sign-tracking CR, but not a goal-tracking CR. This effect 

appears to be due to DA antagonism degrading the incentive value of the cue, which is 

necessary for it to elicit approach behavior, because the effect was evident on the very first 

trial and therefore could not be due to new learning [26]. In support, DA antagonism had no 

effect on the performance of a different CR, conditioned orienting behavior, in either STs or 

GTs [27]. This latter finding suggests that DA blockade does not degrade the CS-US 

association, even in STs. Lastly, flupenthixol administered in the core of the accumbens also 

attenuates cue-evoked reinstatement of cocaine-seeking and does so preferentially in STs 

[28]; while enhancing DA activity by local injection of amphetamine increases both cue-

evoked reinstatement of cocaine-seeking [28], and approach to a lever-CS [29] in STs. Taken 

together, these findings demonstrate that dopamine signaling, specifically in the core of the 

nucleus accumbens (Figure 2), is critical for the attribution of incentive salience to reward 

cues, and not for encoding the predictive value.

One source of variation in DA signaling in STs and GTs may be that these phenotypes differ 

in DA transporter (DAT) and/or dopamine receptor expression and function [29–31]. Indeed, 

STs show greater surface DAT expression in the ventral striatum, and this is associated with 

faster DA uptake in the core of the accumbens. Also, systemic amphetamine administration 

inhibits DA uptake to a greater extent in STs than GTs [29], which could contribute to its 

selective effects on approach and cue-induced reinstatement described above [28]. There are 
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also data to suggest that STs have lower levels of dopamine D2 receptor mRNA in the 

nucleus accumbens [30, 31], and pharmacological studies suggest that antagonism of this 

receptor disrupts sign-tracking, without affecting goal-tracking behavior [32]. However, the 

expression of both sign- and goal-tracking CRs were attenuated with systemic 

administration of flupenthixol [23] or antagonists acting with greater selectivity at D2/D3 

receptors [33, 34], and agonists of these receptors have similar effects [33]. Thus, while 

dopamine signaling clearly plays a role in the propensity to attribute incentive salience to 

reward cues, it is not yet clear which receptors are mediating these signals; although recent 

evidence suggests that D3 and D4 receptors are not selectively involved [33, 35]. Further 

investigation is also needed to determine whether or not inherent differences in expression 

patterns or efficacy of the dopamine system are playing a role. Moreover, the role of 

dopamine and/or which dopamine receptors are involved changes over the course of training 

[35], such that effects on acquisition may differ from those on the expression of the 

conditioned response [36].

Circuit Level Differences

There have been numerous studies examining the neural systems involved in cue-motivated 

behaviors, most of which support the notion that there is a widespread and overlapping 

network of “reward circuits” mediating the response to many different classes of rewards 

(e.g., food, sex, drugs) and reward cues (e.g., discrete cues, contexts) (for review see [4, 37–

39]). This “motive circuit” includes cortico-striato-pallido-thalamic loops with cortical and 

subcortical networks converging on the nucleus accumbens [37–40]. What has been less 

clear, however, is exactly which properties of a reward cue are responsible for activating this 

circuit. In most learning studies the predictive and incentive value of cues are confounded, 

and they tend to change together, making it difficult to separate the neurobiological 

processes involved in learning associations vs. those involved in attributing incentive 

salience to a cue. However, the sign-tracker/goal-tracker model allows us to do this [12], and 

here we describe initial studies in which we have exploited this individual variation to better 

understand the circuitry underlying these different forms of stimulus-reward learning.

One of our first efforts was to determine which brain regions are engaged by presentation of 

a food cue in STs and GTs, using c-fos as a marker of neuronal activity [41]. Interestingly, a 

food cue induced c-fos expression throughout the so-called motive circuit in STs but not 

GTs, including the dorsal (caudate-putamen) and ventral striatum (accumbens), lateral 

habenula and midline thalamus, and similar effects have been described upon presentation of 

a drug (opioid) cue [27] (Figure 2). These findings demonstrate that the predictive value of a 

cue is not sufficient to engage these brain regions; it must also be attributed with incentive 

salience.

Furthermore, an examination of interregional cue-induced c-fos mRNA levels within each 

phenotype revealed distinct patterns of correlated neural activity, with subcortical patterns of 

activation in STs, and evidence for cortical engagement in GTs [41]. In particular, STs 

showed correlated cue-induced activity between the paraventricular nucleus of the thalamus 

(PVT) and the ventral striatum; whereas GTs showed a strong pattern of correlated activity 

between the prefrontal cortex (PFC) and paraventricular nucleus of the thalamus (PVT) [41, 
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42]. These findings, and the fact that the PVT shows pronounced differences in cue-induced 

c-fos activity between STs and GTs [27, 41] (Figure 2), has prompted further investigation 

into the role of the PVT and related circuitry in sign- and goal-tracking behaviors [42, 43].

When the PVT is lesioned prior to the acquisition of a conditioned response, the initial 

learning of the CS-US association is not affected, but the differences in the expressed CR are 

amplified, with an increase in sign-tracking behavior in STs and decrease in goal-tracking 

behavior in GTs [43]. When lesions occur after rats have acquired a CR, effects are only 

evident in GTs who, following PVT lesions, show increased sign-tracking behavior [43]. 

These results suggest that the PVT may act to suppress the attribution of incentive salience 

to reward cues, at least in GTs, as disruption of the functional activity of this nucleus 

enhances the tendency to sign-track.

To better understand the circuitry surrounding the PVT in these cue-motivated behaviors, we 

conducted dual-labelling (c-fos and flourogold) studies to identify which cells 

communicating with the PVT are activated in response to a food cue [44]. The findings 

suggest that the pathway from the prelimbic cortex (PrL) to the PVT may play a primary 

role in encoding the predictive properties of reward cues; whereas subcortical activity – both 

inputs to the PVT from amygdalar and hypothalamic subregions (Figure 2), and outputs 

from the PVT to the ventral striatum – are mediating the attribution of incentive salience to 

reward cues.

Using chemogenetics, we (SBF) are now targeting some of these circuits to further explore 

their role in sign- and goal-tracking behaviors. We are especially interested in the PrL-PVT 

circuit, as depletion of serotonin in the mPFC enhances sign-tracking behavior in C57 mice 

[45]; and deficits in mPFC cholinergic activity have been associated with poor attentional 

control in STs [46]. STs are also more impulsive than GTs [30, 47], another trait inherent to 

these phenotypes that may be mediated by aberrant top-down executive control. Thus, we 

hypothesize that the PrL-PVT circuit may act to inhibit incentive salience attribution, and 

while this is effective in GTs, in STs the subcortical drive may override the cortical control, 

contributing to maladaptive tendencies.

Other Regions of Interest

The findings reviewed above which are, admittedly, primarily from our own work, provide 

evidence for the involvement of dopamine and specific nodes of the “motive circuit” in the 

attribution of incentive salience to reward cues. Support for these findings comes from other 

studies, such as that by DiFeliceantonio and Berridge [48], demonstrating that the 

dorsolateral striatum can act to enhance the incentive salience of a Pavlovian reward cue. It 

is important to note that other brain regions and neurotransmitter systems, known to interact 

with the dopamine system (for review see [40]), have also been studied within this realm.

One such region is the lateral habenula, an area that showed enhanced cue-induced c-fos 

activity in STs relative to GTs [27, 41]. DA neuron firing is strongly modulated by inputs 

from the lateral habenula (LHb), such that increasing LHb activity decreases DA activity, 

whereas decreasing LHb activity does the opposite (for review see [49]). In an interesting 

study, Danna and colleagues [50] showed that lesions of the LHb outputs (increased DA) 
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increased sign-tracking; whereas stimulation of the same outputs (decreased DA) attenuated 

sign-tracking. Neither manipulation had any influence on goal-tracking. These data further 

support the idea that DA is important for the performance of sign-tracking, but not goal-

tracking behavior, and demonstrate a role for the lateral habenula in incentive salience 

attribution (Figure 2).

Another region that showed robust Fos expression in STs relative to GTs in response to both 

a food and opioid cue is the basolateral amygdala (BLA; [27], Figure 2). Consistent with this 

finding, it has been shown that lesions of the BLA attenuate sign-tracking behavior after the 

CR is acquired [51]. Interestingly, in the same study, it was shown that lesions of the nucleus 

accumbens impaired the initial acquisition of sign-tracking behavior, and when 

communication between the BLA and nucleus accumbens was disrupted with disconnection 

lesions, there were deficits in both the initial acquisition and expression of sign-tracking 

behavior [51]. These findings suggest that different brain regions within a circuit may 

mediate different aspects (i.e. acquisition vs. performance) of stimulus-reward learning.

In recent years, the ventral pallidum has become a focus of great interest as a mechanism of 

incentive motivation [52, 53]. In support, Chang and colleagues [54], using a chemogenetic 

approach, showed that transient disruption of neurons in the ventral pallidum impaired the 

acquisition of sign-tracking, but did not affect goal-tracking. Furthermore, using single-unit 

in vivo electrophysiology, Ahrens et al. [55], recently demonstrated that, during CS 

presentation, there are a greater number of responsive neurons in the ventral pallidum, and 

they show greater changes in activity in STs than GTs. Furthermore, this activity is strongly 

correlated with the degree of attraction to the reward cue, demonstrating that neural activity 

in the ventral pallidum largely reflects the degree to which the reward cue is attributed with 

incentive salience (Figure 2).

Conclusions

We have provided a review of converging data that implicate several brain regions and 

possible circuits in mediating the attribution of incentive salience to reward cues (Figure 2). 

Using the sign-tracker/goal-tracker animal model, we, and others, have demonstrated that 

the role of dopamine is to encode the incentive—and not the predictive—properties of 

reward cues. Furthermore, the corticostriato-pallido-thalamic loops of the “motive circuit” 

are engaged only when a reward cue is attributed with incentive salience. Based on the 

existing data, we postulate that the ability of reward cues to gain motivational control over 

behavior (as in STs) is regulated by subcortical networks; whereas “top-down” cortical 

circuits act to inhibit this process (as in GTs). This animal model has been invaluable in 

allowing us to parse the neurobiological mechanisms underlying stimulus-reward learning 

and incentive motivation, providing a better understanding of the neural processes that go 

awry in psychopathology. It is hoped that this model will continue to be utilized across 

disciplines [56, 57] to further advance our understanding and potentially lead to novel 

therapeutic targets for the treatment of addiction and related disorders.
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Highlights

• There is considerable individual variation in conditioned responses to reward 

cues

• Cues can evoke simple conditioned responses and/or complex motivational 

states

• When a reward cue becomes an incentive stimulus it can elicit maladaptive 

behavior

• We can exploit variation to elucidate the neurobiology of cue-elicited 

behavior

• Distinct neural circuits are engaged when a cue has incentive vs. predictive 

value

Flagel and Robinson Page 11

Curr Opin Behav Sci. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Characterization of a “sign-tracker” and “goal-tracker”
A) Sign-trackers (STs) approach and manipulate the lever (conditional stimulus, CS), 

reflective of incentive salience attribution. B) Goaltrackers (GTs) approach the location of 

food reward (unconditional stimulus, US) delivery upon presentation of the lever-CS. 

Images adapted from [58]. C) Mean +/− SEM Pavlovian conditioned Approach Index, a 

composite score used to assess the propensity of an individual rat to approach the lever-CS 

vs. the food cup (see [59]), is shown across 5 conditioning sessions for GTs (n=1867), those 

in the intermediate group (IG, n=2296) that vacillate between the two responses, and STs 
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(n=1934). An Approach Index of −1 indicates behavior directly solely towards the food cup, 

whereas that of +1 indicates that behavior is directly solely towards the lever-CS. D) A 

histogram illustrating the population distribution of the propensity to attribute incentive 

salience to a reward cue in 6097 rats (the same rats used for panel C). Phenotype 

classification is based on an Approach Index of −1 to −0.5 for GTs, −0.5 to 0.5 for IG and 

0.5 to 1 for STs. The large population of rats used for C and D has come from a database 
generated using Sprague-Dawley rats that have been screened for Pavlovian conditioned 
approach behavior in the labs of Drs. Shelly Flagel, Jonathan Morrow and Terry Robinson at 
the University of Michigan.
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Figure 2. Sagittal schematic of the brain areas that are involved in reward processing for 
incentive stimuli
Brain regions highlighted in gray are those that show enhanced cue-induced activation in 

response to either a food- or drug-cue that has been attributed with incentive salience, but 

not both; those highlighted in yellow show enhanced activation to both food- and drug-

associated cues that have been attributed with incentive salience; and those highlighted in 

red show enhanced activation in response to a food- or drug-cue, and have also been 

implicated in incentive salience attribution using other methods (i.e., lesions (PVT, BLA, 

lateral habenula), chemogenetics (VP), electrophysiology (VP)). Regions that are identified, 

but not highlighted are those that are believed to be involved in incentive salience attribution, 

but published data is currently lacking. Abbreviations: BLA, basolateral nucleus of the 

amygdala; CeA, central nucleus of the amygdala; CeM, central medial nucleus of the 

thalamus; HC, hippocampus; IMD, intermediodorsal nucleus of the thalamus; LH, lateral 

hypothalamus; MeA, medial nucleus of the amygdala; PVT, paraventricular nucleus of the 

thalamus; VP, ventral pallidum Image adapted from [27].
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