Skip to main content
. Author manuscript; available in PMC: 2017 Jun 27.
Published in final edited form as: Struct Equ Modeling. 2016 Apr 7;23(4):479–490. doi: 10.1080/10705511.2016.1141355

Table 3.

Model Selection Rates of 20 GMMs Fitted to 100 Bootstrap Samples From a Subset of the NLSY

model key
features
n
classes
n
param
selection
rate BIC
converg
rate
mean BIC sd BIC
1 no random
effects
2 12 0.000 1.00 8032.703 159.7806
2 3 19 0.000 1.00 7894.484 158.7380
3 4 26 0.000 0.98 7845.655 157.3442
4 5 33 0.001 0.92 7830.026 154.1123
5 random
intercept
2 14 0 0.86 7876.661 161.6511
6 3 22 0.002 0.92 7822.524 161.3376
7 4 30 0.009 0.83 7806.706 161.3829
8 random intercept &
linear slope
2 18 0.002 0.77 7824.691 151.1699
9 3 28 0.008 0.55 7773.826 147.2956
10 4 38 0.003 0.52 7822.893 149.8097
11 full random effects 2 24 0 0.77 7832.977 153.7616
12 3 37 0.002 0.47 7848.165 151.3798
13 random
intercept,
i on X
2 20 0.159 0.98 7785.352 154.8668
14 3 31 0.101 0.79 7812.968 157.4791
15 4 42 0.008 0.52 7823.341 148.0612
16 random intercept &
linear slope,
i on X
2 24 0.478 0.89 7761.509 154.7056
17 3 37 0.076 0.58 7791.234 162.0160
18 4 50 0 0.31 7792.152 143.6079
19 full random effects, i on
X
2 30 0.150 0.85 7794.638 153.0162
20 3 46 0 0.34 7852.469 147.1468

Note: All models were quadratic growth mixture models. Random effects were always estimated with class-specific variance. Abbreviations: n classes = number of classes, n param = number of estimated parameters, converg rate = convergence rate, mean BIC = Bayesian Information Criterion averaged over 100 bootstrap samples, sd BIC = the standard deviation of the BIC over 100 bootstrap samples, I on X = class specific regression of the intercept factor on the covariates.