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Abstract

High-dimensional MR imaging often requires long data acquisition time, thereby limiting its 

practical applications. This paper presents a low-rank tensor based method for accelerated high-

dimensional MR imaging using sparse sampling. This method represents high-dimensional images 

as low-rank tensors (or partially separable functions) and uses this mathematical structure for 

sparse sampling of the data space and for image reconstruction from highly undersampled data. 

More specifically, the proposed method acquires two datasets with complementary sampling 

patterns, one for subspace estimation and the other for image reconstruction; image reconstruction 

from highly undersampled data is accomplished by fitting the measured data with a sparsity 

constraint on the core tensor and a group sparsity constraint on the spatial coefficients jointly using 

the alternating direction method of multipliers. The usefulness of the proposed method is 

demonstrated in MRI applications; it may also have applications beyond MRI.
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I. Introduction

High-dimensional MR imaging is desirable for many biomedical applications, such as 

dynamic cardiac imaging [1], multiparameter mapping [2], spectroscopic imaging [3], and 

diffusion imaging [4]. However, the number of encodings (data points) needed in 

conventional imaging methods grows exponentially with the dimensionality of the desired 

image function (known as the “curse of dimensionality”), which often leads to impractically 

long data acquisition times. To address this issue, a number of methods have been proposed 

in recent years for accelerated imaging with sparse sampling. Most notably, compressed 

sensing methods have successfully exploited the sparsity of images in various transform 

domains and achieved impressive results on sparse sampling. Since the early work [5]–[9], 

many extensions to sparse model-based accelerated imaging have been developed (e.g., 

design of random excitation schemes [10], [11], incorporation of group sparsity [12], 

partially known support [13]–[15], and parallel imaging [16]) and successfully used in 

practical applications [17]–[19]. Low-rank structures have also proved useful for sparse 

sampling. Existing low-rank based methods (e.g., [20]–[24]) have effectively exploited the 

spatiotemporal (or spatiospectral) correlation that exists in high-dimensional data. For 

example, early methods [20], [25], [26] utilize the low-rank structure of the Casorati matrix 

for accelerated imaging; these methods enforce an explicit subspace structure estimated 

from an auxiliary dataset. Low-rank matrix structure can also be enforced implicitly by 

using, for example, nuclear norm minimization [23], [27], [28]. More recent methods 

exploiting both low-rank structure and sparsity have been developed and shown to provide 

enhanced performance [23], [24], [29]. These methods have also been successfully applied 

to various MRI problems, e.g., real-time cardiac imaging [30], dynamic speech imaging 

[31], diffusion imaging [32], relaxometry [33] and spectroscopic imaging [34].

This paper extends the low-rank matrix-based approach by using low-rank tensors to capture 

data correlation in multiple dimensions, beyond just spatiotemporal or spatiospectral 

correlation. The use of tensor structures for accelerated imaging has been proposed in [35]–

[39]. These methods either exploit sparsity of the high-order tensors (in the spirit of 

compressed sensing) or implicitly enforce low-rankness through penalty terms such as the 

nuclear norm. We propose a new method, called Low-Rank Tensor with “Explicit Subspace” 

(LRTES), that represents high-dimensional image functions using an explicit low-rank 

tensor model. Based on this model, we propose a data acquisition scheme characterized by 

acquisition of two complementary data sets: a navigator dataset for estimating the tensor 

subspace structure, and a sparse dataset for image reconstruction. The image reconstruction 

problem consists of two subproblems: 1) determining the basis functions of the tensor 

subspace from the navigator data, and 2) reconstructing high-dimensional data by fitting the 

measured data with the estimated subspace. We solve the first problem using SVD and the 

second problem using regularized least squares fitting with a sparsity constraint on the core 
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tensor and a group sparsity constraint on the spatial coefficients jointly. The non-convex 

optimization problem associated with image reconstruction is solved using the alternating 

direction method of multipliers (ADMM).

The rest of this paper is organized as follows: Section II presents a summary of relevant 

mathematical results on low-rank tensors; Section III describes the proposed low-rank tensor 

based data acquisition with sparse sampling; Section IV discusses the proposed image 

reconstruction from highly undersampled data using low-rank tensors; Section V shows 

some representative results from several application examples of the proposed method, 

which is followed by the discussion and conclusion of the paper in Section VI.

II. Low-Rank Tensor Image Models

A. Notation

First-order tensors (i.e., vectors) are denoted by bold lowercase letters (e.g., a), second-order 

tensors (i.e., matrices) by bold capital letters (e.g., A), and tensors of order three or higher 

are denoted by Euler script letters (e.g., ). Scalars are denoted by lowercase italic letters 

(e.g., a). Indexed scalars, such as ai, ai j, and xi jk, are used to represent the ith, (i, j)th, and (i, 
j,k)th element of vector a, matrix A, and third-order tensor , respectively; vec(A) is a 

vectorized representation of (A) (i.e., the vector elements are taken from A column by 

column). We use AT to denote the transpose of A, AH the Hermitian transpose of A, and Ω* 

the Hermitian adjoint of operator Ω. As in [40], we use ∘ to denote the vector outer product 

(or tensor product), and ⊗ to denote the Kronecker product. The following vector and matrix 

norms are also used: 1) ℓ1 norm ; 2) Frobenius norm .

The mode-i matricization (also known as unfolding or flattening) of a tensor  ∈ 
ℂN1×N2×⋯×Nd is defined as X(n) ∈ ℂNi×(N1⋯Ni−1Ni+1⋯Nd), arranging the data along the Nith 

dimension to be the columns of X(i). The opposite operation of tensor matricization is called 

the folding operation, which arranges the elements of the matrix X(i) into the dth order 

tensor .

Tensor multiplication is much more complex than matrix multiplication, and here we 

consider only the tensor i-mode product, defined as the multiplication (e.g.,  ×iU) of a 

tensor  with a matrix U ∈ ℂJ×Ni in mode i. We have the elementwise presentation 

, where  = (  ×iU) ∈ 
ℂN1×⋯Ni−1×J×Ni+1×⋯×Nd. The i-mode product can also be presented in the matricized form: 

Y(i) = UX(i).

B. Low-rank tensor image models

Consider a d-dimensional image function ρ(x1, x2, ⋯ , xd) that is support-limited and 

belongs to a certain Hilbert space. Such a function can often be “well” represented/

approximated by lower-dimensional functions [20]. For example, we may express ρ(x1, x2, 

⋯ , xd) as
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(1)

where L is called the separation rank.1 One extension of the model in (1) is

(2)

where {x1,x2, ⋯ ,xd̂} represents d̂ groups of “separable” variables from {x1, x2, ⋯ , xd}. For 

example, let {x1, x2, ⋯ , xd} = {x,y,z, f,t}; we may set x1 = {x,y,z}, x2 = {f }, and x3 = {t}, 

to capture the space-frequency-time separability (or correlation). Model (1) can be 

generalized2 to:

(3)

and similarly for model (2),

(4)

The above image models can be viewed as low-rank tensors.3 More specifically, after 

discretization (by sampling or with respect to a basis), the image function ρ(x1, x2, ⋯ , xd) 

can be represented as a d̂-dimensional array or a tensor ℘ ∈ ℂN1×N2×⋯×Nd̂ and models (2) 

and (4) express the tensor in the Canonical form (often known as CANDECOMP/PARAFAC 

(CP) [43]) or Tucker form [44], respectively, as follows:4

(5)

1ρ(x1, x2, ⋯ , xd) becomes strictly separable when L = 1; such a representation is often used in solving differential equations but too 
restrictive for imaging applications [41].

2If  are not required to be linearly independent for 1 ≤ m ≤ d, Model (1) and Model (3) are mathematically 
equivalent.
3In physics, tensors are multilinear operators, which become a multidimensional or multi-way array after a basis is selected for a 
particular reference frame [42]; in mathematics and engineering, multi-way arrays are directly treated as tensors (without referencing 
the underlying basis). The engineering definition of tensors is used in this paper.
4Models (1) and (3) can also be expressed as tensor decomposition in the CP or Tucker form, respectively.
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and

(6)

where gℓi ∈ ℂNi for i = 1,2, ⋯ ,d̂.

In the CP form, L is called the tensor rank and d̂ the order of the tensor. In other words, the 

right-hand-side of model (5) is a order-d̂ rank-L tensor. In the Tucker form of (6), the tensor 

rank is specified by (L1, L2,…, Ld̂), which is called the multilinear rank. Noting that the CP 

form is a special case of the Tucker form,5 and that best low-rank tensor approximation is 

ill-posed for the CP form (for tensors of order-3 or higher) [45] as stated in Theorem 4 
below, we will focus on the Tucker tensor decomposition. In the Tucker decomposition (6), 

cℓ1,ℓ2,⋯,ℓd̂ can be viewed as the elements of another tensor , often called the core tensor [44]. 

With , Eq. (6) can be rewritten in a more compact form as

(7)

where G(i) ∈ ℂNi×Li is the ith factor matrix whose ℓth column is . The mode-1 

matricization of ℘ is

(8)

where C(1) is the mode-1 matricization of .

The following is summary of some relevant mathematical properties for the tensor image 

models [41], [45].

Theorem 1—Let X1 ×X2 × ⋯ ×Xd be the Cartesian product of measure spaces X1,X2, 

⋯ ,Xd, then the set of functions  for all  is a 

dense subset in L2(X1 × X2 × ⋯ × Xd).

Theorem 2—For i = 1,2, ⋯ ,d, assume that  is an orthonormal basis for L2(Xi), 

then  is an orthonormal basis of L2(X1 × X2 × ⋯ × Xd).

Theorem 3—L2(Rd) = L2(R) ∘ L2(R) ∘ ⋯ ∘ L2(R).

5The CP form and the Tucker form are exactly equivalent for order-2 tensors.
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Theorem 4—Let ℘ ∈ ℝN1×N2×⋯×Nd , d ≥ 3, and N1, N2, ⋯ , Nd ≥ 2. The best rank-L 
approximation of ℘ does not exist in general. More specifically, let 

, where , i = 1,2, ⋯ ,d. The problem 

with respect to any choice of norm, 2 ≤ L0 ≤ min{N1, N2, ⋯ , Nd} has no solution in 

general.

III. Accelerated Data Acquisition with Sparse Sampling

In d-dimensional MR imaging, the measured k-space signal is related to the desired image 

function ρ(x1, ⋯ , xd) by:

(9)

where ℱ represents the d-dimensional Fourier encoding operator and η the measurement 

noise. With appropriately chosen voxel basis functions, ρ can be fully characterized by the 

set of voxel values , where Ni is the number of voxels needed to achieve 

the desired resolution along the ith dimension. The voxel values can be arranged into a d-

dimensional array with a total of  elements (unknowns). In conventional Fourier 

imaging (treating ρ as a support-limited function), the number of measurements required to 

achieve the desired resolution is then also , which can take prohibitively long time 

to obtain.

Invoking the low-rank tensor model, we can significantly reduce the number of unknowns. 

For example, with model (3), assuming  has Ni degrees of freedom, the tensor will 

have  degrees of freedom, a significant reduction. Similar analysis 

can be applied to model (4) or (6) with a similar effect on the reduction in the degrees of 

freedom. This reduction can be taken advantage of for accelerated data acquisition. In the 

existing compressed sensing or low-rank matrix recovery based methods, random sampling 

of k-space is usually used. Using the tensor representation form in (6)–(8), we propose to 

use a different strategy for data acquisition. First of all, we group the variables according to 

their physical interpretation into d̂ variable groups , with x1 denoting the spatial 

dimension. Accordingly, the proposed strategy acquires two complementary data sets: i) a 

navigator dataset to determine the subspace (i.e., ), and ii) a sparse dataset to 

determine G(1) (also referred to as the spatial basis) and C(1). The navigator dataset is made 

up of d̂ −1 subsets (which may or may not overlap), each of which satisfies the Nyquist 

and/or resolution requirements for 6, respectively. An example of the navigator data 

6The data acquisition scheme for subsets of navigator data can be implemented utilizing a variety of strategies which have been 
proposed for the Partially Separable (PS) model (i.e., the low-rank tensor image model with d̂ = 2) [20], [34], [46], [47].
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acquisition schemes with d̂ = 3 is shown in Fig. 1. Two subsets of the navigator data, colored 

with red and green, are collected. Each subset covers only a limited region of central k-space 

and fully samples along x2 or x3. The sampling pattern for the sparse dataset can be very 

flexible as long as it provides a sufficient number of measurements to determine G(1) and 

C(1). In this work, we used variable density random undersampling (motivated by its 

advantages shown in the compressed sensing and low-rank matrix recovery literature and 

ease of implementation) covering an extended region of k-space determined by the desired 

spatial resolution.

IV. Image Reconstruction

The proposed reconstruction consists of two subproblems: 1) determining the tensor 

subspace structure ( ), and 2) determining G(1) and C(1).

A. Subspace estimation

The navigator data is used to determine the subspace structures. Specifically, each subset of 

the navigator data can be collected into a Casorati matrix Si ∈ ℂNi×M, M ≥ Li for i ≥ 2, as 

illustrated in Fig. 1. This allows estimation of Ĝ(i) ∈ ℂNi×Li from the Li dominant left 

singular vectors of Si for all i ≥ 2. We then take the subspace spanned by the columns of Ĝ(i) 

as the subspace of the ith dimension in ℘.

An underlying question of the above procedure is whether the subspace spanned by the 

columns of Ĝ(i) is the same as the subspace of the ith dimension in ℘. Theorem 5 in 

Appendix A addresses this question. Simply put, the proposed procedure requires that the 

signal variations along the ith dimension of the image function can be represented by the 

basis extracted from the navigators. Any signals that can not be represented by these bases 

must have signal components not visible in the set of limited k-space locations over which 

the navigators are measured (i.e., having a null space for these locations). We argue that such 

signals would not be physically meaningful if the navigators are properly collected.

B. Image Reconstruction

Let Φ̂ = (Ĝ(d̂) ⊗ Ĝ(d̂−1) ⊗ ⋯ ⊗ Ĝ(2))T, where  are the subspace estimates from the 

navigator data. For notational simplicity, let also G = G(1) and C = C(1). The image 

reconstruction problem for LRTES is then formulated as

(10)

where R(·) is an optional regularization functional and P̂
(1) = ĜĈΦ̂ the final reconstructed 

image. Note that d may or may not include the navigator data according to different 

applications.
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1) Choices of R(·)—The inclusion of R(·) provides an avenue to impose additional 

constraints on the structure of ℘. In this paper, we enforce different constraints on the spatial 

basis and core tensor jointly. The R(·) in (10) is reformulated as

(11)

where the penalty functions Rs(·) and Rgs(·) promote sparsity and transform group sparsity 

respectively.

The sparsity constraint function Rs(·) can be imposed upon the mode-1 matricization of the 

core tensor  to address the nonuniqueness of the Tucker decomposition, alleviating ill-

conditionedness. The strategy is to make as many elements zero (or very small) as possible 

in the core tensor to reduce the degrees of freedom, as is similarly done in sparse tensor 

approaches [48]. Furthermore, the core tensor should be sparse when the factor matrices of 

the tensor are made up of orthogonal columns. In LRTES, the factor matrices  are 

orthonormal bases, as they are derived from singular value decomposition of the navigator 

data. As a result, we adopt the sparsity constraint Rs(C) = μ||vec(C)||1 in (11).

Since the coefficients  (for some sparsifying transform Ψ(·)) often share 

similar sparse support, we can impose a transform group sparsity constraint Rgs(·) on G. 

Group sparse modeling exploits this correlated sparse structure of spatial coefficient maps 

, utilizing the shared sparse support in the transform domain to form a 

stronger model than sparse modeling alone. Mathematically, transform group sparsity can be 

enforced by the mixed ℓ1/ℓ2 norm [49], i.e., Rgs(G) = λ||Ψ(G)||2,1, where ||U||2,1 = Σi ||ui:||2 

and where ui: denotes the ith row of U. We used Rgs(G) = λ||Ψ(G)||2,1 as the group sparsity 

constraint when generating the results. Specifically, we implement LRTES with the 

sparsifying transform Ψ = ∇ = (∇x,∇y) (i.e., spatial finite difference operators) in this paper 

to enforce shared edge structure.

Under the above description, (10) can be expressed as

(12)

where λ, μ denote the regularization parameters.

2) Optimization algorithm—The constraints imposed by (12) are appealing from a 

modeling standpoint; however, the non-convex, and non-linear nature of this large-scale 

problem raises issues of computational complexity and local optimality. This subsection 

(and the appendices) address these issues, proposing an efficient and robust ADMM-based 

reconstruction algorithm which is simple to implement. The optimization equation in (12) 
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can be converted into the following equivalent constrained optimization problem through 

variable splitting,

(13)

The augmented Lagrangian function for (13) can then be written as

(14)

Here, Y and Z are the two Lagrangian multipliers, and α, β > 0 are called the penalty 

parameters. Eq. (14) can be minimized by the following alternating direction method:

(15)

(16)

(17)

(18)

(19)

(20)

The general solutions to the subproblems (15)–(18) are described in Appendix B.

The variables must be initialized before the above subproblems can be alternately solved. In 

our implementation, we initialize P(1)0 from the zero-filled reconstruction. Since P(1) = 
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GCΦ̂ and Φ̂ contains orthonormal rows, we initialize G0 and C0 such that G0C0 = P(1)0Φ
̂H. 

Specifically, we initialize G0 from the L1 dominant left singular vectors of P(1)0Φ
̂H and then 

initialize . A0, B0, Y0, and Z0 can be initialized as zero matrices.

3) Analysis of convergence—The convergence of this reconstruction algorithm applied 

to non-convex problems is still an open problem [50], [51]. Although empirical evidence 

suggests that the reconstruction algorithm has very strong convergence behavior, the 

satisfying proof is still under study. Here, we can give a weak convergence result that 

guarantees that the iteration sequence of the reconstruction algorithm converges to a first-

order Karush-Kuhn-Tucker (KKT) point of (13) with mild conditions. The KKT point in this 

case can be either a local (or global) minimum or a saddle point. First, it is straightforward 

to derive the KKT conditions for (14):

(21)

where Γ(G) = Ω(FGCΦ̂) and Λ(C) = Ω(FGCΦ̂).

Second, we have the following Lemma:

Lemma 1: Let W ≜ (G,C,A,B,Y,Z) and  be the sequence generated by the 

proposed algorithm. Assume that  is bounded and . Then any 

accumulation point of  satisfies the KKT conditions. In particular, whenever 

 converges, it converges to a KKT point of (14).

The proof of Lemma 1 is described in Appendix C.

V. Application Examples

In this section, we applied LRTES to three high-dimensional imaging applications: multi-

shell diffusion imaging, multiparameter mapping, and multidimensional spectroscopic 

imaging. Simulations were conducted by retrospectively undersampling either actual 

experimental data or numerical phantoms generated from real data. The performance of 

LRTES was compared with the joint sparsity-based method (denoted as Joint Sparse 

hereafter) in [12] and with the low-rank tensor completion in [52] (denotes as LRTC 

hereafter). LRTC is a tensor completion method based on minimizing the tensor trace norm 

(the average of the nuclear norms of all matrices unfolded along each mode). In contrast to 

the proposed explicit low-rank tensor model, LRTC enforces low-rankness implicitly.

A. Multi-shell diffusion imaging

Diffusion imaging has been demonstrated to be a useful tool for noninvasive quantification 

of tissue microstructures. In order to achieve accurate diffusion parameter estimation 

(especially for higher order diffusion signal models), many diffusion encoding directions 
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with multiple b-values (also referred to as multi-shell acquisitions) are usually acquired [4], 

[53]. This can significantly prolong the imaging time, thus motivating accelerated 

acquisition.

We simulated a multi-shell diffusion imaging experiment using an adult mouse diffusion 

tensor atlas from the BIRN (Biomedical Informatics Research Network) Data Repository to 

evaluate the potential of LRTES for accelerating diffusion imaging. Specifically, the 

diffusion-weighted (DW) images were generated using the signal model

(22)

where ρ(x) is the intensity without diffusion weighting, and 

are 12 different b-values (corresponding to x2). The  denote 64 different diffusion 

encoding directions (corresponding to the x3), and D(x) is the diffusion tensor. We generated 

(1+768) images with 256 × 256 voxels, where the “1” image specifies the image without 

diffusion weighting (i.e., b = 0). The noise standard deviation was selected such that SNR = 

9 for b = 1000 s/mm2 at u1. The SNR is defined as the ratio of mean signal to the standard 

deviation of noise.

Three different methods were applied to reconstruct DW images from noisy sparse samples: 

Joint Sparse reconstruction (group sparse modeling), LRTC (enforcing implicit low-rank 

tensor constraint through the nuclear norm), and LRTES. All three methods used the same 

variable density Cartesian sampling pattern with densely sampled 4 × 256 central k-space 

and a total acceleration factor (AF) = 17. The densely sampled central k-space region also 

covers all b-values and diffusion directions to generate S2 and S3, from which Ĝ(2) and Ĝ(3) 

were estimated, respectively.

Fig. 2 shows reconstructed DW images for selected b-values at one diffusion encoding 

direction. As can be seen, the AF is too high for successful Joint Sparse reconstruction in all 

cases. The LRTES clearly outperforms LRTC with the improvement more distinct at higher 

b values. Note that LRTES not only accurately reconstructs the images, but also has a 

denoising effect, exhibiting better SNR than direct Fourier reconstruction of the fully 

sampled noisy data.

Fig. 3 compares the estimated fractional anisotropy (FA) maps and color-coded FA maps 

from Joint Sparse reconstruction, LRTC, and LRTES. The fully sampled image without 

diffusion weighting, ρ(x), and the 64 reconstructed images with different diffusion encoding 

directions, all with b = 1000 s/mm2, were used to calculate FA using the standard least-

squares approach in [54]. As Fig. 3 shows, LRTES results in the lowest error for both the FA 

and color-coded FA maps.
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B. Multiparameter mapping

MR multiparameter mapping is a powerful tool for quantitative tissue characterization with 

applications for cancer imaging, myocardial tissue characterization, and more. Typically, this 

is performed by collecting multiple images with different sequence parameters and inverting 

the appropriate MR contrast equation to enable the estimation of the original tissue 

parameters (e.g., ρ, R1, R2, ). This approach, if unaccelerated, can lead to impractically 

long scan times.

In order to evaluate the effectiveness of the proposed method for accelerated multiparameter 

mapping, we created a numerical phantom from known spin density, R1, and  maps of an 

ex vivo rat heart. The heart was infiltrated with macrophages labeled by micron-sized 

particles of iron oxide (MPIO) [55] increasing both R1 and  at the site of macrophage 

accumulation. Relaxation rate maps R1(x), , and spin density map A(x) were 

calculated from 200 × 200 MR images of the heart collected on a Bruker Avance III 7 T 

scanner. Using these maps, the FLASH contrast equation

(23)

with TR = 10 ms was used to generate images for the Cartesian product of sequence 

parameter pairings , where 

 are the flip angles 

(corresponding to x2), and 

 are the echo 

times (corresponding to x3).

The same three methods as in the previous subsection were used for reconstruction. For 

LRTES, two subsets of navigator data were collected by densely sampling an 8 × 200 region 

of k-space for: a) one flip angle (45°) and all echo times; and b) one echo time (0.025 ms) 

and all flip angles. The remainder of (k,α,TE)-space was sparsely sampled using variable 

density Gaussian sampling in ky and uniform density sampling in α and TE. For LRTC, the 

same sampling pattern was used. For Joint Sparse, a variable density Gaussian sampling 

pattern with densely sampled central k-space was used for all α and TE.

We used the variable projection (VARPRO) algorithm [56] alongside the Levenberg–

Marquardt algorithm to estimate the R1 and  maps from the reconstructed images using 

(23). AF = 7.4, 13.8, and 36.5 were selected with SNR = 23.6 dB. The normalized root-

mean-square error in the region-of-interest (ROI) was used to evaluate the performance of 

different reconstruction methods, where the ROI contains the MPIO-labeled macrophages.

Fig. 4 shows the gold standard R1 map and  map used to generate the phantom. Fig. 5 

depicts the reconstructed R1 maps,  maps, and their corresponding error maps for the rat 
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heart at AF = 36.5 using Joint Sparse reconstruction, LRTC, and the proposed method. 

LRTES clearly performs the best of the three methods. Plots of the ROI error for AF = 7.4, 

13.8, and 36.5 is presented in Fig. 6. LRTES shows significantly improved accuracy 

compared to the other two methods for both R1 and  and for all acceleration factors. The 

results show that LRTES yields satisfying visual and quantitative results, even at extremely 

high acceleration factors.

We also used the gold standard multiparameter mapping dataset to demonstrate the 

advantage of tensor-based image representations over PS/low-rank matrix-based 

representation by “stacking” the data along one or more of the dimensions (detailed 

descriptions can be found in the supplementary materials). In short, we compared the 

truncated higher-order singular value decomposition (HOSVD) [57] of the entire set of 

multiparameter images to the truncated SVDs of each ρ(x,αi,TE) (i.e., each -decay image 

sequence for a given flip angle). As seen in Fig. 3 of the supplementary materials, the two 

representations yield similar levels of truncation error when the tensor representation has 

significantly fewer degrees-of-freedom, implying low-rank tensor model’s better 

representation power and the potential capability in achieving higher acceleration factors.

C. Multidimensional spectroscopic imaging

Proton MR spectroscopic imaging (1H-MRSI) allows mapping metabolite concentrations of 

the human brain and has wide applications in both basic scientific and clinical research. A 

major issue with the conventional one-dimensional 1H-MRSI is that nearly all of the 

observable metabolite resonance peaks are located in a small bandwidth and overlap with 

each other, resulting in difficult quantification problems. This limitation can be addressed 

through multidimensional 1H-MRSI, which increases the number of spectral dimensions and 

thus leads to larger dispersions in the spectra of metabolites [58]. A multidimensional MRSI 

experiment is conceptually a series of one-dimensional MRSI experiments with different 

imaging parameters and generally requires much longer acquisition time than the 

conventional MRSI experiment, limiting its application.

In order to evaluate the effectiveness of LRTES for accelerated multidimensional MRSI, we 

performed 2D J-resolved 1H-MRSI experiments and used LRTES to reconstruct 2D J-

resolved MRSI data from retrospectively undersampled data. Mathematically, the measured 

2D J-resolved MRSI data can be expressed as

(24)

where ρ(x,y,t1,t2) is the signal of interest, s(kx,ky,t1,t2) is the measured data in (kx, ky, t1, t2)-

space, and η is the measurement noise (complex white Gaussian). The goal is to reconstruct 

ρ(x,y,t1,t2) from sparsely sampled (kx, ky, t1, t2)-space data. We created a brain metabolite 

phantom filled with NaCl-doped water and vials of different diameters (as shown in Fig. 

7(a)). The vials contained solutions of Nacetylaspartate (NAA), creatine (Cr), choline (Cho), 

myo-inositol (mI), glutamate (glu), glutamine (gln), and gamma-aminobutyric acid (GABA) 

with physiologically relevant concentrations. We acquired 2D J-resolved MRSI data from 
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the phantom on a 3T Siemens scanner using a JPRESS-EPSI sequence. A low-resolution, 

high-SNR, 2D J-resolved MRSI dataset was acquired with 12 (ky) × 12 (kx) × 20 (t1) × 512 

(t2) encodings and 6 signal averages in a 29-minute scan. Another high-resolution, low-SNR, 

2D J-resolved MRSI dataset was acquired with 64 × 64 × 20 × 128 (undersampling by a 

factor of 4 along t2) encodings in a 26-minute scan. One 12 × 12 × 20 × 512 low-resolution 

MRSI dataset was selected as the navigator data for LRTES. The sparsely sampled dataset 

was sampled using variable density Gaussian sampling in ky and uniform density sampling 

in t1 with AF = 3.71 for ky and t1 from the high-resolution data. Joint Sparse and LRTC 

utilized the same sparsely sampled strategy but with AF = 2.19 to ensure the same 

acquisition time for these three methods.

Fig. 7 shows the phantom and reconstruction results including the NAA map and 

representative spectrum of zero-padded low-resolution data and of three sparse sampling 

methods (i.e., Joint Sparse, LRTC, and the proposed method). As can be seen, the low-

resolution reconstruction has high spectral resolution but suffers from serious artifacts. 

Among the three sparse sampling methods, LRTES achieves both very good SNR and 

spectral resolution. Fig. 8 presents the peak integral as a function of TE for NAA, Cho, Cr1, 

and Cr2. It is clear that LRTES performs a best fitting with the zero-padded low-resolution 

data for each compound. Fig. 9 shows the representative 2D spectrum of the selected dot. As 

can be seen, LRTES yields a satisfying fit with the zero-padded low-resolution data, while 

Joint Sparse and LRTC have too many artifacts to recognize useful information.

VI. Discussion and Conclusion

The proposed LRTES uses explicit model orders (i.e., L1, L2, ⋯ , Ld̂) for high-dimensional 

imaging. Thus, the choice of model orders  that control the trade-offs between model 

bias and ill-conditionedness of (18) is of importance. High model orders reduce model bias 

at the expense of increased degrees-of-freedom and potential noise amplification while 

likely also requiring increased amounts of navigator data. In this work, we select  by 

examining the singular value curves of . This has produced high-quality 

reconstructions in our studies, although more sophisticated schemes can be developed. Note 

that unlike low-rank matrix based methods, the model order L1 for LRTES needs to be 

chosen separately. Our current solution to this problem is to select L1 after initializing C0 as 

described in Section IV-B2: we first initialize C0 with a large L1 (not to exceed L2L3 ⋯ Ld̂), 

and calculate the energy for each row of C0. We then reset L1 according to the falloff energy 

and reinitialize C0. This algorithmic modification helps reduce model bias without 

unnecessarily incrementing the model order.

Another important issue of the proposed method is the choice of the regularization 

parameters λ and μ. With the presence of a ground truth, the regularization parameters were 

manually optimized to minimize the Frobenius norm of the difference between the 

reconstruction and the ground truth. We also observed that the performance of the proposed 

reconstruction is relatively stable for a range of λ and μ. Therefore, in the absence of a 

ground truth, we chose λ and μ by visual inspection of the reconstructed images.
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It is noteworthy that when the model orders (L2, L3, ⋯ , Ld̂) are selected as large as (N2, N3, 

⋯ , Nd̂), LRTES reduces to the method enforcing the low-rank constraints explicitly in a 

matrix form (e.g., [59]). More specifically, for all i ≥ 2, each estimated Ĝ(i) is an orthogonal 

matrix due to Li = Ni. As a result, Φ̂ = (Ĝ(d̂) ⊗ Ĝ(d̂−1) ⊗ ⋯ ⊗ Ĝ(2))T is also an orthogonal 

matrix, and the solution to

(25)

is equal to

(26)

where G and C̃ are rank-L1 matrices. This is equivalent to the matrix form of the original PS 

model as described in [20]. Compared to this low-rank matrix-based approach (with 

corresponding hybrid sampling strategy), exploiting the tensor structure in higher-

dimensional imaging provides much more flexibility in designing accelerated data 

acquisition and reconstruction algorithms. Meanwhile, we expect the performance 

differences between these two approaches (i.e., matrix form vs. tensor form) to be 

application-dependent.

Regarding sampling requirements for the navigator data: as described in Section IV-A, we 

arrange the ith subset of navigator data into a Casorati matrix Si ∈ ℂNi×M, where M is the 

number of noisy observations of linear combinations of . Therefore, M 
theoretically only needs to be larger than Li for i ≥ 2. In our experience, M should usually be 

selected greater than 2Li to ensure a good performance. See also Theorem 5 in Appendix A 

for more navigator sampling considerations.

It is also worth noting the flexible imaging data sampling requirements of the proposed 

method. The inclusion of sparsity constraints reduces the dependence of reconstruction 

performance on the number of frames of imaging data, consistent with previous findings for 

explicit low-rank matrix imaging (e.g., [24]). Furthermore, although this paper only 

demonstrates variable density Gaussian sampling in k-space and uniform sampling in other 

dimensions, the proposed method supports a wide range of flexible sampling patterns (e.g., 

nonuniform sampling along the diffusion encoding dimension or the parameter dimensions), 

especially with the subspace pre-determined. Thus, design of an optimal sampling scheme 

for the proposed method in specific application contexts remains an interesting problem for 

future research.

The use of regularization-based formulations to enforce low-dimensional subspace 

constraints has been proposed in recent work (in the context of low-rank matrices) [60]. A 

similar tensor-subspace formulation may be another alternative way to take advantage of 
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tensor structure, potentially reducing truncation and subspace estimation errors. This 

extension would require careful investigation, especially the handling of the core-tensor 

structure and the multiple regularization terms. Meanwhile, it is worth noting again that the 

proposed method has the unique advantages of (1) significant reduced degrees-of-freedom 

due to the explicit subspace modeling and (2) computation and memory efficiency due to the 

compressed representation. Furthermore, the effects of different trade-offs in bias and 

variance for different approaches to exploit the tensor structure need to be investigated for 

particular applications, which is beyond the scope of this paper. Comparison of low-rank 

tensor imaging to other alternative high-dimensional imaging methods should also be 

investigated on an application-by-application basis (e.g., comparison to other multiparameter 

mapping methods [61], [62]).

In conclusion, we proposed a new method for accelerated high-dimensional imaging. The 

method uses a novel low-rank tensor-based model to devise a special sparse sampling 

strategy that includes the acquisition of navigator data for defining an explicit tensor 

subspace structure and the acquisition of sparse data for determining the spatial coefficients 

and a core tensor. A sparsity constraint on the core tensor and a group transform sparsity 

constraint on the spatial coefficients are also incorporated in the proposed image 

reconstruction formulation. Results from application examples including multi-shell 

diffusion imaging, multiparameter mapping, and multidimensional spectroscopic imaging 

have demonstrated the effectiveness of the proposed method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A Theoretical analysis for subspace estimation

In this appendix, we further analyze the subspace estimation problem. We denote Si = P̃
(i)⊓i, 

where ⊓i is the column selection matrix for the mode-i matricization of ℘̃ (℘̃ is the tensor 

representation of FP(1)). Assume the rank of P̃
(i) is Li, then it can be expressed as P̃

(i) = 

UiVi, where Ui ∈ ℂNi×Li and Vi ∈ ℂLi×(N1⋯N(i−1)N(i+1)⋯Nd̂). The rows in Vi denoted as 

 include the k-space and other variable groups except xi. Then we have the following 

Theorem:

Theorem 5

For an arbitrary vector Θ = [θ1,θ2, ⋯ ,θLi] with ||Θ|| ≠ 0, if , then the 

columns of Ĝ(i) span the same subspace of the ith physical dimension as in ℘.

Proof

Since  and ||Θ|| ≠ 0, the rows in Vi⊓i are linearly independent, i.e., 

rank(Vi⊓i) = Li. As a result, rank(Si) = rank(UiVi⊓i) = rank(Vi⊓i) = Li. Further, we have 

rank(Si) = rank(P̃
(i)).

Since Ĝ(i) consists of the Li dominant left singular vectors of Si, the columns of it must span 

the same column subspace as in P̃
(i). This completes the proof.

Appendix B Solutions for the subproblems of (14)

The general solutions to the subproblems in (15)–(18) are established here. For the 

subproblems in (15) and (16), the well-known shrinkage (or soft-thresholding) formula can 

be applied. Then we have the elementwise solution for (15):
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(B.1)

where  is the (i, j)th entry of Tk, and .

Similarly, the elementwise solution for (16) is shown as

(B.2)

The solution to (17) and (18) (linear least-squares problems) can be obtained via the 

conjugate gradient algorithm:

(B.3)

(B.4)

where Γk(G) = Ω(FGCkΦ̂) and Λk(C) = Ω(FGk+1CΦ̂) are the linear operators and I the 

identity operator.

Appendix C Proof of Lemma 1

In this appendix, we give the proof of Lemma 1.

Proof

It follows from (B.1) and the identity  that
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Since  for , for , we have

(C.1)

Similarly, according to (B.2), it follows that

For , we have

(C.2)

Also, with (B.3), (B.4), and the identities Γk(G) = Ω(FGCkΦ̂) and Λk(C) = Ω(FGk+1CΦ̂), 
we have

(C.3)

(C.4)

It also follows from (19) and (20) that

(C.5)

(C.6)
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With the assumption that  is bounded and , the left-hand 

sides of (C.1)–(C.6) tend to zero as k → ∞. Consequently,

(C.7)

where the last two limits in (C.7) are used to derive other limits. That is, the sequence 

asymptotically satisfies the KKT condition (21). This completes the proof.
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Fig. 1. 
An example of the navigator data acquisition schemes for LRTES with d̂ = 3; S2 is 

constructed from the red subset data and S3 is constructed from the green subset data.
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Fig. 2. 
The representative DW images with different b-values: (a) b = 2000, (b) b = 4000, and (c) b 
= 7000 s/mm2 for the same diffusion encoding direction, respectively; Column 1 is the gold 

standard, column 2 the noisy data, and column 3 to 5 the reconstructions by Joint Sparse, 

LRTC, and the proposed method from undersampled noisy data at AF = 17.
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Fig. 3. 
Estimated diffusion parameters from Joint Sparse, LRTC, and the proposed reconstructions 

at AF = 17: (a) FA maps, (b) FA error maps scaled by a factor of 2, (c) color-coded FA 

maps, and (d) color-coded FA error maps scaled by a factor of 2.
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Fig. 4. 

The gold standard (a) R1 map and (b)  map for the rat heart.
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Fig. 5. 

Reconstructed R1 maps,  maps, and their corresponding error maps for the rat heart from 

Joint Sparse, LRTC, and the proposed method at AF = 36.5 and SNR = 23.6 dB.
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Fig. 6. 

The ROI error with respect to AF: (a) ROI error of R1 maps versus AF, and (b)  maps 

versus AF.
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Fig. 7. 
Experimental results from the phantom shown in (a): (b): zero-padded low-resolution 

reconstruction, (c): Joint Sparse reconstruction, (d): LRTC reconstruction, and (e): the 

proposed method reconstruction. The left column shows the NAA map and the right column 

shows the representative spectrum (t1 = 20ms) of the selected dot colored red in (a).
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Fig. 8. 
Peak integral as a function of t1 for NAA, Cho, Cr1, and Cr2.
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Fig. 9. 
The representative 2D spectrum of zero-padded low-resolution data, Joint Sparse, LRTC, 

and the proposed method for the selected dot in Fig. 7.
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