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Karolina Åkesson3, Christian X. Andersson3, Peter Sartipy1,4, Jane Synnergren1
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Abstract

The development of high-throughput biomolecular technologies has resulted in generation

of vast omics data at an unprecedented rate. This is transforming biomedical research into a

big data discipline, where the main challenges relate to the analysis and interpretation of

data into new biological knowledge. The aim of this study was to develop a framework for

biomedical big data analytics, and apply it for analyzing transcriptomics time series data

from early differentiation of human pluripotent stem cells towards the mesoderm and cardiac

lineages. To this end, transcriptome profiling by microarray was performed on differentiating

human pluripotent stem cells sampled at eleven consecutive days. The gene expression

data was analyzed using the five-stage analysis framework proposed in this study, including

data preparation, exploratory data analysis, confirmatory analysis, biological knowledge dis-

covery, and visualization of the results. Clustering analysis revealed several distinct expres-

sion profiles during differentiation. Genes with an early transient response were strongly

related to embryonic- and mesendoderm development, for example CER1 and NODAL.

Pluripotency genes, such as NANOG and SOX2, exhibited substantial downregulation

shortly after onset of differentiation. Rapid induction of genes related to metal ion response,

cardiac tissue development, and muscle contraction were observed around day five and six.

Several transcription factors were identified as potential regulators of these processes, e.g.

POU1F1, TCF4 and TBP for muscle contraction genes. Pathway analysis revealed tempo-

ral activity of several signaling pathways, for example the inhibition of WNT signaling on day

2 and its reactivation on day 4. This study provides a comprehensive characterization of bio-

logical events and key regulators of the early differentiation of human pluripotent stem cells

towards the mesoderm and cardiac lineages. The proposed analysis framework can be

used to structure data analysis in future research, both in stem cell differentiation, and more

generally, in biomedical big data analytics.
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Introduction

The recent development of novel high-throughput molecular technologies has rendered the

possibility to rapidly generate vast amounts of biomedical data at reasonable costs. Large-scale

omics data is now widely available in the fields of transcriptomics, proteomics, metabolomics,

and interactomics. This biomedical big data (BBD) is characterized by its size and complexity

and has in some aspects transformed biomedical research into a data-driven discipline [1].

The bottleneck has now shifted from high costs for generation of the data to challenges related

to the analysis and interpretation of the data into meaningful biological knowledge [2,3].

Human pluripotent stem cells (hPSCs) have the capabilities of self-renewal and pluripo-

tency, and they can in principle differentiate into any cell types in the body. Thus, hPSCs is a

promising source of human specialized cells for use in many different applications such as tox-

icity testing, drug development, and regenerative medicine [4,5]. However, to fully make use

of this unique cell type and develop efficient and reproducible differentiation protocols, more

knowledge is needed about regulatory mechanisms and molecular pathways important to effi-

ciently direct the differentiation towards specific functional cell types [6]. A common strategy

for characterization of the regulatory mechanisms underlying stem cell differentiation is time

series transcriptome profiling experiments. High-throughput technology such as microarrays

are used to measure global gene expression over time, usually followed by clustering analysis

to identify groups of genes with similar expression profiles [7,8].

A recent high-resolution transcriptomic characterization of hESCs undergoing differentia-

tion towards the cardiac lineage was provided by Piccini et al. [9]. Global expression profiling

was carried out at nine discrete time points to highlight temporal changes in many known car-

diac markers. In addition, differentiation factor withdrawal time-courses were carried out to

assess the importance of different signaling pathways. Another study by van de Berg et al. [10]

identified eight clusters of genes with similar profiles across four time points, and performed

enrichment analysis to investigate significant biological processes. Examples of processes iden-

tified as enriched include cell cycle regulation, development, and muscle organization. Time

series gene expression profiling has also been performed to explore the biological mechanisms

involved in adipose stem cell (ASC) differentiation. Satish et al. [11] performed global expres-

sion profiling on six clinical samples at three times points to identify genes responding to adi-

pocyte lineage differentiation. Genes with differential expression between time points were

analyzed with Ingenuity Pathway analysis software and several significant pathways were

reported. In a study by Yang et al. [12], miRNA expression was measured in ASC before and

after induction of chondrogenic differentiation. The authors found 20 differentially expressed

miRNAs and performed clustering analysis, but no detailed follow up analysis of the clustered

miRNAs. Although many valuable biological insights are provided by these studies, given the

high-throughput nature of the data, more comprehensive data analysis has the potential to

deliver even more knowledge about the regulatory mechanisms behind differentiation and

identify transcription factors in control of these processes.

To address the challenges in BBD analytics and knowledge discovery, frameworks for ana-

lyzing the data are needed [13]. A framework in this context is a sequential process that allow

researchers to move from unprocessed BBD to biological knowledge. Current studies com-

monly employ a large number of analysis methodologies combined in different ways, not

always in a systematic manner. This may give specific biological insights, but omit other poten-

tial findings, and contribute to non-transparent analysis protocols. A framework on the other

hand could ensure that data analysis is carried out in a comprehensive way, to extract as much

biological knowledge as possible. In addition, such a framework would promote transparent

and reproducible analysis protocols, and allow tracking of the provenance of data and results.
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A key challenge in BBD analytics is the discovery of patterns in data through exploratory

analysis. The basic idea of emphasizing the exploratory aspect within data analysis dates back

to Tukey’s seminal work about “Exploratory Data Analysis” (EDA) [14] where he stress the

significance of “[. . .] uncover indications [. . .] for confirmatory data analysis [. . .]” and that

exploration of the data should be the “foundation stone” for any data analysis. One of the main

goals of exploratory data analysis is to reveal different structures of the data and one of the

most fundamental structures are based on similarity in the form of clusters, i.e., data items

(e.g. genes) that share common properties. Genes with similar profiles may be functionally

related and are therefore relevant to analyze as a group, to identify common functions and reg-

ulatory mechanisms. By investigating the functions of genes that show altered expression over

time, it is possible to shed light on the biological processes and pathways involved in e.g. cellu-

lar differentiation [15].

Several clustering algorithms with different characteristics have been developed over the

past decades [16–18]. Algorithms suitable for clustering of gene expression data can be classi-

fied based on different properties, for instance, type of data representation, relationship

between clusters, distribution of the data, etc. [19]. Two widely used algorithms for analysis of

gene expression data are k-means [20] and hierarchical clustering [18]. K-means is a random-

ized algorithm that generates cluster centers and assigns data items to the nearest cluster cen-

ter; then the location of the centers is changed to minimize the sum of squared distances

between items and their closest cluster centers [19]. Hierarchical clustering algorithms gener-

ate dendrograms that show relationships of objects and clusters as hierarchies. One challenge

associated to both these methods is the specification of the number of clusters, k-means

requires specification of the number of clusters before they are generated, while hierarchical

clustering needs to select at which level the dendrogram should be cut. The choice of algorithm

and its parameters should not be made arbitrarily, but be adapted to the data to uncover the

most relevant structures.

The aims of the present study were to develop a data analysis framework for BBD and high-

light the most important events and regulators during early differentiation of hPSCs towards

the mesoderm lineage. To this end, global expression profiling of differentiating hPSCs was

performed at 11 time points and the data subjected to the novel analysis framework proposed

here. Despite some cellular heterogeneity in the collected cell samples, the analysis framework

successfully identified both known and unknown biological processes, signaling pathways

and transcription regulators that likely are highly involved in mesoderm and early cardiac

differentiation.

Materials and methods

Cell lines and culturing of cells

Human embryonic stem cells (hESCs) from Cellartis1 hESC line SA121 (Takara-Clontech)

were differentiated via the mesoderm germ layer towards the cardiac phenotype. The differen-

tiation was initiated by adding BMP2/4, bFGF, Activin A, and BIO to the CM10 base medium.

At day 3, the cells were detached with Collagenase IV and embryoid body (EB) formation was

performed using forced aggregation [21] in a spin EB medium based on CM20 and supple-

mented with vEGF and small molecules targeting Wnt-, BMP- and TGF-signaling. The cell

suspension was placed in 96 well plates, 200ul/well, and centrifuged 5 min at 400 g. At day

4 the EBs were placed onto gelatine coated culture dishes in CM10 medium for further differ-

entiation with medium change every second day. After 1–4 days beating colonies arise in the

cultures. The differentiation experiment was repeated three times to generate replicated bio-

logical samples for further data analysis.

A data analysis framework for biomedical big data
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RNA extraction and microarray experiments

For the global transcriptional analysis, cells were sampled each day from day 0 to day 10 and

total RNA was extracted daily during this time period using Ambion MagMaxTM-96 isolation

kit according to the instructions from the manufacturer (Ambion, Inc., www.ambion.com),

and quantified on NanoDrop ND-1000 (NanoDrop, www.nanodrop.com).

The quality of the RNA and cRNA, labelled by in vitro transcription, was verified using a

2100 Agilent Bioanalyzer. To measure the mRNA expression, fragmented cRNA was hybrid-

ized at 45˚C for 16 hours to whole transcript Gene ST 1.0 arrays (Affymetrix, www.affymetrix.

com). The microarrays were scanned on a GeneChip Scanner 3000 7G (Affymetrix). The raw

expression data are available at ArrayExpress (http://www.ebi.ac.uk/microarray-as/ae/) with

accession number E-MTAB-5219.

Data analysis framework

The following paragraphs describe the analysis framework for BBD proposed in the present

study. The framework consists of five consecutive stages and exemplifies what analysis or pro-

cessing to carry out at each stage (Fig 1). The purpose of the framework is to systematize the

analysis process, and the analysis methodologies applied at each stage should be adapted to

research questions of interest and the type of data analyzed.

Stage I (data preparation) deals with data-specific pre-processing procedures such as nor-

malization and features filtering. The aim of this stage is to prepare high-throughput data for

downstream analysis and remove any bias and irrelevant features from the data. The aim of

Stage II (exploratory data analysis) is to discover “hidden” structures in the data through clus-

tering analysis, and interpret these structures by means of different visualization techniques

(exploratory visualization). Clustering analysis is performed by applying an algorithm to the

data to find hidden structures of biological interest. Exploratory visualization is carried out

using different plots or graphs to inspect the clustering results and evaluate the relevance of

clusters obtained. These may be carried out iteratively to optimize the clustering of the dataset

analyzed. For example, different parameter settings within the clustering algorithm can have a

dramatic impact on the obtained clusters and should therefore be carefully chosen.

The main data analysis is carried out in Stage III (confirmatory analysis), where different

hypothesis tests are performed to identify statistically significant and biologically relevant

results. Confirmatory analysis is carried out for both clustered sets of features as well as for all

features that pass the pre-processing to infer biological interpretation of the separate clusters

as well as to the whole dataset. This is followed by confirmatory visualization in Stage IV (visu-

alization of results). This stage aims to present the statistically and biologically significant

results in such a way that they can be interpreted and translated to useful biological knowledge

in Stage V (knowledge discovery). Useful visualization techniques exist to incorporate e.g. p-

values, fold changes, signaling pathway topology and biological annotation term relationships

[22,23]. The methodologies applied to the data analysis framework in the present study are

described in subsequent sections.

Stage I: Data preparation

Raw intensity signals were extracted and normalized with the Expression Console v1.1.2 (Affy-

metrix) using the robust multichip average (RMA) method. Gene expression values were cal-

culated from the normalized data by taking the mean of all biological replicates (A, B and C)

for each time point 0 to 10. Multiple probes that mapped to the same gene were collapsed by

calculating the mean value of those probes. Furthermore, the dataset was filtered to remove

probes that (i) did not map to known genes, (ii) genes expressed close to background, and (iii)

A data analysis framework for biomedical big data

PLOS ONE | https://doi.org/10.1371/journal.pone.0179613 June 27, 2017 4 / 23

http://www.ambion.com
http://www.nanodrop.com
http://www.affymetrix.com
http://www.affymetrix.com
http://www.ebi.ac.uk/microarray-as/ae/
https://doi.org/10.1371/journal.pone.0179613


genes that show small or no variation in gene expression. Thus, all probes that lack official

gene symbol, probes with a log2 expression below 5 for all time points, and probes with a coef-

ficient of variation below 10% were removed. The resulting dataset of 1,108 genes and 11 time

points was subsequently used for clustering analysis. The gene symbols of these genes are

found in S1 File.

Stage II: Exploratory data analysis

Clustering analysis was applied to identify sets of genes with a similar response in expression

profile over time, as the hESCs underwent differentiation towards the mesoderm lineage. The

k-means algorithm [20], which is frequently used for clustering gene expression data, was

applied for this purpose. Briefly, the k-means algorithm partitions the data into k disjoint clus-

ters, where every data point (e.g. gene) belongs to the cluster with the nearest mean (centroid).

The centroids are initially given coordinates from randomly selected data points, followed by

an iterative step where data points are assigned to the nearest centroid and the centroids are set

to the mean of these new coordinates. The result is a cluster assignment vector v = [c1, . . ., cn]T

where each ci 2 {1, . . ., k} specifies the cluster of the ith data point.

Fig 1. Data analysis framework. The figure illustrates the general analysis framework proposed in the study.

The five stages of the framework are shown to the left and the steps within each stage are indicated by boxes.

The specific methodology applied in the present study is shown to the right. Stage I: Data preparation. The

raw microarray dataset was normalized with RMA and genes with low-expression or small variation in

expression were removed. Stage II: Exploratory analysis. The pre-processed dataset of 1,108 genes and 11

time points was subject to k-means clustering with k = 10 and Pearson correlation as distance measure (see

section Stage I: data preparation for more details). Stage III: Confirmatory analysis. Enrichment analysis was

carried out for the genes in each k-means cluster to identify enriched Gene Ontology terms and transcription

factors. Pathway analysis was performed with SPIA to infer pathway activity at each time point. Stage IV:

Visualization of results. Biological processes significantly enriched among the genes in each cluster were

visualized with TreeMaps. In addition, the impact of gene expression changes on pathway activity was

clarified with pathway maps. Stage V: Knowledge discovery. The biological findings were incorporated into a

roadmap that captures the main biological events and regulators of early hPSC differentiation towards the

mesoderm lineage.

https://doi.org/10.1371/journal.pone.0179613.g001
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Clustering analysis was carried out in R using the amap package [24]. The distance measure

defines how to calculate the distances between data points and cluster centroids. Pearson cor-

relation was chosen because this gives clusters of genes with similar shape of the expression

profiles, rather than clusters of genes with similar expression levels (as with Euclidean dis-

tance). The differences in cluster profiles for k-means run with Pearson and Euclidean are

shown in Fig 2. Whereas Euclidean distance generated dense clusters (profiles are closer along

the y-axis), Pearson correlation produced clusters of profiles with similar shape over time. For

this study, clusters with correlated expression profiles were preferred since this suggests co-

regulation of genes and hence similar biological function.

The number of clusters was set by investigating intra- and inter-cluster correlation for dif-

ferent values of k. Intra-cluster correlation was calculated as the mean correlation of genes in a

cluster to the centroid of the cluster. Higher correlation within clusters implies that the cluster

is homogenous, with highly similar expression profiles over the time points. Inter-cluster cor-

relation was calculated as the average correlation between the cluster centroids and should be

as low as possible. This is because high correlation between clusters implies that the clustering

Fig 2. Cluster profiles of k-means clusters. (A) Pearson correlation and (B) Euclidean distance as distance measure. Each line

represents a gene and color is used to distinguish individual genes in dense clusters. Euclidean clusters appear denser with genes being

grouped together based on height along the Y-axis (gene expression). The clustering based on Pearson correlation appears sparser with

genes grouped together based on the shape of expression profiles over time.

https://doi.org/10.1371/journal.pone.0179613.g002
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partition is fragmented, with the same profile shape in several clusters. The analysis revealed a

principle increase in both intra- and inter-cluster correlation with larger values of k, which

meant it was necessary to identify an acceptable trade-off. Based on this procedure, k-means

clustering was applied using Pearson correlation coefficient as distance measure and the num-

ber of clusters was set to 10 (k = 10). This gave high intra-cluster correlation (0.92) and kept

inter-cluster correlation below 0 (-0.01).

Stage III: Confirmatory analysis

Annotation enrichment analysis (AEA) was performed to identify transcription factors and

gene ontology annotation terms overrepresented for the genes in the k-means clusters. The

analysis was carried out for each cluster separately using the Enrichr online tool (http://amp.

pharm.mssm.edu/Enrichr/), which encompasses gene-set libraries based on a large number

of annotation databases [25]. These databases contain information about which annotation

terms (e.g. biological processes or pathways) are assigned to genes. In AEA, statistical tests are

used to identify terms that occur in a list of genes with a frequency higher than expected by

chance. These terms are defined as significantly enriched, and are assumed to be biologically

relevant.

In the present study, transcription factors and Gene Ontology (GO) terms with a p-

value < 0.05 following multiple testing correction were extracted. The Enrichr library for tran-

scription factor regulation of genes is based on position-weighted matrices (PWMs) from

JASPAR [26] and TRANSFAC [27]. The PWMs represent consensus-binding sites for each

transcription factor and can be used to search for transcription factor binding sites. The gene

ontology libraries in Enrichr are based on the Gene Ontology database [28].

To identify signaling pathways affected during the mesoderm differentiation of hESCs, Sig-

naling Pathway Impact Analysis (SPIA) was carried out using the filtered dataset (1,108

genes). SPIA is implemented in the R package spia and can identify KEGG pathways that are

significantly enriched in a set of genes [29]. In addition, gene expression fold changes and

pathway topology are considered to infer impact on pathway activity. For example, if a set of

genes are upregulated and activate downstream targets, the signal will propagate resulting in

pathway activation. Based on this signal propagation, SPIA predicts if a pathway will be acti-

vated or inhibited as a consequence of input fold changes. Fold changes were calculated for all

1,108 genes by dividing gene expression at each time point (day 1 to 10) with expression at day

0 (using unlogged values). The calculated fold changes were then transformed to log2 scale and

used as input to the SPIA algorithm.

Stage IV: Visualization of results

In order to clarify the overarching biological meaning of annotation enrichment results for

clustered genes, significantly enriched biological processes were visualized using REVIGO

[23]. Annotation terms with p< 0.05 following multiple testing correction were considered

significant. The results of the application of REVIGO are shown using TreeMaps. A TreeMap

[30] is a visualization technique that depicts hierarchical data using nested rectangles, i.e. each

branch of the tree is represented by a rectangle, which is then tiled with smaller rectangles

showing sub-branches. Normally, the leaf nodes are coloured to show a separate dimension of

the data and a leaf node’s rectangular area is proportional to another selected dimension of the

data. In our application case, related GO terms are grouped into coloured branch rectangles

with parent terms, while related and more specific terms are represented by sub-branches. The

size of the rectangles is proportional to the statistical significance. The use of TreeMaps greatly
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simplifies the interpretation of biologically relevant processes and their various levels of

abstraction, compared to long lists of partially redundant terms and their p-values.

The results from pathway perturbation analysis with SPIA were visualized as a relative path-

way perturbation plot. The Y-axis of this plot (SPIA tA) represents the sum of all pathway fold

changes at each time point compared to day 0. The sum is calculated following propagation of

the fold change signal throughout the pathway based on its topology, and can be interpreted as

a measure of relative pathway activity. It is based on this measure that SPIA infers if the path-

way is either activated (tA> 0) or inhibited (tA< 0). To clarify the causes for pathway pertur-

bation, the WNT signaling pathway was further visualized using a pathway map and a gene-

transcription factor interaction network. The pathway map was downloaded from KEGG [31]

and rendered with Pathview [22] using gene expression data for days 1 to 4. The gene-tran-

scription factor network was created by including all genes in the WNT pathway present in the

filtered dataset and all transcription factors in the Enrichr gene set library targeting at least one

gene in the WNT pathway.

Stage V: Knowledge discovery

Finally, the biological findings detected from confirmatory analysis and visualization were

integrated into a summarizing overview, called a “biological roadmap” for early differentiation

of hPSCs towards the mesoderm lineage. The roadmap seeks to capture the most significant

biological changes in the cells over time, the genes involved in these changes, the transcription

factors regulating those genes, and the signaling pathways activated at different time points.

Drawing the roadmap requires detailed interpretation of the results by domain experts, to

determine what finding correspond to state-of-the-art knowledge in the field, and which find-

ings are novel. In the present study, results from the analysis framework assist expert-guided

knowledge discovery, which confirms and extends current knowledge about early stem cell dif-

ferentiation and may have implications for future research.

Results

Validation of selected mesoderm and cardiac markers during

differentiation procedure

To verify that the cell culturing and differentiation protocol generated cells of the mesodermal

lineage and cardiac specification, several known mesoderm and cardiac markers were moni-

tored. Temporal expression of these markers in the microarray data were validated against

cardiac induction results presented by Piccini et al. [9]. Expression profiles of the markers in

the present study are presented in Fig 3, grouped by time point where a peak in expression is

observed.

Clustering analysis results

K-means clustering was applied to the filtered dataset with 1,108 genes and 11 time points,

using k = 10 and Pearson correlation as distance measure. Contrary to the results produced by

k-means with Euclidean distance, clusters based on Pearson correlation reveal different char-

acteristic expression profiles of the genes (Fig 2). Therefore, clusters with Pearson correlation

were used for subsequently analysis. A descriptive summary of these clusters is given in

Table 1. The symbols of the genes present in each of the ten clusters can be found in S2 File.

Clusters 1 and 4 show peaks early in the time series, day 4 and days 2–3, respectively. Remain-

ing clusters show either upward or downward trends. The sharpest upward changes occur in

clusters 5, 7, 9 and 10 where the vast majority of genes are activated simultaneously at a specific
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time point. The genes in cluster 8 show consistent downregulation across the time series, while

clusters 2, 3 and 6 are more heterogeneous and do not display strong trends among the gene

expression profiles.

The clusters contain both well-known marker genes for the specific developmental stages as

well as large groups of other genes not yet associated with mesoderm or cardiac development

and their putative roles in mesoderm and early cardiac development remains to be elucidated.

For example, cluster 4 contains 58 genes that show a distinct peak expression at day 2–3,

which is the time point when the mesoderm initiation takes place. This cluster constitutes

genes associated with the WNT signaling for example T, NODAL, EOMES, MIXL1, DKK4, but

also typical mesendodermal marker genes such as CER1,GSC, and KLF8 indicating that the

cells are not yet fully primed towards the mesoderm lineage [32]. This is expected since

Fig 3. Temporal expression of selected mesoderm and cardiac markers. Expression profiles of known marker genes have been

organized into six groups based on when peaks in expression are observed. Expression values have been normalized to the maximum

expression value for each marker.

https://doi.org/10.1371/journal.pone.0179613.g003
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mesoderm development is dependent on mesendoderm/endoderm signaling [33]. Cluster 5,

which shows a peak expression at day 4 after onset of differentiation contains genes like

HAND1, encoding a crucial cardiac regulatory protein that controls the balance between pro-

liferation and differentiation in the developing heart [34] and is a marker of cardiac mesoderm

[32], MEIS1 and MEIS2 where the latter has been reported to be involved in cardiac develop-

ment [35], and ISL1 a marker for cardiac mesoderm [32,36]. There are also clusters that show

distinct upregulation at day 3 to 4, such as cluster 6 including GATA4, a cardiac transcription

factor, DUSP6, a MEF2A target gene, WNT5A an activator of the Wnt/JNK pathway [37], and

DKK1 an inhibitors of WNT signaling [38,39]. In cluster 6 are also the BMP2 and BMP4 genes

that are essential in cardiogenesis by inducing the expression of the cardiac transcription fac-

tors NKX2-5 and GATA4 [40].

Cluster 7 and cluster 10 show very similar expression profiles with a distinct upregulation

at day 6 to 7. These clusters contain early cardiac markers such as NKX2-5,MYL2, NPPA,

NPPB, HCN1, MYH7, TNNC1, and genes related to ion and Ca2+ handling such as KCNIP2,

KCNJ5, RYR2, SLN, and CASQ1. Cluster 9 shows an even more distinct upregulation at a larger

magnitude and includes for example TBX5, TNNT2,VCAM1, PLN, MYH7, MYL3, MYL4,

MYL7, BMP5, ACTA2, MEF2C,MYOCD, and WNT2 which all are highly associated to cardiac

development.

Enrichment analysis results

Annotation enrichment analysis was carried out with the genes in each of the ten k-means

clusters. The analysis was performed with Enrichr and identified sets of significantly enriched

Gene Ontology terms and transcription factors. To clarify the overarching biological roles of

the set of genes in each of the clusters, biological process terms significant at p< 0.05 after

multiple testing correction were visualized using REVIGO. The resulting TreeMaps highlight

genes in clusters 1, 4 and 5 as mainly involved in embryonic development and morphogenesis.

Similarly, genes in clusters 7, 9 and 10 were involved in several processes related to muscle

development and ion transport. The TreeMaps for these clusters are shown in Figs 4 and 5,

respectively. Only a few terms were significant for clusters 2 and 3, and genes in cluster 6 were

involved in processes not related to mesoderm or cardiac development, e.g. kidney develop-

ment and face morphogenesis. Biological processes enriched in cluster 8, with expression pro-

files showing a peak in the early stages of differentiation and rapid downregulation as cells

maturate, were all related to stem cell maintenance. For these reasons, TreeMaps for clusters 2,

3, 6 and 8 were not included in the paper. Complete lists of enriched GO terms can be found

in S3 File.

Table 1. Descriptive summary of clusters.

Cluster Size Trend Days

1 43 Peak 4

2 190 Upward 4–7

3 281 Downward 2–10

4 58 Peak 2–3

5 63 Upward 3–6

6 98 Upward 2–4

7 162 Upward 6–8

8 41 Downward 4–8

9 38 Upward 5–8

10 134 Upward 6–8

https://doi.org/10.1371/journal.pone.0179613.t001
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Fig 4. TreeMap visualization of significantly enriched biological processes. (A) Cluster 1, (B) cluster 4

and (C) cluster 5. Boxes represent terms and the size of the boxes reflects the significance of the

corresponding p-value. Terms are grouped into overarching terms, which are visualized in different colors.

The majority of terms for clusters 1, 4 and 5 are related to embryonic development.

https://doi.org/10.1371/journal.pone.0179613.g004
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Fig 5. TreeMap visualization of significantly enriched biological processes. (A) Cluster 7, (B) cluster 9

and (C) cluster 10. Boxes represent terms and the size of boxes reflects the significance of the corresponding

p-value. Terms are grouped into overarching terms, which are visualized in different colors. Many terms for

clusters 7, 9 and 10 are related to muscle development and ion transport.

https://doi.org/10.1371/journal.pone.0179613.g005
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Transcription factors significantly enriched for genes in the specific clusters were identified

to shed light on the regulatory mechanism behind the changes in gene expression profiles over

time. The most significant results related to transcription factor enrichment are highlighted in

Table 2, while complete lists of enriched transcription factors can be found in S4 File.

Pathway analysis results

Pathway analysis was carried out with SPIA on all 1,108 genes that passed dataset filtering to

identify significantly enriched pathways. SPIA also considers pathway topology to infer the

perturbation in a pathway given a set of input fold changes. This analysis was performed for

each time point of differentiation (day 1 to 10) compared to day 0 to obtain “pathway pertur-

bation profiles” over the time series. The resulting profiles reveal what pathways become active

during the differentiation process, and when (Fig 6).

A total of 24 pathways were significantly enriched by day 10 compared to day 0. Adjusted

p-values and inferred pathway activity/status are given in Table 3. Some of the most significant

pathways include cell cycle (activated), MAPK signaling (activated), TGF-β signaling (acti-

vated), and WNT signaling (activated). As illustrated in Fig 6, the cell cycle and WNT pathway

show increased activity from day 4, while the MAPK pathway appears strongly activated from

day 5. The TGF-β pathway appears to maintain activity throughout the time series.

To further clarify the mechanisms behind signaling pathways activation, pathway topology

can be overlayed with expression data or fold changes. An example of this is provided in Fig 7,

where the WNT signaling pathway in KEGG has been rendered with Pathview using gene

expression data for day 1 to 4. This graph reveals that WNT inhibitors CER1,DKK1 and DKK4
are strongly activated at day 2 and 3. All three inhibitors are inactivated at day 4, resulting in

WNT pathway activation (Fig 6). The transcription factor regulation of genes in the WNT sig-

naling pathway is shown in Fig 8. Combined with global transcriptome data and pathway

topology, this network can be used to study the regulatory mechanism behind pathway

perturbation.

A roadmap to mesoderm and early cardiac differentiation

The biological results from enrichment analysis of Gene Ontology, transcription factors and

pathways in this study have been summarized into a roadmap for early differentiation of

hESCs towards the mesoderm and cardiac lineages (Fig 9). Genes in clusters 1 and 4, showing

peaks in activity at days 4 and 2–3 respectively, are clearly involved in embryonic and meso-

derm development, including gastrulation. Genes in cluster 5 (activated at day 3) are involved

Table 2. Top five significant transcription factors for each cluster.

Cluster Transcription factors

1 CBEPA, JUN

2 FOXC1, POU2F2, TCF4, POU1F1, HMGA1

3 HINFP, FOXC1, STAT3, LEF1, RBPJ

4 ZBTB16, NFAT2

5 HMGA1, TEAD1, TBX5, BCL6

6 FOXL1, LEF1, HOXD9, BCL6, TCF4

7 TCF4, JUND, FOXC1, TBP, TEAD1

8

9 YY1, POU1F1, CBEPB, FOXL1, IRF2

10 PGR, POU1F1, TCF4, GATA1, TBP

https://doi.org/10.1371/journal.pone.0179613.t002
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in embryonic and cardiac tissue morphogenesis, and include several important cardiac related

transcription factors such as HAND1, TBX20,GATA3, RARB and ISL1. Biological processes

related to muscle and heart development are enriched in clusters 7, 9 and 10, which show

sharp increases in activity at days 5 and 6. Genes in cluster 8 are strongly related to prolifera-

tion and stem cell maintenance and show consistent downregulation from day 4 to 8. Enrich-

ment results were weak for clusters 2 and 3, which is why they have not been considered

further. Cluster 6 shows several significant terms related to endoderm and ectoderm lineages,

such as kidney development, epithelial cell differentiation and positive regulation of neurogen-

esis. These results may be attributed to heterogeneity in the cultured stem cell population,

which includes cells along other differentiation trajectories.

Several pathways show increased activity throughout the time series (Fig 6). Regulation of

actin cytoskeleton is activated during the first days of differentiation, while from day 4, the cell

cycle and WNT signaling pathway become highly active. MAPK signaling, vascular smooth

muscle contraction and focal adhesion show strong activation from day 5, 6 and 7 respectively.

The TGF-beta pathway shows a consistent higher activity through the time series, while others

e.g. calcium signaling, ECM receptor interaction, hedgehog signaling and PPAR signaling

remain close to 0 (showing no perturbation compared to day 0).

Fig 6. Relative pathway perturbation profiles. Each line represents a pathway identified as significant in the SPIA analysis. The Y-axis

shows the tA score from SPIA, or total accumulated pathway perturbation. This is calculated as the sum of all pathway fold changes following

propagation of fold changes based on pathway topology. A large positive number indicates that many genes in the pathway are upregulated,

while a negative number indicates the opposite. Zero indicates that the pathway has the same activity as the baseline condition, i.e. day 0.

https://doi.org/10.1371/journal.pone.0179613.g006
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Discussion

An analysis framework for biomedical big data

This study presents a data analysis framework to formalize the analysis protocol for large-scale

omics data into five stages. The aim was to provide a frame of reference into which different

analysis methodologies can be combined, depending on the research question addressed and

the data analyzed. By following the framework, the analysis protocol becomes more transpar-

ent, facilitating reproducible research and tracking of data provenance. Furthermore, by

combining different tools into a coherent process, the plethora of analysis workflows can be

minimized and deeper knowledge discovery can be promoted. Our framework highlights the

importance of in-depth exploratory data analysis as a precursor to any confirmatory analysis,

similar to Tukey [14]. In the present study, the proposed analysis framework was applied to

global transcriptomic time series data from early differentiation of hPSCs towards the meso-

derm and early cardiac lineage. By integrating the results from the analysis, a comprehensive

roadmap to mesoderm and early cardiac differentiation was inferred, revealing the temporal

dynamics of key genes, transcription factors, biological processes and signaling pathways.

The data analysis framework developed in this study can be contrasted to other analysis

protocols previously reported in the literature. Frequently, these analyses focus on certain

aspects of the data, while omitting other potentially important facets. For example, while clus-

tering is commonly applied to transcriptomics time series data, biological interpretation may

focus only on certain genes, biological processes or signaling pathways [10–12,41,42]. In order

Table 3. Significant signaling pathways identified by SPIA.

Name Adj. p-value Status

Dilated cardiomyopathy 1.30E-08 Inhibited

Cell cycle 2.24E-03 Activated

Pathways in cancer 2.24E-03 Activated

Retrograde endocannabinoid signaling 2.24E-03 Inhibited

MAPK signaling pathway 2.24E-03 Activated

TGF-beta signaling pathway 2.79E-03 Activated

Mineral absorption 2.79E-03 Inhibited

WNT signaling pathway 2.79E-03 Activated

Arrhythmogenic right ventricular cardiomyopathy (ARVC) 2.79E-03 Inhibited

GABAergic synapse 3.92E-03 Activated

ECM-receptor interaction 4.96E-03 Activated

Calcium signaling pathway 4.96E-03 Inhibited

Basal cell carcinoma 5.38E-03 Activated

Vascular smooth muscle contraction 5.83E-03 Activated

Neuroactive ligand-receptor interaction 8.25E-03 Activated

Melanoma 8.98E-03 Activated

Morphine addiction 1.02E-02 Activated

Focal adhesion 1.02E-02 Activated

HTLV-I infection 1.02E-02 Activated

Salivary secretion 1.11E-02 Inhibited

Hedgehog signaling pathway 1.61E-02 Activated

Melanogenesis 2.63E-02 Activated

PPAR signaling pathway 2.83E-02 Activated

Regulation of actin cytoskeleton 2.90E-02 Activated

https://doi.org/10.1371/journal.pone.0179613.t003
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to gain further biological insights from these high-throughput data, they should be explored

from several perspectives. The data analysis framework presented in this paper takes a more

holistic approach, combining several analysis strategies in one that facilitates comprehensive

analysis and a deeper biological interpretation of the data. This is exemplified by the biological

roadmap, which relies on multi-faceted biological analysis to capture the temporal dynamics

of early hPSC differentiation.

The exploratory analysis carried out in this study demonstrates the importance of carefully

choosing clustering algorithm parameters. By comparing k-means clusters obtained using

either Euclidean or Pearson correlation as distance measure, the results from Pearson correla-

tion showed higher biological relevance, as these clusters captured trends and patterns in

expression profiles over time (Fig 2A). Euclidean distance, on the other hand, grouped genes

together based on absolute expression level and failed to cluster expression profile peaks (Fig

2B). Clustering algorithms in different statistical software packages, for example kmeans [20]

Fig 7. The canonical WNT signaling pathway in KEGG visualized with Pathview. Genes in the pathway

are represented with rectangles. Gene expression is indicated with a color code, where red represents high

expression and gray represents expression close to 0. (A) Expression at day 1, (B) expression at day 2, (C)

expression at day 3, (D) expression at day 4. This pathway visualization reveals the activation of WNT

inhibitors CER1, DKK1 and DKK4 at day 2 and 3 (indicated in red boxes).

https://doi.org/10.1371/journal.pone.0179613.g007
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in R (The R Projects for Statistical Computing), may have Euclidean distance set as distance

measure. This highlights the importance to adjust parameters based on the research questions

addressed in the study, and shows how parameter choices affect the results obtained. Relying

on default values may be inappropriate for many datasets, because biologically relevant struc-

tures in the data may be missed.

To promote interpretation of results and knowledge discovery, it is important to utilize

intuitive visualization techniques that facilitate comprehension. A well-known problem with

annotation enrichment analysis, particularly for Gene Ontology, is that it generates long lists

of partially redundant terms, with various levels of specificity of biological meaning. These

lists can be prohibitive to interpretation because of the amount of manual work that is

required, and it can be difficult to overview the most significant results. Therefore, the

proposed framework incorporated TreeMaps for collapsing related GO terms into parent

terms and representing their relative statistical significance. TreeMap visualization greatly

simplified interpretation of the AEA results in the present study, since the lists ranging from

18 to 242 enriched terms could be represented as TreeMaps with only one to nine parent

terms. For example, 52 biological process terms were enriched for the genes in cluster 8

(showing consistent downregulating across time). REVIGO reduced these terms into a

TreeMap with a single parent term: stem cell maintenance. Another powerful visualization

technique for interpreting the impact of gene expression changes on pathways is to draw

pathway maps overlaid with e.g. expression or fold change data. This incorporates gene

expression changes in a cellular context and provides a way to deduce the causes for changes

in pathway activity.

Fig 8. Gene-transcription factor interaction network. Genes in the WNT signaling pathway are

represented by green circles and predicted transcription factors by blue octagons. When analyzed together

with global transcriptome data, this network can shed light on the regulatory mechanisms behind pathway

perturbation. Red edges indicate that genes activate the WNT pathway, while blue edges denote inhibitory

genes.

https://doi.org/10.1371/journal.pone.0179613.g008
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Advancing understanding of early mesoderm differentiation of hPSCs

Despite intrinsic studies of the differentiation of hPSCs through the mesoderm germ layer and

further to the cardiac lineage made by several investigators over the last decade, a thorough

understanding of how these complex developmental processes are controlled is still lacking.

New fundamental discoveries are reported continuously that provide new clues about the early

Fig 9. A roadmap for early differentiation of hPSCs towards the mesoderm lineage and cardiac specification. Time points are

shown along the black horizontal line. Enrichment analysis results for clusters of genes are shown below, where each colored bar contains

one/two representative terms from the TreeMap of a cluster (C1 denotes cluster 1). Transcription factors enriched for each cluster are

shown in bold, and examples of genes in the cluster are given below the transcription factors. Vertical arrows beside the colored bars

indicate changes in expression level of genes at different time points. For example, genes in cluster 4 are activated at day 1 and inactivated

by day 4. Changes in signaling pathway activity are shown at the top, where arrows indicate at which time points different pathways are

inhibited and activated.

https://doi.org/10.1371/journal.pone.0179613.g009
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human cardiac development. These discoveries include new knowledge about the specification

of undifferentiated cells towards the cardiac lineage, and molecular mechanisms underlying

these specification events, reviewed in detail in [43]. It also comprises knowledge about the dif-

ferentiation potential of early cardiac progenitor cells and how these can be primed towards

the cardiac differentiation. The highly dynamic endogenous and exogenous signaling directing

mesoderm and early cardiac specification is challenging to study and relevant human models

systems are a prerequisite. Here hPSCs constitute powerful tools for studies of early develop-

mental processes using human cells [43].

Results from this study, where our data analysis framework has been applied to extensive

time series data from mesoderm and early cardiac differentiation of hESCs, sampled daily

from onset of differentiation until day 10, provide important additional insights into these

complex regulatory processes of early cardiac initiation in human cells. The unique cocktail of

addition and withdrawal of signaling factors during the differentiation procedure demonstrate

typical gene expression response, which verifies the importance of each of the extrinsic initia-

tion factors for the cardiac induction.

The results from these analyses confirm established knowledge such as the importance of

expression of typical BMP factors and WNT signaling for the specification of the early meso-

derm lineage, but also bring new and unknown insights of additional molecular pathways that

also may play crucial roles during cardiac development. In addition to the frequently reported

WNT pathway, which is crucial for promoting early cardiac differentiation [44] our analysis

also identified the TGF-β/Activin A signaling pathway, which is known to play key roles dur-

ing cardiac specification [45,46], and several other typical cardiac associated pathways such as

Regulation of actin cytoskeleton-, Vascular smooth muscle contraction-, and Calcium signal-

ing pathways as significantly overrepresented in the list of genes that show large response

between day 0 and day 10 in our time series data. Moreover, based on our data analysis, inter-

esting activation patterns indicate critical roles for other molecular pathways during cardiac

precursor development. For example, the MAPK pathway shows a distinct upregulation from

day 5 to day 10 and the Focal adhesion pathway is substantially inhibited at day 5 to 6, and

from day 7 to day 10 it is again highly activated (see Fig 6).

WNT signaling plays an essential role in development and differentiation and is known to

be critical during cardiac development both in human and in other species. Heart develop-

ment is initiated by the induction of precardiac mesoderm requiring the tightly and spatially

controlled regulation of both the canonical and the noncanonical WNT signaling pathways

[37,47,48]. Canonical signaling is suggested to be involved in retaining the cardiac precur-

sors in a proliferative and precursor state, while the noncanonical signaling promotes the

cardiac differentiation [37,48]. Later on, both canonical and noncanonical signaling in paral-

lel regulate specific steps in the development of the cardiac compartments [37,47,48]. A tran-

sient inhibition of the WNT signaling during the early mesodermal stage is a prerequisite for

normal cardiac development [37,47,48]. Interestingly, this critical WNT-inhibition is mim-

icked in our time series data as shown in the relative perturbation plot in Fig 6, where a dis-

tinct downregulation of WNT signaling is present at day 2 and day 3, followed by a rapid

upregulation at day 4 and forward. To further explore the WNT-signaling activation/inhibi-

tion during our experimental setup we compared our preprocessed data of 1,108 highly

responsive genes with all known genes in the WNT signaling pathway reported in the KEGG

pathway database and in total 19 (13%) of the genes in the WNT pathway are among the

highly responsive genes (S1 File). Among these genes are DKK1 and DKK4, which are inhibi-

tors of WNT signaling, and the definitive endoderm genes SOX17 and CER1. These 19 genes

where further analyzed with Enrichr to identify putative transcription factors that control

the expression of WNT signaling in our differentiation and seven transcription factors
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(LEF1, TFAP2A, GATA3, ETS1, ETV4, NR5A2, and SNA2) were predicted as putative regula-

tors of these set of genes (Fig 8).

Conclusions and implications for future research

This paper presented an analysis framework for BBD and applied it to global transcriptomics

time series data from hPSCs differentiation towards the mesoderm lineage. The aim was to

provide a frame of reference into which different analysis methodologies can be combined, to

promote comprehensive data analysis and deeper biological knowledge discovery. Exploratory

data analysis plays a key role in the framework, by exposing the hidden structures in the data

and thus providing a point of departure for subsequent confirmatory analysis. Furthermore,

the application of visualization techniques such as TreeMaps greatly facilitates interpretation

of analysis results and help domain experts identify key findings. Taken together the analysis

framework provides powerful means for analysis and interpretation of BBD.

Application of the framework to the hPSCs transcriptomics time series data revealed several

processes, regulators and signaling pathways known to play key roles in mesoderm and cardiac

differentiation. This both confirms validity of cell culturing and differentiation protocols, and

adds to the body of published literature by providing high-resolution temporal dynamics of

early hPSC differentiation. Importantly, by compiling the most significant findings into a bio-

logical roadmap, researchers can obtain a quick overview of the differentiation process and use

this as a starting point for deeper knowledge discovery and comparative analysis.

Although yet only applied to transcriptomics time series data in the present study, the anal-

ysis framework can readily be applied to other types of omics data (e.g. proteomics and methy-

lomics) and study designs. The analysis methodologies applied can and should be adapted to

the data analyzed and research question addressed. This makes the framework useful for future

research in the field of stem cell differentiation and, more generally, BBD analytics. Applica-

tion of the framework allows significant results to be identified from several aspects of the data

and presented in intuitive ways. When combined with domain expert knowledge, results can

be complied into biological roadmaps. Apart from summarizing significant results, roadmaps

can also serve roles in communication of biological knowledge.
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