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Abstract

Mitochondrial dysfunction is a hallmark of many diseases. The retrograde signaling initiated by 

dysfunctional mitochondria can bring about global changes in gene expression that alters cell 

morphology and function. Typically, this is attributed to disruption of important mitochondrial 

functions, such as ATP production, integration of metabolism, calcium homeostasis and regulation 

of apoptosis. Recent studies showed that in addition to these factors, mitochondrial dynamics 

might play an important role in stress signaling. Normal mitochondria are highly dynamic 

organelles whose size, shape and network are controlled by cell physiology. Defective 

mitochondrial dynamics play important roles in human diseases. Mitochondrial DNA defects and 

defective mitochondrial function have been reported in many cancers. Recent studies show that 

increased mitochondrial fission is a pro-tumorigenic phenotype. In this paper, we have explored 

the current understanding of the role of mitochondrial dynamics in pathologies. We present new 

data on mitochondrial dynamics and dysfunction to illustrate a causal link between mitochondrial 

DNA defects, excessive fission, mitochondrial retrograde signaling and cancer progression.
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I. Introduction

An essential function of mitochondria in mammalian cells is to supply most of the cellular 

ATP through oxidative phosphorylation. In addition, mitochondria integrate various 

metabolic pathways and through this process synthesize intermediates needed for the 

synthesis of cellular biomass. The more specialized functions of mitochondria include 

maintenance of Ca2+ homeostasis and regulation of apoptosis. These organelles also produce 

reactive oxygen species as byproducts of respiration coupled oxidative metabolism, which in 

turn act as physiological signaling molecules, but induce toxicity when produced in excess 

under pathological conditions. It has been proposed that mitochondria evolved from 

symbiotic aerobic bacteria engulfed by pre-eukaryotic cells more than a billion years ago 

(1;2). While this symbiosis likely gave a survival advantage to the host cell in an oxygen rich 

environment, it was necessary for the cell to stringently control function of the 

endosymbiont, not only to meet its energy needs but also to protect itself from any toxic 

metabolites produced by the organelle. This was achieved during the course of evolution by 

transferring most of the bacterial DNA to the host nucleus (2). The mitochondrial DNA 

(mtDNA) encodes only 13 polypeptide subunits, all of which are part of the electron 

transport chain. However, normal mitochondrial function requires well over 1000 proteins 

(3) and large number of metabolic substrates, which is maintained by constant bidirectional 

communication with the nucleus.

II. Factors affecting mitochondrial functions

Generally, mitochondrial function is designed to meet the cell s energy and metabolic 

demands. The efficiency of the process however varies widely due to genetic polymorphism 
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of mtDNA and tissue specific variations in nuclear encoded mitochondrial proteins. Several 

pathologies and adverse environmental conditions disrupt mitochondrial function in multiple 

ways. MtDNA mutations, deletions or impaired DNA replication are the most common 

cause of mitochondrial dysfunction (4;5). Mitochondria contain multiple copies of their own 

DNA ranging from 100 to 10,000 per cell. However, many diseases such as mtDNA 

depletion syndrome, several cancers including breast, prostate and colon cancers, and age 

related pathologies are characterized by significantly low mtDNA copy number that affect 

normal mitochondrial function (6–13). MtDNA is susceptible to damage and mutation due 

to both its proximity to a high concentration of toxic metabolites and also relatively 

inefficient repair mechanism (14). The overall effect on mitochondrial function depends on 

the extent of heteroplasmy of mtDNA (15;16). Mitochondrial dysfunction can also result 

from exposure to xenobiotics and adverse environmental conditions.

Hypoxia is a common factor in many pathological conditions such as the interior of solid 

tumors, tissue ischemia and inflammation (17;18). Hypoxia not only depletes oxygen, which 

is the terminal acceptor of electrons from the electron transport chain, but also causes 

permanent damage to the proteins, lipids and mitochondrial nucleic acid components by 

inducing oxidative stress. Xenobiotics or their metabolites can cause mitochondrial 

dysfunction by multiple mechanisms including disruption of membrane potential, direct 

interaction with mitochondrial DNA, and proteins, affecting their function (19–21). The 

mitochondrial dysfunctions range from reduced ATP production by oxidative 

phosphorylation, inability to modulate production of excessive reactive oxygen and nitrogen 

species, dysregulation of calcium to opening of permeability transition pore and initiation of 

apoptosis.

Many chemotherapeutic drugs used for the treatment of primary tumors, including 

doxorubicin, cisplatin, other DNA damaging anthracycline derivatives, damage mtDNA and 

impair mitochondrial functions in cancer patients (22). Doxorubycin, has been shown to 

cause cardiomyopathy by targeting mitochondria. It increases ROS production, reduces ATP 

synthesis and inhibits CcO by directly binding to the complex (23). Environmental toxin 

TCDD is shown to disrupt mitochondrial membrane potential and mitochondrial 

transcription translation mechanisms in a time-dependent manner and induce stress signaling 

(24). Similarly, benzo[a]pyrene a common cigarette smoke carcinogen has been shown to be 

metabolized in mitochondria and form mtDNA adducts. Benzo[a]pyrene treatment disrupts 

mitochondrial respiration and induces oxidative stress (25). Anti-retroviral drugs such as 

Zidovudine affect mitochondrial function by inhibiting mtDNA polymerase and causing 

mtDNA depletion (26). Defects in mitochondrial DNA and membrane components affect 

mitochondrial function depending on the extent of damage. Reduced ATP production from 

oxidative phosphorylation is seen in mtDNA depletion and heteroplasmic mutations in 

mtDNA or components of electron transport chain.

Excessive production of reactive free radicals is one of the common effects of mitochondrial 

dysfunction. Mitochondrial electron transport chain is a source of reactive oxygen and 

nitrogen species that are produced as byproducts of oxidative phosphorylation. Hypoxia and 

mutations in subunits have been associated with increased ROS production from complex I. 

Mitochondria play an important role in Calcium homeostasis. Dysregulation of calcium can 
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be attributed to both overload of mitochondria with calcium or their inability to uptake 

calcium. Mitochondrial calcium overload has been shown to be one of the hallmarks of 

reperfusion injury after ischemic episode. Excessive mitochondrial calcium and reactive 

oxygen species have been shown to be important triggers for mitochondrial permeability 

transition. Loss of membrane potential causes decreased calcium uptake and increased 

cytosolic calcium levels [Ca2+]c.

III. Mitochondrial Morphological Alterations in response to stress

Mitochondrial morphology in different cells can vary from long tubular structures seen in 

fibroblasts and myocytes to smaller spherical and ovoid structures found in macrophages. 

Mitochondrial stress and dysfunction resulting from hypoxia, exposure to mitochondrial 

toxins and metabolic diseases affect mitochondrial morphology. Excessive ROS production 

induced by photo-excitation of cytochrome c oxidase in ASTC-1 and COS7 cells resulted in 

increased fragmentation of mitochondria (27). Similarly, hypoxia-reoxygenation stress in 

H9C2 cells resulted in fragmented, donut-shaped mitochondria (28). We observed 

fragmented, circular mitochondrial structures in C2C12 cells expressing shRNA to 

cytochrome c oxidase subunits (29). As shown in Figures 1A–C, electron micrographs of 

C2C12 cells with more than 80% depleted mtDNA content show small, circular 

mitochondria. In control cells mitochondria are densely packed in the periphery of the 

nuclear envelope, whereas in cells with reduced mtDNA content (either by ethidium 

bromide treatment or silencing Tfam mRNA), the mitochondria are fewer in number, 

markedly smaller in size, appear fragmented and distributed throughout the cellular 

cytoplasm (Fig 1B). In contrast to control cells, the mitochondrial cristae appear 

disorganized in mtDNA-depleted cells. Furthermore, we observed that loss of Tfam mRNA 

has more severe effect on mitochondrial structural integrity indicated by fragmented 

mitochondria (Fig 1C) possibly due to the function of TFAM as a mitochondrial nucleoid 

component.

IV. Mitochondrial defects deregulate mitochondrial dynamics

Mitochondrial dynamics is regulated by cellular bioenergetic demands. Although several 

studies report effect of mitochondrial dysfunction on mitochondrial morphology (27–30), 

the role of mitochondrial dynamics in cell signaling has not been well studied. Healthy 

mitochondria are dynamic and morphologically fluid which facilitate both the efficiency of 

mitochondrial function and turnover. The mitochondrial morphology is the result of the 

interplay between rapid fusion and fission events and is brought about by large dynamin 

family GTPases (31). Mitochondrial fusion is a two-step process that begins with the initial 

joining of outer membrane, followed by fusion of the inner membrane. Outer membrane 

fusion is mediated by the mitofusin proteins (Mfn1 and Mfn2), anchored on the 

mitochondrial outer membrane (31–33). OPA1 mediates the fusion of inner membrane 

(31;32). The mechanism of fusion is similar for both the outer and inner membrane, in 

which the fusion proteins on the opposing membranes form interlocking coiled coils, which 

are then powered to fuse by GTP hydrolysis (31). Under normal conditions, the fusion of 

outer and inner membranes is coordinated (31). However, mutations targeted to these genes 

show that the two events can be independent of each other with the inner membrane fusion 
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dependent on mitochondrial membrane potential (34;35). Mitochondrial fission is mediated 

by a highly conserved dynamin related GTPase, Drp1 (36). Drp1 is a cytoplasmic protein 

that is maintained in the cytosol by PKA mediated phosphorylation at Ser 637 (37). Drp1 is 

recruited to the outer membrane of mitochondria by membrane anchored proteins Mff and 

Fis1, where it forms a constricting spiral around the outer and inner membrane to fragment 

the mitochondrion (38–40). Mitochondrial fusion results in extended mitochondrial 

networks, which provides advantage to cells under high energy demands and disruption of 

mitochondrial fusion has been shown to result in mitochondrial dysfunction.

In immortalized as well as primary cells, in response to induction of mitochondrial 

dysfunction, we observed lower expression of the mitochondrial fusion marker protein 

OPA1 (Fig 2A, B). This correlated with increased expression of the mitochondrial fission 

marker protein DRP1 (Fig 2C). Additionally inhibiting mitochondrial fission by Mdivi1 

(Drp1 inhibitor) treatment reverses cellular morphology in mtDNA-depleted cells (Fig 2D). 

Reorganization of cytoskeleton is associated with cell migratory potential and aggressive 

tumor cells are highly migratory in nature. Using a scratch-wound healing assay we tested 

the migration pattern of mtDNA depleted C2C12 cells as a function of their metastatic 

potential. We observed that mtDNA depleted C2C12 cells acquired migratory capacity 

which was markedly reduced in response to treatment with Mdivi1 (Fig 3 and Movie files 1–

3). The Windrose plots of cell movement, where all cell tracks are placed at the same 

starting point, clearly demonstrate a markedly different migratory pattern of mtDNA-

depleted cells as compared to control cells (Fig 3A and B). Treatment with with mDivi1 

reduced the migration rates of mtDNAdepleted cells (Fig. 3C). The mtDNA depleted cells 

exhibited unorganized trajectory, typical of cells with high metastatic potential. These results 

suggest the contribution of higher mitochondrial fission towards cellular migration and 

therefore tumor progression. (41)This suggests that mitochondrial dysfunction induces 

alterations in mitochondrial fusion-fission dynamics, which by a feedback loop further 

modulates mitochondrial integrity and functions, exacerbating the effects of mitochondrial 

dysfunction and promoting oncogenesis.

V. Retrograde signaling by dysfunctional mitochondria

Functional interaction between mitochondria and nucleus is maintained by signaling 

network that controls both the biogenesis and functioning of mitochondria. The anterograde 

signals from nucleus to mitochondria control import of proteins, availability of substrates, 

mtDNA maintenance and gene expression in accordance with the energy and growth 

requirements of the cell (42–45). In a healthy cell, under physiological conditions, 

retrograde feedback from mitochondria to nucleus is likely to be normal mitochondrial 

output of ATP, metabolic intermediates and basal reactive oxygen radicals, and serve to fine-

tune the metabolic flux to meet cellular energy demands. On the other hand, mitochondrial 

retrograde signaling (MtRS), which is activated by mitochondria under stress, has received 

considerable attention in recent years due to its ability to bring about global changes in 

nuclear gene expression and phenotypic changes in cells (5;46). Of the multiple retrograde 

signaling pathways, at least three are triggered directly by mitochondrial stress (47–50). 

Interestingly all three pathways suggest important role for retrograde stress signaling in 
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cellular transformation and cancer cell survival implicating a role of mitochondrial 

dysfunction in cancer development(47–50).

V.1 Reactive oxygen species initiated signaling

Reactive oxygen species (ROS) in mitochondria are result of premature oxidation of 

electrons in the mitochondrial electron transport chain. It is estimated that 2–5% of oxygen 

consumed by mitochondria is converted to ROS. In healthy mitochondria, ROS is rapidly 

detoxified by antioxidant defenses (51). Excess ROS produced under hypoxia or by 

increased inflammatory cytokines, on the other hand, activates MtRS leading to cellular 

adaptations (52–54). ROS produced by complex III under hypoxia was shown to activate 

AMPK and inhibit mTOR to conserve energy at the same time increase ATP production 

(55). Similarly, TNF alpha induced mitochondrial ROS production and triggered cell death 

by activation of JNK pathway (56). In RAW 264.7 macrophages, hypoxia alone or 

synergistically with RANKL, produces mitochondrial ROS, triggering retrograde signaling 

and differentiating the cells into bone resorbing osteoclasts (57;58). In the case of 

macrophages however, we observed that the initial ROS signal resulted in the activation of 

calcium-calcineurin mediated MtRS signaling pathway discussed in detail below (57;58). 

Some reports showed that mitochondrial ROS generated under hypoxia stabilize HIF1alpha 

and facilitate cellular transformation (48). Similarly, high ROS levels in cancers 

characterized by loss of tumor suppressor mutations could activate proliferation, angiogenic 

and antiapoptotic pathways aiding in cancer progression (59–62).

V.2 Unfolded protein response (mtUPR) initiated signaling

Mitochondrial stress and dysfunction affects protein homeostasis. Oxidatively damaged 

proteins and unfolded or mis-folded proteins are degraded by mitochondrial proteases for 

quality control (63–65). In mammalian cells mitochondrial ability to communicate the 

matrix unfolded protein response to the nucleus involve activation of CHOP and CREB 

(66;67). Experimental targeting of misfolded ornithine transcarbomoylase to mitochondrial 

matrix resulted in upregulation of several heat shock proteins like HSP60, HSP10 and 

chaperones without affecting cytosolic or ER stress response (67). Similarly, presence of 

mutant EndoG in intermembrane space resulted in Akt phosphorylation mediated activation 

of estrogen receptor alpha and induction of quality control proteases localized to IMS (47). 

Direct evidence for retrograde signaling by unfolded protein response has been shown in C. 

elegans, in which excessive accumulation of unfolded proteins resulted in their degradation 

and efflux of peptides (68). The peptides activate a transcriptional response mediated by 

ATFS-1 that localizes to nucleus and along with two other factors DVE-1 and Ubl-5 induce 

expression of genes involved in mitochondrial quality control and cellular metabolism (68–

71). Although there is no direct evidence, it is likely that the retrograde signaling by 

unfolded protein response may play a major role in cancer cell survival. Aberrant growth 

and exposure to adverse conditions like hypoxia are common feature of cancer cells and 

likely result in very high rates of oxidatively damaged and misfolded proteins inside 

mitochondria, conditions that could initiate unfolded protein response. In this context, it is 

interesting that expression of HSP60 and HSP90 related protein TRAF1 is elevated in many 

tumors. It is however unclear if this is an effect of retrograde signaling by UPR.
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V.3 Calcium-calcineurin mediated retrograde signaling

Calcium-calcineurin mediated signaling is activated in response to mtDNA depletion, loss of 

electron transport chain proteins and disruption of mitochondrial membrane potential 

(24;49;50;72;73). Mitochondria play an important role in Ca2+ homeostasis by transiently 

removing Ca2+ released by intracellular stores or from outside the cell and releasing back to 

the cytosol to regulate calcium dependent (74–76) signaling. Mitochondrial dysfunction due 

to loss of membrane potential from either mtDNA defects or exposure to xenobiotic toxins 

impairs mitochondrial calcium uptake (49;73;77). Interestingly, in models of mtDNA 

depletion by ethidium bromide treatment and membrane potential disruption by CCCP 

treatment, the cells exhibited elevated expression of Ryanodine receptor (RYR1, 2 or 3), 

which is a calcium leak channel in the endoplasmic reticulum membrane (24;49;73). 

Collectively, inability of mitochondria to take up calcium, excessive calcium leak through 

upregulated RYR channels and likely reduced activity of the ATP dependent Endoplasmic 

Reticulum calcium pump together result in sustained elevation of [Ca2+]c. Increased steady 

state [Ca2+]c activates calcineurin, a cytosolic phosphatase, which in turn activates NFAT 

and a unique IkB dependent NFκB pathway (29;49;78). Calcium dependent kinases PKC, 

CAMKIV, JNK and MAPK are also activated, which leads to activation of transcription 

factors CEBP/δ and CREB (5). An important factor activated by this pathway is the 

heterogeneous nuclear ribonuclear protein hnRNPA2, which acts as a transcriptional co-

activator (79;80). It assembles the stress induced transcription factors in enhanceosome 

complexes at promoter sequences leading to synergistic activation of several stress response 

genes (46;79–81).

Recently we reported that hnRNPA2 is a novel mitochondrial stress activated protein lysine 

acetyltransferase that acetylates histone H4 at lysine K8 on target gene promoters. This 

H4K8 acetylation is essential for the transcriptional activation of the mitochondrial stress-

responsive target genes (82). In ethidium bromide treated C2C12 cells, mtDNA depletion 

results in induced expression of more than 120 genes that bring about phenotypic changes 

like altered morphology, increased invasiveness, metabolic shift to glycolysis and resistance 

to apoptosis (50;83–85). Similar activation of Calcium-calcineurin mediated MtRS signaling 

was seen in mtDNA depleted immortalized RAW264.7 and MCF10A cells as well as 

transformed cells such as A549, MCF7 and HCT116 (29;73;81;86).

VI. Mitochondrial defects in cancer

Altered mitochondrial function is a hallmark of many cancers although the nature of 

functional modification depends on the type of cancer (87–91). Nearly 80 years ago Warburg 

noted that cancer cells have damaged respiration and increased lactate production, a 

phenomenon referred to as aerobic glycolysis or Warburg Effect (92). Since then, several 

studies have shown reduced mitochondrial respiration in a wide range of cancers (93). 

Supporting evidence for the defective mitochondria in cancer tissue has been shown by both 

genetic screening for mtDNA defects and by providing experimental support by using 

cybrids (91;94;95). Low copy number of mtDNA has been observed in many cancers 

including breast, colon, hepatocellular carcinomas, astrocytomas and prostate cancers 

(6;8;11;96;97). Experimentally induced mtDNA depletion in colorectal and prostate cancer 
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cells promotes aggressive cancers (98;99). Similarly, increased tumor growth is seen in the 

intestine of mice with adenomatous polyposis coli intestinal neoplasia when crossed with 

mice heterozygous for the mitochondrial transcription factor A (TFAM) with reduced 

mtDNA copy number (100). Mutations in mitochondrial DNA has been reported in several 

cancers including breast, renal adenocarcinoma, thyroid tumors, colon cancer, head and neck 

cancer and prostate cancer (95;97;101;102). Although the causal role of mitochondrial DNA 

defect in tumorigenesis has not been clearly established, cybrid cell lines generated by 

fusing cytoplasts and nuclei from different cell lines provide a means for testing the role of 

WT and mutant mtDNA under the same nuclear genetic background. Mutations in complex I 

subunit ND6 increased the metastatic potential by producing excessive ROS, whereas an 

ND5 mutation promoted tumorigenesis by oxidative stress and Akt activation (94;95).

Mitochondrial function is affected by changes in nuclear coded proteins. Mutations in SDH 

subunits and FH genes have been observed in paragangliomas, pheochromocytomas, 

multiple cutaneous and uterine leiomyomatas and aggressive forms of renal cell cancer 

(103–107). In both these instances, loss of function causes accumulation of substrates 

succinate and fumarate, which have been shown to activate specific stress pathways with 

roles in tumor development (103;107–109). Heterozygous missense mutations in IDH have 

been shown in gliomas, chondromas and astrocytomas (110–112). Heterodimers of mutant 

IDH1 and IDH3 have been shown to increase accumulation of 2-hydroxyglutarate that has 

been shown to affect methylation and other epigenetic modifications (110;111;113;114).

In addition to mutations, levels of mitochondrial proteins can also be affected by 

environmental changes. Long term hypoxia as commonly seen in solid tumors has been 

shown to specifically degrade subunits IV and Vb of cytochrome oxidase (115;116). Using 

stable cell lines expressing shRNA to subunits IV and Vb, we showed that mitochondrial 

dysfunction results in activation of several genes that have role in tumor development (29). 

The causal role of this loss of CcO subunits in the observed phenotype was further 

confirmed by rescue of CcO activity WT subunit cDNAs, which reverted most of the 

phenotypic changes (29).

Mitochondrial dysfunction is also shown to play important role in metastasis. Depletion of 

mtDNA resulting in mitochondrial dysfunction induced an epithelial to mesenchymal 

transition in multiple cell lines including MCF 10A breast cancer cells (81). Mutation in 

complex I subunit ND6 was shown to increase the metastatic potential of a mouse lung 

carcinoma cell line (95). In human cervix squamous cell carcinoma and murine melanoma 

cell lines, clonally selected cells with high metastatic potential produced elevated levels of 

superoxide (117). Furthermore, experimental inhibition of electron transport chain functions 

seemed to attenuate the metastatic potential of these cells suggesting the causal role of 

superoxide in conferring metastatic potential. Superoxide was shown to promote tumor cell 

migration by activating Pyk2, the focal adhesion kinase in Src mediated pathway. Moreover, 

partial inhibition of ETC resulted in prometastatic phenotype, which was reversed by 

treatment with mitochondria targeted antioxidants (117) clonal selection of high metastatic 

cells over successive generations could have attributed to the phenotypic drift commonly 

reported in transformed cell lines (118–120)(119–121). It is also likely that different 

mitochondrial outputs are needed for cells at different stages of metastatic progression.
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A more recent focus of research in the field has been on the contribution of mitochondrial 

dynamics towards tumor initiation and progression. Although the exact mechanism and the 

signaling of defective mitochondrial dynamics in cancer development is not known, it has 

been observed that excessive fission and reduced fusion is a feature of many tumors (121–

123). Interestingly most of the available literature shows dysregulated Drp1 action as 

responsible for excessive fission (124–126). In human pancreatic cancer, expression of 

oncogenic Ras or activation of MAPK pathway leads to Erk2 mediated phosphorylation of 

Drp1 on Ser 616 that leads to increased mitochondrial fragmentation (126). Moreover, 

inhibition of this phosphorylation in xenografts is sufficient to block tumor growth (126). 

Similarly, both A549 lung adenocarcinoma cell lines and human tissues exhibit higher 

expression of Drp1 with increased phosphorylation (121). Interestingly this was 

accompanied by reduced Mfn2 expression. Increasing mitochondrial networking by Mdivi1 

treatment resulted in higher apoptosis and reduced proliferation in A549 cells and reduced 

tumor growth in xenografts expressing Mfn2 delivered by adenoviral vector (121). The 

trigger and the mechanism resulting in Drp1 overexpression and phosphorylation are not 

well understood. In high stage neuroblastoma, Survivin, an antiapoptotic protein recruits 

Drp1 to mitochondria and induces mitochondrial fragmentation (127). Survivin 

overexpressing cells were shown to have reduced complex I and IV activities with a shift to 

aerobic glycolysis (127).

As mentioned earlier, mtDNA depletion in C2C12 cells induces mitochondrial retrograde 

signaling that transforms them to tumorigenic cells. We recently observed in these cells that 

mitochondrial dysfunction caused by mtDNA depletion leads to increased Drp1 

mitochondrial localization and reduced OPA1 expression, accompanied with fragmented 

mitochondria. As shown in Fig 1 and 2, mtDNA depletion (either by EtBr or knock down of 

Tfam mRNA) induced higher levels of mitochondrial fission. The mtDNA-depleted cells 

also showed remarkably altered cytoskeleton and pseudopodia like structures, characteristic 

of tumor cells (Fig. 2). Interestingly, the treatment with Mdivi1 (128), a specific inhibitor of 

fission protein DRP1 attenuated these tumorigenic morphological changes suggesting a 

connecting link between mtDNA depletion, mitochondrial dynamics, altered morphology 

and tumor-like phenotype. However, the mechanistic link between increased mitochondrial 

fragmentation and phenotypic transformation remains to be investigated.

VII. Alterations in Cellular Metabolism effected by mitochondrial 

dysfunction

As the hub of metabolic integration, mitochondrial metabolome consists of hundreds of 

intermediates generated in metabolic pathways like TCA cycle, fatty acid metabolism, 

amino acid oxidation and oxidative phosphorylation. Dysfunctional mitochondria, either due 

to specific defects in mitochondrial enzymes or general effects like hypoxia, loss of 

membrane potential or mtDNA depletion exhibit characteristic accumulation of metabolites. 

Aberrant levels of metabolites are not only signatures of pathologies, but also responsible for 

signaling and disease phenotype. For example, high fat diet induced mitochondrial 

dysfunction in metabolic syndrome and inflammation is characterized by presence of 

medium and long chain acyl carnitines (129). One of the metabolites, lauryl carnitine was 
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shown to increase expression of pro inflammatory cytokines in bone marrow derived 

macrophages (129). Similarly, in mouse models of Alzheimer s disease, differential levels of 

intermediates of nucleotide metabolism, TCA cycle and amino acid metabolic pathways 

accumulate (130). These data provide evidence of causal effect of defective energy 

metabolism. As detailed in an earlier section, altered mitochondrial function is a feature of 

several cancers. Mutations in enzymes of TCA cycle, components of the electron transport 

chain and mtDNA defects affect mitochondrial metabolism and alter the metabolome. 

Metabolic profiling of hereditary paraganglioma and phenochromocytoma harboring 

mutations in succinate dehydrogenase showed increased levels of succinate, which has been 

shown to inhibit prolyl hydroxylases (PHD) and stabilize HIF1 (107;109;112). Heriditary 

leiomyomatosis and renal cell cancers that have a high frequency of mutation in Fumarate 

hydratase similarly accumulate millimolar levels of fumarate, which has been shown to also 

inhibit PHDs and histone demethylases (108;109;112).

Fumarate has also been shown to react with the thiol group of glutathione by a process 

called succination and increase oxidative stress (131). Isocitrate dehydrogenase is another 

enzyme of the TCA cycle that is mutated in many human cancers like colon cancer, gliomas, 

AML and osteosarcoma. Mutations in IDH generates a neomorphic enzyme that converts 

isocitrate to 2-hydroxyglutarate (2-HG) instead of oxo-glutarate (110;114). 2-HG has been 

shown to be oncogenic through its action on PHDs, and can bring about epigenetic changes 

(110;114). mtDNA depletion mediated mitochondrial dysfunction induces stress signaling 

that transforms non-tumorigenic cells to acquire tumorigenic phenotype.

To understand the metabolic shift by partial mtDNA depletion, we carried out a metabolic 

profile analysis on control and mtDNA depleted C2C12 cells (Fig 4). The depleted cells 

showed between 3–4 fold higher lactate levels indicating a metabolic shift to glycolysis. 

Interestingly mtDNA depleted cells also showed higher levels of 2-HG and Fumarate, 

although their roles in cancer promotion and signaling need to be investigated.

VIII. Mitochondrial dysfunction modulates cellular morphological changes

It is well documented that mitochondrial dysfunction influences pathological phenotypes 

and morphological changes has been postulated to be an adaptive cellular response to the 

mitochondrial stress Reports from our laboratory and others have shown that immortalized 

mammary cells harboring mitochondrial defects undergo cellular morphological 

reprograming similar to an epithelial-mesenchymal transition (81;132;133). Actin 

microfilaments are critical components of cellular cytoskeleton. It is known that actin 

filaments acquire conformational changes in response to changes in nucleotide binding or 

cellular stressors (134–136). The interaction between actin filaments and various actin-

binding proteins are critical for the functional differentiation of actin filaments in vivo 
(134;135;137). Cell polarity is dynamic and dependent on various physiological processes 

such as cell division, migration, and morphogenesis. Only recently, the critical role of cell 

polarity in regulating cancer phenotype has gained interest (138–140). We observed 

mtDNA-depleted C2C12 and HEK293T cells have extensive actin reorganization with long 

stretched F-actin filaments shown by phalloidin staining (Fig 5A, B). These are 

characteristics of a highly invading tumor cell.
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In primary esophageal cells derived from Tfamfl/fl mice, we observed, cells transduced ex 
vivo with adenoviral Cre contained >95% reduced Tfam mRNA and also with reduced 

mtDNA content compared to cells transduced with the adenoviral vector expressing GFP 

(Fig 6A,B). We observed that mtDNA depleted primary esophageal cells (Tfamfl/fl/+Cre) 

were ~20% larger in size (Fig 6C). Similar to immortalized cells, primary esophageal 

mtDNA depleted cells also exhibit higher levels of F-actin and stretched F-actin filaments 

(Fig. 6D) suggesting that mitochondrial stress signaling regulate cell polarity. Turnover of 

actin filament and dynamic regulation of actin structures are critical for cell migration, cell 

adhesion and protrusion, important processes during oncogenesis (141–143). Moreover, cell 

polarity regulating proteins also modulate microtubule dynamics, which is significant 

because dysregulation of microtubule dynamics is used in cancer therapy (144). Therefore, 

the changes in actin reorganization we observed in response to mitochondrial stress are of 

relevance to tumor cell physiology, morphology and cell growth characteristics.

The 3D organoid cultures of esophageal epithelial cells (EEC) are called “mini organs” 

because of their close similarity to the esophageal tissue in terms of cell types, overall 

organization and function (145). These organoids therefore provide an excellent ex vivo 
model for studying the pathophysiology of esophagi. Using 3D organoid cultures of primary 

EEC we demonstrate that mitochondrial functions are necessary for normal organoid 

development (Fig 7). Organoids derived from Tfam knockout Tfamfl/fl/+Cre murine primary 

esophageal cells as described in the above section, were fewer in numbers and showed 

reduced basal and parabasal cells. Additionally these organoids also showed higher 

keratinization as indicative of terminal differentiation, supporting the role of mitochondria in 

regulating cellular development and morphology.

Summary and Conclusions

The Warburg hypothesis proposed nearly 80 years ago still remains an enigma in cancer 

biology and tumor development. The first part of the Warburg hypothesis on markedly 

increased glycolysis and lactate production by fast growing tumors in culture or in vivo in 

tumors is universally accepted. The second part of the hypothesis suggesting a role for 

defective mitochondrial function as a possible cause of cancer initiation or progression 

remains contentious, despite intense investigations in many laboratories. Although clinical 

studies show strong correlation between mitochondrial dysfunction, including respiratory 

defects, mtDNA mutations and low mtDNA contents in a variety of human cancers, the 

cause or effect relationship remains unclear. Many studies including ours have shown that 

partial depletion of mtDNA, heteroplasmic mtDNA mutations, or disruption of Complex I 

and complex IV induce tumorigenic phenotypes in immortalized epithelial cells. However, 

in vivo models of tumor production specifically induced by mitochondrial dysfunction are 

currently limited, and more research efforts and more models would be needed to address 

this important question.

It is widely known that anapleurotic metabolic processes including the activity of TCA cycle 

and metabolism of carbon skeletons of Gln and Asn that are used as preferred fuel sources 

by tumor cells are essential for the production of biomass (146;147). This has led to the 

concept that a full mitochondrial function is essential for tumor development. Some studies 
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show that metastasizing tumors and those resistant to chemotherapeutic drugs, show more 

robust respiration and TCA cycle activity. It should be noted that mitochondrial dysfunction 

induced by partial mtDNA depletion or disruption of ETC complexes retain nearly full 

ability to metabolize amino acids and generate citrate as their citrate synthase activities are 

equal to or even higher than control cells (148). However, the metabolic status in Rho zero 

cells used in some studies (149) is quite different than that we have observed in partial 

mtDNA depleted cells. Furthermore, the role of mitochondrial dysfunction in early stages of 

tumor initiation and progression observed in our and others studies are likely to be different 

from that reported in tumor metastasis and drug resistance (150) where cellular signals from 

the microenvironment might play more critical roles. The details of these differences need to 

be investigated to gain a firm understanding of the second part of Warburg hypothesis. Our 

observations over the years clearly show that mitochondrial dysfunction and associated 

mtRS plays a critical role in inducing oncogenic phenotypes in immortalized cells.

It is becoming increasingly clear that mitochondrial fission and fusion play a critical role in 

quality control and mitochondrial damage repair (151). Our results show extensive 

mitochondrial fission and reduced fusion by partial mtDNA depletion and shRNA mediated 

knock down of CcO subunits. Thus, altered fusion and fission are closely linked to 

mitochondrial dysfunction and mtRS activation. The Drp1 inhibitor Mdivi-1 inhibits colony 

formation, MtRS and other tumorigenic characteristics. A recent study also showed that 

Mdivi-1 treatment inhibited tumor growth in a KRAS induced mouse tumor model (126). It 

is therefore likely that altered quality control associated with mitochondrial dysfunction 

plays a role in tumor induction and progression, while these processes are partly or wholly 

repaired in tumor metastasis and drug resistance.

Methods

Electron Microscopy

Cell Pellets for electron microscopic examination were fixed with 2.5% glutaraldehyde, 

2.0% paraformaldehyde in 0.1M sodium cacodylate buffer, pH7.4, overnight at 4oC. After 

subsequent buffer washes, the samples were post-fixed in 2.0% osmium tetroxide for 1 hour 

at room temperature, and then washed again in buffer followed by DH2O. After dehydration 

through a graded ethanol series, the tissue was infiltrated and embedded in EMbed-812 

(Electron Microscopy Sciences, Fort Washington, PA). Thin sections were stained with 

uranyl acetate and lead citrate and examined with a JEOL 1010 electron microscope fitted 

with a Hamamatsu digital camera and AMT Advantage image capture software.

Esophageal Three Dimensional Organoid Cultures

Three dimensional organoid cultures were grown as described in Tanaka et al (152). Briefly, 

1x 103 cell suspension in 50 μl Matrigel were seeded per well in 24 well plates. Cells were 

grown in organoid growth medium supplemented with 1X B27, 0.1 mM N-acetyl-L-cysteine 

(Sigma-Aldrich), mouse recombinant epidermal growth factor (R&D Systems, Minneapolis, 

MN), 2.0% Noggin/R-Spondin-conditioned media and 10 μM Y27632 (Tocris Biosciences, 

Bristol, UK). For H&E sections, organoids were recovered by digesting Matrigel® (BD 

Biosciences, San Jose, CA) with Dispase I (BD Biosciences, San Jose, CA; 1 U/ml) and 
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fixed overnight in 4.0% paraformaldehyde. Samples were embedded in 2.0% Bacto-Agar: 

2.5% gelatin prior to paraffin embedding.

Cell Migration (wound-healing) Assay

Migration assay was performed as described before (81). Confluent monolayer of C2C12 

cells were scratched using a pipette tip, and cells migrating into this area were observed at 5-

min intervals for 20 h under an inverted bright-field microscope. For quantitative analysis, 

individual cells were tracked and their direction of movement, velocity and distance covered 

in the direction of the wound were measured using Volocity software (Perkin Elmer, 

Waltham, MA, USA).

Metabolite analysis

For metabolomic analysis, metabolites were extracted in 80% methanol in water solution. 

Samples were analysed using an Orbitrap mass spectrometer coupled to reverse phase ion 

pairing chromatography (153). Data was normalized to the median and fold change were 

calculated using control C2C12 cells as reference.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mitochondrial defects affecting Δμm induce stress signaling

• MtDNA depletion induces reorganization of actin cytoskeleton and regulates 

cell polarity

• MtDNA depletion induces mitochondrial fission and alters dynamics

• Inhibition of mitochondrial fission by Mdivi1 abrogates the acquired 

migratory potential of mtDNA depleted cells

• MtDNA depletion affects 3D organoid formation by primary esophageal 

epithelial cells
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Figure 1. Altered mitochondrial ultrastructure in response to mtDNA depletion
Electron micrographs of control, EtBr-treated mtDNA-depleted and Tfam shRNA-mtDNA 

depleted cells. Left panel: Scale Bar 2μm, magnification 10000x; Right panel: Scale Bar 

100nm, magnification 75000x.
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Figure 2. Altered mitochondrial fission and fusion dynamics in mtDNA depleted cells
(A) Immunofluorescence images showing OPA1 (mitochondrial fusion marker in red) and 

DAPI (nuclei in blue) staining pattern in control, mtDNA depleted (Tfam sh) and 

CcOIVi1kd C2C12 cells. (B) Primary esophageal epithelial cells derived from Tfam fl/fl 

mice expressing either Adeno GFP (control) or AdenoL2- Cre (Tfam KO) stained with 

OPA1 (mitochondrial fusion marker in red) and DAPI (nuclei in blue). (C) Primary 

esophageal epithelial cells derived from Tfam fl/fl mice expressing either Adeno GFP 
(control) or AdenoL2- Cre (Tfam KO) stained with DRP1 (mitochondrial fission marker in 

red) and DAPI (nuclei in blue). (D) Primary esophageal epithelial cells derived from 

Tfam fl/fl mice expressing either Adeno GFP (control) or AdenoL2- Cre (Tfam KO) treated 

with or without mDivi1 (10μM, 48h) stained with Texas-Red Phalloidin (red, actin) and 

DAPI (blue, nuclei). Images are captured under 40x objective of a NIKON E600 

microscope.
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Figure 3. Acquired Migratory pattern of C2C12 cells
(A) Windrose plot showing the directionality of migration of Control, mtDNA depleted and 

mtDNA depleted cells treated with mDivi1as indicated in the figure. Individual cells tracked 

are indicated by different colors. (B) Individual cells in each category were tracked using the 

Volocity software (Perkin Elmer) to estimate the maximum distance covered during the 10h 

migration. Movie Legends: Time lapse recordings for “scratch wound healing” migration 

assay: Control (Video1), mtDNA- depleted (Video 2) and mtDNA-depleted + mDivi1 treated 

(Video 3) C2C12 cells were grown to confluence and wounded with a pipette tip. Wound 

healing as a measure of cell motility and images were captured every 5 mins and followed 

for 10 hours.
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Figure 4. Metabolic changes in response to mtDNA depletion
Intracellular lactate, fumarate and 2-hydroxyglutarate were quantified by reverse phase LC 

coupled to an Orbitrap Mass Spectrometer. Graphs show fold change in indicated 

metabolites between control and mtDNA depleted C2C12 cells. Values normalized to 

control cells.

Srinivasan et al. Page 26

Biochim Biophys Acta. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. MtDNA depletion induced cytoskeletal reorganization in immortalized cells
Control and mtDNA depleted C2C12 (A) and HEK293T (B) stained with Texas-Red® 

conjugated Phalloidin (Molecular Probes) for gamma Actin (red) and DAPI for nuclei 

(blue). Phalloidin staining was performed according to manufacturer s suggested protocol. 

Cells were imaged under Nikon E600 microscope 40x Objective. Scale Bar: 20μm.
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Figure 6. Alterations in cellular morphology in Tfamfl/fl/Cre-primary esophageal cells
Real Time PCR quantitation of relative Tfam mRNA levels (A) and mtDNA content (B) in 

primary esophageal epithelial cells derived from Tfam fl/fl mice expressing either Adeno 
GFP (control) or AdenoL2- Cre (Tfam KO). (C) Cell Size distribution in primary 

esophageal epithelial cells derived from Tfam fl/fl mice expressing either Adeno GFP 
(control) or AdenoL2- Cre (Tfam KO) assessed on Nexcelom Vision CBA. (D) Primary 

esophageal epithelial cells derived from Tfam fl/fl mice expressing either Adeno GFP 
(control) or AdenoL2- Cre (Tfam KO) stained with Texas-Red Phalloidin (red, actin) and 

DAPI (blue, nuclei) imaged under 40x objective of a NIKON E600 microscope.
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Figure 7. Three dimensional organoids in Tfamfl/fl/Cre-primary esophageal cells
Bright Field images of Hematoxylin-Eosin stained sections of 3D organoids from primary 

esophageal epithelial cells derived from Tfamfl/fl mice expressing either Adeno GFP 
(control) or AdenoL2-Cre (Tfam KO.
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