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Abstract
Aims/hypothesis Obesity induces macrophages to drive in-
flammation in adipose tissue, a crucial step towards the devel-
opment of type 2 diabetes. The tricarboxylic acid (TCA) cycle
intermediate succinate is released from cells under metabolic
stress and has recently emerged as a metabolic signal induced
by proinflammatory stimuli. We therefore investigated wheth-
er succinate receptor 1 (SUCNR1) could play a role in the
development of adipose tissue inflammation and type 2
diabetes.
Methods Succinate levels were determined in human plasma
samples from individuals with type 2 diabetes and non-
diabetic participants. Succinate release from adipose tissue
explants was studied. Sucnr1−/− and wild-type (WT) litter-
mate mice were fed a high-fat diet (HFD) or low-fat diet

(LFD) for 16 weeks. Serum metabolic variables, adipose tis-
sue inflammation, macrophage migration and glucose toler-
ance were determined.
Results We show that hypoxia and hyperglycaemia indepen-
dently drive the release of succinate from mouse adipose tissue
(17-fold and up to 18-fold, respectively) and that plasma levels
of succinate were higher in participants with type 2 diabetes
compared with non-diabetic individuals (+53%; p < 0.01).
Sucnr1−/− mice had significantly reduced numbers of macro-
phages (0.56 ± 0.07 vs 0.92 ± 0.15 F4/80 cells/adipocytes,
p < 0.05) and crown-like structures (0.06 ± 0.02 vs
0.14 ± 0.02, CLS/adipocytes p < 0.01) in adipose tissue and
significantly improved glucose tolerance (p < 0.001) compared
with WT mice fed an HFD, despite similarly increased body
weights. Consistently, macrophages from Sucnr1−/− mice
showed reduced chemotaxis towards medium collected from
apoptotic and hypoxic adipocytes (−59%; p < 0.05).
Conclusions/interpretation Our results reveal that activation
of SUCNR1 in macrophages is important for both infiltration
and inflammation of adipose tissue in obesity, and suggest that
SUCNR1 is a promising therapeutic target in obesity-induced
type 2 diabetes.
Data availability The dataset generated and analysed during
the current study is available in GEO with the accession num-
ber GSE64104, www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE64104.
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LFD Low-fat diet
LPS Lipopolysaccharide
MA Mature adipocytes
SUCNR1 Succinate receptor 1
SVF Stromal vascular fraction
TCA Tricarboxylic acid
WT Wild-type
ZAS Zymosan-activated serum

Introduction

Adipose tissue in obese individuals is characterised by adipo-
cyte hypertrophy, oxidative stress, macrophage infiltration
and enhanced production of proinflammatory cytokines.
The proinflammatory state of adipose tissue significantly
contributes to the development of insulin resistance by inter-
fering with insulin signalling routes [1–3]. However, the
mechanisms by which local metabolic disturbances in adipose
tissue in obesity lead to macrophage infiltration and the onset
of chronic inflammation are not fully understood. Recently,
the mitochondrial metabolite succinate has been suggested as
a potential link between metabolic stress and activation of
inflammatory signals [4]. Under non-stressed conditions, suc-
cinate is formed from succinyl-CoA by succinyl-CoA synthe-
tase, and is converted into fumarate within the tricarboxylic
acid (TCA) cycle. Under conditions of oxidative stress, alter-
ations in functioning of the TCA cycle lead to mitochondrial
release of succinate into the cytosol and subsequently the ex-
tracellular environment [5–7]. Circulating succinate levels are
elevated in rodent models of metabolic disease [8].
Importantly, with the identification of G-coupled receptor 91
(GPR91), also known as succinate receptor 1 (SUCNR1),
which is present on the plasma membrane of various cell
types, it became clear that succinate may have an important
signalling function, providing feedback between local tissue
metabolism, mitochondrial stress and organ function [9, 10].
High levels of SUCNR1 are reported in metabolically active
tissues such as kidney, adipose tissue and liver [11]. However,
the function of the receptor in these tissues, especially under
conditions of metabolic stress, remains largely unknown.

Interestingly, SUCNR1 is also expressed in immune cells
[11, 12] and stimulation of immune cells with lipopolysaccha-
ride (LPS) does not only activate inflammatory processes,
such as secretion of cytokines (e.g. IL-1β), but also coincides
with intracellular accumulation [4] and cellular release of suc-
cinate [13]. We aimed to evaluate whether SUCNR1 and its
ligand, succinate, have an important role in the development
and progression of obesity-induced inflammation and insulin
resistance in type 2 diabetes. We set out to investigate the role
of the SUCNR1 pathway using both animal and human stud-
ies combined with various in vitro approaches.

Methods

Human studies Human subcutaneous adipose tissue and vis-
ceral adipose tissue samples were collected and digested using
collagenase type 1 (Gibco, Thermo Fisher Scientific, Waltham,
MA, USA) to isolate mature adipocytes (MA) and the stromal
vascular fraction (SVF) as described [14]. The cellular fractions
were subsequently used for RNA isolation and reverse tran-
scriptase quantitative PCR (RT-qPCR) analysis. Increased gene
expression of Fabp4 and Emr1 in the adipocytes and SVF,
respectively, confirmed the purity of the fractions (data not
shown). Plasma succinate levels were determined in individ-
uals with type 2 diabetes (n = 45) and non-diabetic control
participants (n = 72). Participants were 40–70 years old and
those with type 2 diabetes were treated according to national
guidelines. All participants with type 2 diabetes had poor
glycaemic control while on oral glucose-lowering agents [15].

Blood was taken after an overnight fast in all individuals, just
before the start of insulin treatment in the participants with type 2
diabetes. See electronic supplementary material (ESM) for fur-
ther details and ESM Table 1 for the characteristics of both
groups. All participants gave written informed consent and the
studies were approved by the ethical committee of the Radboud
University Medical Center, Nijmegen, the Netherlands.

Animal studies Sucnr1+/− mice on a C57BL/6 background
were a kind gift from Amgen (Thousand Oaks, CA, USA) and
were generated as described previously [9]. To generate the
Sucnr1+/− mice, an IRES/lacZ/neo cassette was exchanged for a
large part of exon 2, encoding most of the receptor, by homolo-
gous recombination. See ESM Fig. 1 and ESM Methods for
further details. The animals were intercrossed to yield homozy-
gous Sucnr1−/− wild-type (WT) littermate offspring. Mice were
housed under standardised conditions (12 h dark/12 h light cy-
cle). Unless stated otherwise, mice were fed ad libitum. Animal
experiments were approved by the Animal Experiments
Committee of the Radboud University Medical Center.

Eight to 12-week-old male mice were randomised according
to body weight and divided into four groups: WT or Sucnr1−/−

mice receiving either a low-fat diet (LFD; 10% energy derived
from fat; D12450J, Research Diets, New Brunswick, NJ, USA)
or a high-fat diet (HFD; 60% energy derived from fat; Research
Diets, D12492). Each of the four groups was further randomised
into three groups that received either 2, 8 or 16weeks of diet. The
investigator was blinded to group assignment and outcome as-
sessment. Body weight was measured weekly and GTTs were
performed at the end of weeks 2, 8 or 16 as described below.
Finally, themice were anaesthetised with isoflurane for collection
of blood in heparin tubes (BD, Franklin Lakes, NJ, USA) by
orbital extraction. After the animals were euthanised by cervical
dislocation, epididymal white adipose tissue and liver were iso-
lated for further analysis. Tissues were fixed for immunohisto-
chemistry using 4% (vol./vol.) formaldehyde and embedded in
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paraffin. The remaining tissue was snap frozen in liquid nitrogen
for RNA extraction.

Glucose tolerance test After 11 h of fasting, mice were sub-
jected to a GTT, receiving an intraperitoneal injection of glu-
cose solution (2 g glucose/kg body weight). After 15, 30, 60
and 120 min, blood was collected from the tail and glucose
was measured using Accu-Chek glucose readers (Roche,
Mannheim, Germany). The investigator was blinded to the
genotype.

Isolation and culture of white adipose tissue explants
Mouse epididymal adipose tissue from 12-week-old C57BL/6
mice was freshly isolated and 0.2 g tissue was directly brought
into culture in 1 ml isotonic 10 mmol/l HEPES buffer. Samples
were incubated for 16 h under normoxic (20% O2) or hypoxic
(1%O2) conditions in the presence of various glucose concentra-
tions. See ESM for culture of obese vs lean white adipose tissue
explants.

Macrophage and adipose tissue co-culture Bone marrow-
derived macrophages (BMDMs) were obtained from C57Bl/6
mice, differentiated and exposed to a transwell chamber
(0.4 μm, Corning, Corning, NY, USA) containing adipose
tissue explants. See ESM for further details.

Morphologic analysis of adipose tissue and quantification
of macrophage number H&E staining of sections followed
standard protocols. Morphometric analysis of individual fat
cells was done using digital image analysis software, as de-
scribed previously [16]. To quantify macrophage numbers,
sections were immunohistochemically stained for F4/80, as
described previously [14]. See ESM for further details.

Succinate measurements Succinate concentration in plasma
was measured with a modified protocol for the Succinic Acid
Kit (Megazyme, Bray, Ireland). See ESM for further details.

1H NMR spectroscopyOne-dimensional 1H NMR spectrosco-
py was performed to investigate the concentration of succinate in
the medium from the samples. See ESM for further details.

Plasma metabolites Plasma metabolites were measured in a
fasted state. Cholesterol, triacylglycerols, glucose (Liquicolor,
Human, Wiesbaden, Germany) and NEFA (NEFA-C, Wako
Chemicals, Neuss, Germany) were measured enzymatically.
Plasma insulin (ultrasensitive mouse insulin ELISA kit,
Crystal Chem, Downers Grove, IL, USA) and leptin (R&D
Systems, Minneapolis, MN, USA) were measured by ELISA
according to the manufacturer’s instructions.

Liver lipidsHepatic triacylglycerol concentrations were mea-
sured in 10% (wt./vol.) liver homogenates using a commercial

kit from Liquicolor (Human) and expressed per mg protein as
determined by bicinchoninic acid (BCA) protein assay
(Thermo Fisher Scientific, Rockford, IL, USA). For histolog-
ical examination, H&E staining of liver sections, 5 μm thick-
ness, followed standard protocols.

In vitro cytokine production Cytokine secretion was deter-
mined in peritoneal cells and BMDMs from Sucnr1−/− and
WT mice. See ESM for further details.

Transwell chemotaxis assay BMDMs were obtained from
3–4-month-old mice and differentiated for 7 days in DMEM
with 10% (vol./vol.) serum, supplemented with 30% (vol./
vol.) L929-conditioned medium. BMDM migration assays
were performed using 8.0 μm pore size 24 well Transwell
chambers (BD Biosciences, Bedford, MA, USA); see ESM
for further details.

RNA isolation and RT-qPCR analysis RNA isolation and
real-time RT-qPCR was used to determine the relative expres-
sion levels of mRNAs. See ESM for further details and ESM
Table 2 for primer sequences.

Microarray analysis and biological interpretation of array
data Epididymal adipose tissue samples from LFD WT and
Sucnr1−/− animals (n = 4 per genotype) were subjected to
genome-wide expression profiling using Affymetrix Mouse
Gene 1.1 ST arrays (Affymetrix, Santa Clara, CA, USA).
Details on RNA isolation, integrity controls, hybridisation and
statistical analysis, as well as biological interpretation of array
data, can be found in the ESM. Array data have been submitted
to the Gene Expression Omnibus under accession number
GSE64104. Expression patterns of SUCNR1 in murine and hu-
man macrophages were extracted from publicly available micro-
array datasets (GSE69607 and GSE5099, respectively).

Statistical analysis All values are expressed as mean ± SEM.
Data were only excluded in the case of technical failure
assessed by positive and negative control values. Statistical
comparisons between two groups were calculated using a
Student’s t test. Differences between four groups were tested
with ANOVA, followed by post hoc Bonferroni correction. A
value of p < 0.05 was regarded as statistically significant.

Results

Hypoxia and hyperglycaemia induce succinate release
from adipose tissue Obese insulin-resistant adipose tissue is
characterised by a hyperglycaemic and hypoxic environment
[17, 18]. To evaluate whether these conditions influence suc-
cinate secretion, adipose tissue explants were incubated in
medium with increasing glucose concentrations under both
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normoxic and hypoxic conditions (1% oxygen tension).
Under normoxic conditions, increasing glucose concentra-
tions induced a dose-dependent increase in succinate release
(up to 18-fold) (Fig. 1a). Hypoxia markedly increased succi-
nate release from adipose tissue (17-fold) compared with
normoxia, but independently of glucose concentration
(Fig. 1a). No significant differences were found in succinate
release between lean and obese adipose tissue ex vivo (ESM
Fig. 2a). In line with this, participants with diabetes and
hyperglycaemia (Fig. 1b) had a 53% increase in circulating
succinate level compared with normoglycaemic individuals
(Fig. 1c). No significant correlations were found, however,
between plasma succinate levels and plasma glucose levels
or other patient characteristics (ESM Table 3).

We subsequently set out to evaluate the significance of
SUCNR1 in adipose tissue. Human adipose tissue had higher
SUCNR1 mRNA expression in the SVF compared with MA
(Fig. 1d). In contrast, murine adipose tissue revealed higher
Sucnr1mRNA in MAvs the SVF (Fig. 1e). Interestingly, how-
ever, feeding mice an HFD rather than regular chow increased
expression of Sucnr1 in the SVF (Fig. 1e), pointing towards a
role of SUCNR1 in immune cell function in enlarged adipose
tissue. Obese adipose tissue is characterised by an increased
M1/M2 macrophage ratio [19]. To evaluate the expression of
SUCNR1 in M1 and M2 macrophages, publicly available
datasets of murine (GSE69607) [20] and human (GSE 5099)

[21] macrophages were analysed. Murine Sucnr1 expression is
similar in bone-marrow-derived (LPS-stimulated) M1 and (IL-
4 stimulated) M2 macrophages compared with (medium con-
trol)M0macrophages (ESMFig. 2b). In human cells, SUCNR1
expression was increased in M2 compared with M1 macro-
phages (ESM Fig. 2c) and was enhanced after differentiation
from monocytes to macrophages (ESM Fig. 2d). This reveals
differences in SUCNR1 expression patterns between mouse
and human macrophages. Interestingly, co-culture of murine
BMDMs with adipose tissue explants increased expression of
Sucnr1 in the macrophages (ESM Fig. 2e), showing that the
presence of adipose tissue rather than the macrophage M1/M2
phenotype determines SUCNR1 expression. There was no dif-
ference in Sucnr1 expression between macrophages exposed to
explants from lean vs obese mice (ESM Fig. 2e).

Absence of SUCNR1 affects inflammatory processes in
adipose tissue Succinate appears to activate inflammatory path-
ways at least partly via SUCNR1 [4, 22]. Interestingly, microar-
ray data of adipose tissue of LFD-fed Sucnr1−/− and WT mice
revealed that absence of SUCNR1 reduces the inflammatory trait
of the adipose tissue (ESM Fig. 3). Pathways assigned to the
innate immune system, cell migration and pathogen response
are downregulated in adipose tissue of Sucnr1−/− mice (Fig. 2).
These data suggest that the succinate signalling pathway may
affect inflammatory processes in adipose tissue.
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Fig. 1 Succinate is released from adipose tissue during hypoxia and
hyperglycaemia. (a) Succinate release from mouse adipose tissue ex-
plants incubated under hypoxic (white bars) or normoxic (black bars)
conditions in medium with increasing glucose concentration. (b)
Plasma glucose levels and (c) plasma succinate levels in control partici-
pants (n = 76) and type 2 diabetes patients (n = 58). (d) SUCNR1mRNA

levels in MA and SVFs of human subcutaneous and visceral adipose
tissue (n = 7). Data are fold change compared with MA subcutaneous.
(e) Sucnr1 mRNA levels in MA and SVF of epididymal adipose tissue
from mice fed chow or HFD (n = 4). Data are fold change compared with
MA from chow-fed mice. Con, control; T2DM, type 2 diabetes.
*p < 0.05, **p < 0.01 and ***p < 0.001 vs control or as indicated
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Absence of SUCNR1 does not affect body weight gain on
HFD feeding in mice, but reduces adipose tissue macro-
phage infiltration and improves glucose tolerance To de-
termine whether succinate signalling via SUCNR1 contributes
to obesity-induced abnormalities in adipose tissue, Sucnr1−/−

and WT littermates were subjected to HFD to induce obesity,
or to LFD as a control diet. Noticeably, during the develop-
ment of obesity in WT mice, Sucnr1 expression levels in
adipose tissue did not change (data not shown). WT and
Sucnr1−/− animals had similar body weights after 16 weeks
of HFD (Fig. 3a), and an equal increase in plasma leptin levels
(Fig. 3b). In addition, no differences in epididymal adipose
tissue mass (ESM Fig. 4a) or adipocyte size (Fig. 3c and ESM
Fig. 4b) were observed between the genotypes, paralleled by
similar plasma NEFA levels (Fig. 3d).

The livers of HFDWTand Sucnr1−/− animals showed similar
levels of steatosis, reflected by hepatic triacylglycerol levels

(Fig. 3e) and H&E staining (Fig. 3f). Plasma triacylglycerol
levels were similar in WT and Sucnr1−/− animals (Fig. 3g).
Total plasma cholesterol levels increased in response to HFD
feeding, but the increase was less in HFD-fed Sucnr1−/− vs WT
animals (Fig. 3h). Analysis of inflammatory pathways in adipose
tissue revealed a lower number of F4/80+ macrophages in adi-
pose tissue from HFD-fed Sucnr1−/−mice compared with HFD-
fed WT animals (Fig. 4a, b), paralleled by a reduced number of
crown-like structures (CLS) (Fig. 4c). RT-qPCR analysis for the
macrophagemarkersF4/80 (also known asAdgre1) (Fig. 4d) and
Cd68 (Fig. 4e) confirmed these results. This statistically signifi-
cant reduction in macrophage numbers was apparent after
16 weeks of an HFD, but not by 8 weeks (ESM Fig. 5a, b).

We assayed glucose metabolism after 2, 8 and 16 weeks of
HFD feeding (Fig. 5). Plasma glucose and insulin levels were
increased after 16 weeks of HFD compared with LFD feeding,
but did not differ between genotypes (Fig. 5a, b).

Adaptive immune system

1 B cell activation

2 REACT: immunoregulatory interactions between a lymphoid and a non-lymphoid cell

3 Regulation of B cell activation

4 Dendritic cell differentiation

5 Leucocyte-mediated immunity

Innate immune system

1 Activation of immune response

2 Positive regulation of immune response

3 Immune response-activating cell surface receptor 

signalling pathway

4 Immune response-regulating signalling pathway

5 Immune response-activating signal transduction

Cell migration and adhesion

1 Leucocyte cell–cell adhesion

2 Leucocyte migration

3 Heterotypic cell–cell adhesion

4 Cell adhesion mediated by integrin

5 Granulocyte migration

Response to pathogens

1 KEGG: tuberculosis

2 KEGG: measles

3 KEGG: Staphylococcus aureus infection

4 KEGG: RIG-I-like receptor signalling pathway

5 KEGG: leishmaniasis

Fig. 2 Absence of SUCNR1 reduces inflammatory pathways within ad-
ipose tissue. Enrichment map zooming in on four differentially regulated
pathways in adipose tissue from Sucnr1−/− vs WT mice. A larger version
of the enrichment map is shown in ESM Fig. 3. Gene set enrichment
analysis was performed to identify functional gene sets (i.e. metabolic
pathways or signalling transduction routes) that were changed in
Sucnr1−/− mice (p < 0.001, false discovery rate [FDR] < 0.25). Nodes
represent gene sets. A red node indicates induction of a gene set in

Sucnr1−/− compared with WT, whereas a blue node indicates suppression
of a gene set. Node size represents the gene set size. Gene sets were
grouped by cluster analysis, applying the Markov cluster algorithm. For
four specific clusters related to inflammation, the five most significant
gene sets are shown. KEGG, Kyoto Encyclopedia of Genes and Genomes
(www.genome.jp/kegg/); REACT, Reactome (www.reactome.org/); RIG-
I, retinoic acid-inducible gene I
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Glucose tolerance was similar in WT and Sucnr1−/− mice
after 2 weeks of HFD feeding (Fig. 5c, d). After 8 weeks of
HFD feeding, glucose intolerance developed in HFD-fed WT
animals, while Sucnr1−/− mice tended to remain glucose tol-
erant (Fig. 5e, f). This difference was more pronounced and
highly significant after 16 weeks of HFD feeding (Fig. 5g, h).
We conclude that the absence of SUCNR1 protects against the
development of obesity-induced adipose tissue inflammation
and glucose intolerance.

Absence of SUCNR1 does not affect macrophage cytokine
production, but reduces chemotaxis towards apoptotic
and hypoxic adipocytes To determine whether SUCNR1 has
any direct effect on the production of cytokines, peritoneal mac-
rophages fromWTand Sucnr1−/− animals were stimulated with
inflammatory LPS. Absence of SUCNR1 did not affect intracel-
lular IL-1β levels or secretion of TNF-α or IL-6 (ESM Fig. 6a–
c). In BMDMs, succinate itself did not affect secretion of the
chemokine (C-X-Cmotif) ligand 1 (KC or CXCL1), either in the
absence or presence of LPS (ESM Fig. 6d). Moreover, absence
of SUCNR1 did not alter secretion of KC in response to LPS or
succinate, suggesting no direct role of this pathway in the cyto-
kine or chemokine secretion potential of macrophages. In accor-
dance, absence of SUCNR1 did not affect the expression of the

chemokine Mcp1, nor the (anti)-inflammatory phenotype of
macrophages in adipose tissue after 16 weeks of HFD feeding,
illustrated by unchanged expression of Casp1, TNFα (also
known as Tnf), Cd86, Cd80, iNos (also known as Nos2), Mrc1
and IL-1ra (also known as Il1rn) (ESM Fig. 7a–h).

The absence of SUCNR1 reduced the number of macro-
phages in obese adipose tissue. Hypoxia/hyperglycaemia in-
duced the release of succinate by adipose tissue. As succinate
may serve as a chemoattractant, we investigated its role and that
of its receptor in the chemotactic response of macrophages
(Fig. 6). Macrophages of both genotypes showed highly induced
migration towards the positive control (zymosan-activated serum
[ZAS]), with Sucnr1−/− macrophages showing the highest num-
ber of migrated macrophages/field. Of note, no migration to-
wards succinate alone was observed. In contrast, using medium
derived from apoptotic and hypoxic 3T3 adipocytes as chemo-
tactic factor, macrophages lacking SUCNR1 showed reduced
migration potential. The succinate concentration inmedium from
apoptotic and hypoxic 3T3 adipocytes was 14% and 33%higher,
respectively, than in medium from control cells (ESM Fig. 8).

We evaluated whether the absence of SUCNR1 affects ex-
pression of receptors involved in chemotaxis in BMDMs and
adipose tissue derived from Sucnr1−/− and WT mice (ESM
Fig. 9). We did not detect major differences in the expression
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Fig. 3 Absence of SUCNR1
does not affect body weight gain
on HFD feeding. Sucnr1−/− and
WT mice were subjected to LFD
or HFD feeding for 16 weeks. (a)
Body weight development over
time. Grey, WT; black, Sucnr1−/−;
squares, LFD; circles, HFD. (b–
h) Results after 16 weeks of LFD
or HFD feeding: (b) plasma leptin
levels; (c) adipocyte size
distribution of epididymal
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staining of liver sections
(magnification ×200); (g) plasma
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cholesterol. Data are mean ± SEM
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*p < 0.05, **p < 0.01 and
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of Ccr5, Cxcr4 or Cd74 in BMDMs, but Ccr1 expression was
reduced in Sucnr1−/− cells. In contrast, in adipose tissue, ex-
pression of Ccr1 was not different, while Cxcr4 and Cd74
were upregulated on HFD feeding in WT mice, but not in
Sucnr1−/− mice; Ccr5 expression was increased in Sucnr1−/−

compared with WT controls fed an LFD.

Discussion

Our results demonstrate that succinate release from adipose
tissue is induced under metabolically disturbed conditions,
including hyperglycaemia and hypoxia. Moreover, we find
that the succinate signalling pathway is involved in the migra-
tion of macrophages towards adipose tissue, a crucial step in
the development of obesity-induced adipose tissue inflamma-
tion leading to systemic glucose intolerance.

Increased succinate release by adipose tissue in response to
hypoxia and hyperglycaemia Excessive release of succinate
from adipose tissue was induced by hypoxia or hyperglycaemia.
Surprisingly, ex vivo release of succinate from obese adipose
tissue was not greater than that from lean adipose tissue.
Possibly, succinate release from adipose tissue is acutely induced
by stress factors such as hypoxia and hyperglycaemia, which
may similarly occur (locally) in obese adipose tissue in vivo.
However, we envisage that ex vivo culturing of obese and lean
adipose tissue in stable circumstances diminishes differences that
may occur in vivo.

Circulating succinate levels were elevated in patients with
type 2 diabetes, suggesting that plasma succinate levels may
be sustained in chronic stress conditions such as obesity. Our
findings are confirmed by recent findings of elevated succi-
nate levels in plasma and adipose tissue from obese diabetic
mouse models [8] [23]. In contrast to our data, a previous
study did not find any increase in serum succinate in
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individuals with type 2 diabetes [8]. This discrepancy could
possibly be explained by differences in individual character-
istics. Participants with type 2 diabetes in our study were se-
lected based on failure of glycaemic control, and had relative-
ly high fasting plasma glucose levels. However, there was no
significant correlation of plasma succinate with fasting plasma
glucose levels, BMI or plasma lipids. Possibly, our human
cohort lacks sufficient power to link plasma glucose levels
with succinate levels directly because of the relatively high
variation in both variables. Alternatively, our ex vivo data

suggest that adipose tissue contributes to the release of succi-
nate under hyperglycaemic conditions. In plasma, however,
succinate occurs as the result of secretion by other metaboli-
cally active organs, such as liver and kidney, which may over-
ride release of succinate by adipose.

Additionally, the intestinal microbiomal Bacteroides spp.,
abundantly present in obese animals, are major producers of
succinate and may contribute to circulating succinate levels
[24]. Besides metabolic sources, the increased level of inflam-
mation in obesity may further contribute, as inflammatory
stimuli have been shown to enhance intracellular succinate
levels within macrophages in vitro [4].

SUCNR1 activation mediates adipose tissue macrophage
infiltration and glucose intolerance in obesity SUCNR1
only needs a twofold increase in plasma or urinary succinate
concentrations for a half-maximal response [6, 9]. The effects
of SUCNR1 signalling in adipose tissue were largely un-
known, yet our results suggest a prominent role for
SUCNR1 in the migration of macrophages towards obese ad-
ipose tissue. High levels of SUCNR1 expression by dendritic
cells and macrophages have been reported previously [22] and
likely contribute to the SUCNR1 expression observed within
the SVF of adipose tissue. In mice, SUCNR1 expression with-
in the SVF appeared low compared with adipocytes.
SUCNR1 may nevertheless have an important signalling
function, especially during obesity-induced macrophage infil-
tration in adipose tissue; this is supported by our in vitro data
showing enhanced SUCNR1 expression in murine macro-
phages exposed to adipose tissue explants. Remarkably,
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explants from obese mice did not increase SUCNR1 expres-
sion more than explants from lean mice, while HFD feeding
enhanced SUCNR1 expression within the SVF of adipose
tissue. Apparently, factors secreted by adipose tissue induce
expression of Sucnr1 in macrophages in vitro, while in vivo
other factors in adipose tissue in HFD mice further enhance
expression of Sucnr1. Future research should evaluate wheth-
er SUCNR1 expression in the SVF is similarly increased in
people with type 2 diabetes compared with controls, especial-
ly as our data revealed higher SUCNR1 mRNA levels in the
SVF vs adipocytes in humans.

Succinate has previously been identified as a chemoattractant
for dendritic cells, with signalling via the SUCNR1 [22].
Despite substantial SUCNR1 expression on macrophages
[22], we were unable to show any chemoattractant potential
for succinate alone. In line with this, despite the migration ob-
served with medium from apoptotic/hypoxic cells, the succinate
concentration in medium from 3T3 cells was low and the dif-
ference in concentration was greater between medium from
healthy 3T3 cells and control medium than between medium
from stressed vs healthy cells. Importantly, the migration of
U937 cells towards succinate previously published [22] was
very modest (8% of input cells) at a nearly saturating concen-
tration of succinate (150 μmol/l). We and others found that the
Emax (concentration of succinate at which all SUCNR1 recep-
tors are bound and activated) is around 200 μmol/l. For dendrit-
ic cells, only 10% and 35% of input cells responded to Emax
(225 μmol/l) and supra Emax (450 μmol/l) succinate concentra-
tions, respectively.Moreover, another study showed that around
E50 succinate concentrations (corresponding to 50% Emax;
~100 μmol/l) did not affect migration of peritoneal macro-
phages [25], in line with our observations in BMDMs. Thus,
although a macrophage cell line has previously shown migra-
tion towards succinate, we and others could not confirm this
using primary macrophages. This suggests that other factors
secreted by apoptotic/hypoxic adipocytes, known to be present
in enlarged adipose tissue in obesity [26, 27], induce macro-
phagemigration and that release of succinate frommacrophages
and auto/paracrine activation of macrophage SUCNR1
synergises with the initial factor to stimulate macrophage mi-
gration towards lipid-rich particles. A similar mechanism has
been proposed for microglial cell accumulation in age-related
macular degeneration, as SUCNR1-deficient microglial cells
show impaired migration towards oxidised LDL (and are unre-
sponsive to succinate) [25]. Alternatively, SUCNR1 activation
by succinate may induce cytoskeletal changes and polarisation
of immune cells facilitating their migration.

Although Sucnr1−/− BMDMs showed reduced expression
of chemokine (C-Cmotif) receptor 1 (CCR1), we propose that
the reducedmigration of Sucnr1−/−BMDMs ismost likely not
caused by reduced expression of CCR1 alone. Notably, mi-
gration per se towards ZAS as chemoattractant was not altered
in BMDMs lacking SUCNR1. However, specific migration to

conditioned adipocyte medium was affected in the absence of
SUCNR1.

SUCNR1 deficiency does not affect pro- and anti-
inflammatory markers in adipose tissue derived from HFD-
fed mice or cytokine production in response to succinate and/
or LPS in vitro. In dendritic cells, previous studies showed that
succinate acts in synergy with toll-like receptor (TLR) ligands
to potentiate the production of proinflammatory cytokines, at
least partly via SUCNR1 [22]. Our results suggest that succi-
nate does not have similar effects on (adipose tissue) macro-
phages. The improvement of the adipose tissue inflammatory
trait in the absence of the SUCNR1, as evidenced by our
microarray analysis, can therefore most likely be explained
by other mechanisms, including a reduction in the absolute
number of macrophages.

We show that Sucnr1−/− mice display enhanced glucose
tolerance on HFD feeding, despite having body weight similar
to WT mice. This enables the study of the role of SUCNR1 in
obesity-induced inflammation and metabolic disturbances in-
dependent of changes in bodyweight or adipose tissue weight.
A recent study showed that Sucnr1−/− mice have increased
body weight, with concurrent hyperglycaemia and impaired
glucose tolerance [28], in contrast to our observations.
Strikingly, the results of this group varied with the type and
length of HFD feeding. Only a prolonged dietary HFD inter-
vention of 20 weeks caused metabolic disturbances, while
chow-fed Sucnr1−/− mice had reduced adipose tissue weight.
Moreover, even HFD feeding for only 11 weeks reduced body
weight and tended to improve glucose tolerance [28]. The
dichotomous effects of SUCNR1 on the development of obe-
sity in their experiments could possibly result from the specif-
ic Cre model used to generate their Sucnr1−/− mouse or the
different diets/intervention periods [28]. The authors suggest
that the glucose intolerance likely concurs with the increased
white adipose tissue weight after prolonged HFD feeding. The
improvement in glucose tolerance in Sucnr1−/− mice can be
the result of improved insulin sensitivity and/or reduced insu-
lin secretion, something we cannot distinguish using our data.
In addition, as we used total Sucnr1−/− mice, we cannot dis-
tinguish the effects of SUCNR1 deficiency in individual cell
types, such as adipocytes vs macrophages. Future studies are
needed to disentangle these effects.

Overall, our results have identified succinate and its recep-
tor as a driver of obesity-induced inflammation and an impor-
tant contributor to the migration of macrophages into adipose
tissue, leading to the systemic glucose intolerance in obesity-
induced type 2 diabetes. As such, our data put forward
SUCNR1 as a promising therapeutic target to combat
obesity-induced diabetes.
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