
REVIEW

Totipotency in the mouse

Guangming Wu1
& Lei Lei1,2 & Hans R. Schöler1,3

Received: 31 October 2016 /Revised: 20 December 2016 /Accepted: 12 January 2017 /Published online: 19 January 2017
# The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract In mammals, the unicellular zygote starts the pro-
cess of embryogenesis and differentiates into all types of so-
matic cells, including both fetal and extraembryonic line-
ages—in a highly organized manner to eventually give rise
to an entire multicellular organism comprising more than 200
different tissue types. This feature is referred to as totipotency.
Upon fertilization, oocyte maternal factors epigenetically re-
program the genomes of the terminally differentiated oocyte
and spermatozoon and turn the zygote into a totipotent cell.
Today, we still do not fully understand the molecular proper-
ties of totipotency. In this review, we discuss recent findings
on the molecular signature and mechanism of transcriptional
regulation networks in the totipotent mouse embryo.
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Introduction

Multicellular organisms typically originate from a single toti-
potent cell, the zygote. In plants, structurally and functionally
specialized cells of leaves, roots, stem, floral parts, and endo-
sperm retain the potential to revert back to the undifferentiated

state and form entire new plants, irrespective of their ploidy
level (haploid, diploid, or triploid). The potential of termi-
nally differentiated cells to regenerate whole plants was
referred to as Bcellular totipotency^ by the remarkable
German plant physiologist Göttlieb Haberlandt in his fa-
mous address to the German Academy in 1902 [1]. Now,
regeneration of totipotency from isolated single plant cells
is well demonstrated [2]. However, in the mouse, totipo-
tency seems to be restricted up to two-cell embryos. The
term BTotipotency^ is defined by two related but different
criteria: (1) the ability of a single cell to contribute to all
cell lineages, including the TE, of an organism; and (2)
more stringently, the ability of a single cell to develop
into a complete organism [3, 4]. The zygote is the ulti-
mate totipotent cell (Fig. 1). Blastomeres from two-cell–
stage embryos also fulfill the more stringent definition for
totipotency [5–7]. Prior to the first lineage segregation,
totipotency is lost gradually [8]. Some blastomeres from
eight-cell–stage embryos contribute to the development of
all lineages in chimeric mice [9–11], and thus provide
evidence for totipotency based on the less stringent defi-
nition. In this review, we discuss present-day understand-
ing of the transcription factor networks and epigenetic
reprogramming involved in the emergence of totipotency
in the mammalian embryo.

Establishment of totipotency

Zygotic genome activation

Following fertilization, maternal factors play a leading
role in epigenetically resetting the parental DNA and his-
tones across the genome of the zygote, thereby preparing
for whole-genome activation and establishment of
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totipotency. A burst of transcription—known as zygotic
genome activation (ZGA)—begins at the late one-cell
stage and peaks at the two-cell stage in the mouse [12].
ZGA is characterized by more efficient use of TATA-less
promoters [13]; activation of repetitive elements [14], par-
ticularly endogenous retrotransposons, e.g., murine en-
dogenous retrovirus with a leucine tRNA primer binding
site (MERVL) at the two-cell stage as a marker for toti-
potent cells [15]; uncoupling of transcription and transla-
tion in zygotes [16]; and activation of enhancers for tran-
scription in two-cell embryos [17]. ZGA provides the first
step in the establishment of totipotency.

Maternal factor storage

During oogenesis, the volume of oocytes dramatically in-
creases to accommodate the storage of maternal factors
(RNA, proteins) required for establishing totipotency and
ZGA, such as nucleoplasmin (NPM) 2 [18], and the subcorti-
cal maternal complex (SCMC, including Mater, Tle6, Floped,
Padi6, Filia) [19]. In the growing oocytes, subcortical ribonu-
cleoprotein (RNP) particle domains (SCRDs) are formed to
serve as the storage compartment of maternal messenger RNA
(mRNA) [20]. Maternally accumulated yes-associated protein
(YAP) has recently been identified to play a critical role in
ZGA [21]. However, the paucity of biological materials from
mouse oocytes and zygotes has hampered our effort to under-
stand how maternal factors reprogram cells to totipotency
[22]. Further identification of key maternal regulators and
their functions could greatly facilitate studies for improving
chromatin reprogramming [23, 24].

Histone modifications

Hyperaccessibility of chromatin by transcriptional machinery
is a prerequisite for ZGA. Chromatin accessibility is largely
determined by histone modifications of its N-terminal tails
(Bmarks^), which acts as a fundamental epigenetic regulator
to control the gene expression during embryo development in
mammals.

There are two major types of histone modifications
involved in regulation of gene expression during the
ZGA: lysine acetylation and lysine (tri)methylation. H4
acetylation makes pronucleus permissive for active tran-
scription [25]. Loss of the maternal Brg1, a component
of the ATP-dependent chromatin remodeling SWI/SNF
complex, results in reduced levels of 30% of zygotic
genes and arrest at two-cell, demonstrating that chroma-
tin remodelers that induce to acetylation are required for
mouse embryogenesis [26].

The opposing marks histone H3 lysine 4 trimethylation
(H3K4me3) and histone H3 lysine 27 trimethylation
(H3K27me3) at gene promoter regions are associations with
active and repressed genes, respectively. Following fertiliza-
tion, H3K4me3 and H4 acetylation in the paternal genome are
responsible for a minor ZGA. They are depleted in late
zygotes stage but reestablished on promoter regions during
the major ZGA at the late two-cell stage [27, 28]. On the
maternal genome, a noncanonical (nc) form of H3K4me3
(ncH3K4me3) is present broadly in oocytes and zygote and
overlaps almost exclusively with partially methylated DNA
domains. The ncH3K4me3 is erased in the late two-cell
embryos [27]. Active removal of broad H3K4me3
domains by the lysine demethylases KDM5A and
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Fig. 1 Mouse preimplantation development. a Mature oocytes are
ovulated from the ovary into the oviduct and fertilized by sperm to
establish totipotent zygotes that divide and become blastocysts, and
finally implant in the uterus at embryonic day 4.5. b After fertilization,

stored maternal factors trigger zygotic genome activation (ZGA) that
results in formation of a totipotent zygote with a unique two-cell-
specific gene-expression profile, followed by waves of transcription
activations of lineage specific genes during preimplantation development
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KDM5B is required for ZGA and is essential for early embryo
development [29].

Protamine-to-histone replacement

At the time of fertilization, the chromatin molecules of the pater-
nal and maternal genomes exhibit different epigenetic marks and
organization. The paternal genome is haploid, and most of it is
packaged densely, with protamines rather than histones, while
the maternal genome is diploid, as it arrests at metaphase II,
and is packaged with histones. After a sperm penetrates the cy-
toplasm of the oocyte, the paternal genome decondenses, en-
abling protamine removal and repackaging with the stored ma-
ternal histones in the absence of DNA replication, while the
maternal genome completes meiosis. These newly integrated
histones possess a transcriptionally permissive pattern of modifi-
cations, including H4 hyperacetylation [25] and H3K9 and
H3K27monomethylation [30]. Of note, when round spermatids,
which contain DNA that is still associated with histones, are
injected into oocytes by round spermatid injection (ROSI), pa-
ternal genome failed to undergo active DNA demethylation, but
whenmature sperm, which contain DNA associated mainly with
protamines, are injected into oocytes by intracytoplasmic sperm
injection (ICSI), active paternal genome demethylation is ob-
served [31]. These results indicate that the protamine-histone
exchange may cause the pronounced demethylation of the pater-
nal DNA in the zygote. However, as both ROSI- and ICSI-
derived embryos have the same likelihood of developing to term,
paternal genome demethylation mediated by protamine-histone
exchange is not an essential step in ZGA and establishment of
totipotency [32].

Histone variant H3.3

During preimplantation development, striking changes in epi-
genetic modifications in the form of deposition of histone
variants, reestablishment of histone marks, and DNA demeth-
ylation occur throughout the genome.

Both canonical histones (H2A, H2B, H3, and H4) and
variant histones (which have sequence homology and
structural similarity with canonical histones, but harbor
specialized functions and play essential roles in chromatin
reprogramming) are incorporated into chromatin through-
out the first cell cycle of the zygote. Variant histones
preferentially are deposited into specific genomic regions
to form nucleosomes with unique biophysical characteris-
tics. As one of the three variants of histone H3 in mam-
mals, H3.3 differs from canonical H3 in only four amino
acids and incorporates into chromatin in both a
replication-independent and a replication-coupled manner.
H3.3 in te rac t s wi th the chaperones HIRA and
Daxx/ATRX and is enriched in transcriptionally active
regions [24]. H3.3 also localizes to telomeres, where its

presence depends upon ATRX [33]. Following fertiliza-
tion in the mouse, maternal H3.3 is deposited by HIRA
onto paternal chromatin during the protamine-to-histone
exchange [34], an essential step for oocyte-mediated
reprogramming [35]. H3.3 is also required for maintaining
chromatin in the decondensed state in early mouse embry-
os by antagonizing linker H1, an activity dependent on
H3.3 lysine 36 [36].

Active DNA demethylation

The genome-wide cytosine methylation profile differs among
cell types, and it functions as a form of memory of the cell’s
identity [37]. 5-methylcytosine (5mC) is present mostly in
CpG sequences [37–39]. Methylation occurs globally in
mammalian genomes at various loci including genes,
transposons, repeat sequences, and intergenic DNA [40].
The enzymes that methylate cytosine to form 5mC have been
well characterized. DNA methyltransferase (DNMT) 1
preferentially methylates hemi-methylated cytosines in CpG
sequences and thus acts as a methyltransferase that maintains
genome-wide methylation patterns during replication
[41–43]. DNMT3A and DNMT3B can methylate
unmethylated CpG sequences and hence function as de novo
methyltransferases [44]. DNMT3L has no catalytic activity
but recruits DNMT3A and DNMT3B to their target sequences
by recognizing nucleosomes that carry unmethylated histone
H3 lysine 4 (H3K4) [45–49].

In concordance with histone acquisition, the paternal genome
undergoes genome-wide loss of DNA methylation via an active
mechanism prior to the start of DNA replication [50, 51].

Recent studies have found a new mechanism of active de-
methylation involving prior modification of methylated cyto-
sine and nucleotide excision and repair. 5-hydroxy-
methylcytosine (5hmC), a stable hydroxylated metabolite of
5mC, was first identified in the genome of T-even bacterio-
phages [52], and it is produced as an oxidation damage prod-
uct of 5mC [53, 54]. Subsequent studies have found this to
actually be a physiologically relevant DNA modification in
mammals, e.g., in mouse neurons and embryonic stem cells
(ESCs) [55, 56]. The hydroxylation of 5mC into 5hmC is
catalyzed by a family of dioxygenases—the ten-eleven trans-
location (TET) 1/2/3 proteins. TET proteins convert 5mC into
5hmC [56], and further into 5-formylcytosine (5fC) and 5-
carboxymethylcytosine (5caC) for excision [57, 58]. As
5hmC has a significantly lower affinity for methyl-CpG bind-
ing proteins [59], it may be directly involved in epigenetic
regulation. Indeed, genome-wide DNA demethylation in the
zygote is accompanied by Tet3-driven genome-wide oxida-
tion of 5mC into 5hmC [60–62]. Such 5hmC formation does
not account for the initial loss of paternal 5mC in the early
pronuclear stage, but it is dependent on the activity of zygotic
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Dnmt3a and Dnmt1, suggesting that Tet3 is targeting de novo
methylated sites for the accumulation of 5hmC [63].

Although recent sequence data has shown active demeth-
ylation in maternal DNA as well [64, 65], high levels of 5hmC
are detected only in the paternal genome of the zygote [60,
66]. A maternal knockout of Tet3 has been shown to prevent
both elevation of 5hmC and reduction of 5mC levels in the
paternal genome, impair promoter demethylation of Oct4
(Pou5f1) and Nanog, delay the activation of a paternally de-
rivedOct4 transgene, and cause frequent death of the resulting
embryos [62]. These findings suggest that during normal de-
velopment, TET3 converts 5mC into 5hmC in the paternal
genome, and that TET3-mediated hydroxylation of 5mC ac-
counts for at least some of the active DNA demethylation of
the paternal genome. The ubiquitin ligase Cullin-ring finger
ligase-4 (CRL4) has recently been reported to induce TET3
activity and plays an essential role in female fecundity [67],
further strengthening the importance of active DNA demeth-
ylation during embryonic development.

Activation of embryonic Oct4 expression

The maternal octamer-binding transcription factor 4 (Oct4),
encoded by the gene Pou5f1 hereafter referred to as Oct4, is
at the top of the pluripotency regulatory hierarchy in pluripo-
tent cells [62, 63]. However, several recent studies using con-
ditional genetic depletion of maternal Oct4 have found that the
oocytes of Oct4flox/flox/ZP3Cre/+ female mice are capable of
completing full-term development after fertilization, indicat-
ing that Oct4 is not required for initiating totipotency or
pluripotency in embryos [68–70]. The two cell-like ESCs
are found to lose Oct4 expression at the protein level [15],
suggesting that Oct4 activation in early embryos demarcates
pluripotency and totipotency. Still, Oct4 is at the top of the
pluripotency regulatory hierarchy in pluripotent cells [71, 72].
It forms a positive feedback loop [73] and is essential for
maintaining pluripotency [74]. Therefore, identifying up-
stream factors of Oct4 activation in early embryos is critical
for understanding the molecular regulation network of totipo-
tency and transition from totipotency to pluripotency. There
are a few transcriptional factors found to be involved in the
regulation of Oct4 expression. In proliferating stem cells,
Promyelocytic leukemia (Pml) protein, along with the tran-
scription factors TR2, SF1, and Sp1, and the Brg1-
dependent chromatin remodeling complex (BRGC), associ-
ates with the Oct4 promoter to maintain a nucleosome-free
region for Oct4 gene expression [75]. Cancer-associated fac-
tor Tpt1 has been reported to activate the transcription ofOct4
and Nanog in transplanted somatic nuclei in Xenopus oocytes
[76], but knockdown of Tpt1 by small interfering RNA
(siRNA) does not reduce Oct4 expression in mouse embryos
[68]. The maternal transcription factor spalt-like transcription
factor 4 (Sall4) binds to the Oct4 distal enhancer (DE), and

evidence shows that injection of Sall4 siRNA into zygotes
knocking down Sall4 mRNA levels by 50% leads to a 70%
reduction of Oct4 expression levels, suggesting that Sall4 is a
transcriptional activator of Oct4 expression [77].
Contradictorily, knockdown of Sall4 by injection of more ef-
ficient Sall4 siRNA into maternal Oct4-deficient zygotes—to
avoid any possible effect of maternal Oct4 as a positive
autoregulator—does not lead to any Oct4 expression changes
at the blastocyst stage [68]. The nuclear receptor subfamily 5,
group A, member 2 (Nr5a2), also known as liver receptor
homolog-1 (LRH-1), was found to maintain Oct4 expression
at the epiblast stage of embryonic development, by binding to
the proximal enhancer (PE) and proximal promoter (PP) re-
gions ofOct4, but to play no evident role in the self-renewal of
ESCs [78]. However, Nr5a2 can induce epiblast stem cells
into ground-state pluripotency—a basal proliferative state that
is free of epigenetic restriction [79], and to replace Oct4 in the
reprogramming of somatic cells into pluripotent cells [80]. As
a component of an active DNA demethylase, activation-
induced cytidine deaminase (AID) has also been shown to be
required for Oct4 activation during reprogramming [81]. A
genome-scale RNA interference (RNAi) screen in ESCs has
identified components of the Pol II-associated factor 1 (Paf1)
complex that have strong effects on Oct4 expression, and
shown that Paf1C overexpression blocks the differentiation
of ESCs while Paf1C knockdown causes expression changes
similar to those caused by Oct4 or Nanog depletion [82].
Studies in search for oocyte master genes have revealed a
novel oocyte-specific eukaryotic translation initiation factor
4E (Eif4eloo) [83] and a large number of oocyte-specific
genes with yet unknown functions, such as those belonging
to the homeodomain transcription factor Obox family [84]. To
this day, it is unclear how Oct4 expression is activated in the
embryo.

Molecular signature of totipotency

Unlike the case for pluripotency, the mechanism underlying
the molecular regulation of totipotency remains largely un-
known. In mice, only the zygote and two-cell-stage blasto-
meres can generate an entire organism on their own, and are
therefore regarded as totipotent cells [6]. The morphology of
two-cell embryos is characterized by lack of 4,6-diamidino-2-
phenylindole (DAPI)–stained chromocenters in the nucleus
[85], and the high chromatin mobility at the two-cell stage
progressively decreases with development [86]. The transcrip-
tional profile of two-cell embryos is characterized by activa-
tion of major satellites, MERVL, and two-cell-specific genes,
such as Eif1a-like genes (which include Gm5662, Gm2022,
Gm4027, BB287469, Gm2016, Gm21319, Gm8300, and
Gm10264), Zscan4 genes (Zscan4b–Zscan4f), Zfp352, and
Tdpoz genes (Tdpoz1–Tdpoz5) [87]. A recent study has
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demonstrated that depletion of either the p150 or p60 subunit
of chromatin assembly factor-1 (CAF-1) in ESCs leads to the
formation of 2-cell-like cells with a morphology and transcrip-
tional profile similar to those of two-cell-stage embryos [88].
As CAF-1 performs the first step of the chromatin assembly
process by bringing H3 and H4 in close proximity to the
daughter DNA strands [89] and as the absence of functional
CAF-1 delays nucleosome assembly [90], the inefficiency of
chromatin assembly in two-cell embryos has been proposed to
be a key mechanism in establishing totipotency [88].

Retrotransposon transcripts contribute a significant portion
to the transcriptome during ZGA. Retrotransposons can also
act as alternative promoters in the activation of protein-coding
genes by generating chimeric transcripts with retrotransposon
gene junctions [14]. The most active LINE-1 retrotransposons
form a stimulatory auto-enhancing loop, indicating that ma-
ternal retrotransposon transcripts could activate endogenous
retrotransposons after fertilization [91].

Zscan4 is activated during ZGA [92] and can act as an
activator of spontaneous telomere sister chromatid exchange
(T-SCE) and telomere elongation in mouse ESCs [93].
Knockdown of Zscan4 by siRNAs delays progression from
the two-cell to four-cell stage, and thus leads to the formation
of blastocysts that fail to implant or proliferate in blastocyst
outgrowth culture [92]. Zscan4 is essential for generation of
induced pluripotent stem cells (iPSCs), and its ectopic expres-
sion can activate early embryonic genes and improve the ef-
ficiency of iPSC generation [94]. Expression of the Zscan4
gene family plays important roles in genome stability and
maintenance of telomeres [93]. Of note, the absence of nuclear
receptor subfamily 0, group B, member 1 (Nr0b1), also
known as Dax1, which is an important component of the
transcription factor network that governs pluripotency in
mouse ESCs, also leads to the overexpression of two-cell em-
bryo-specific transcripts, including Zscan4c, preventing nor-
mal self-renewal by inducing arrest at the G2 phase followed
by cell death [95].

Furthermore, another recent study has described a
small transient ESC/iPSC population with fluctuating ex-
pression of a particular retrotransposon, MERVL and a
transcriptome that closely resembles that observed in the
blastomeres of the totipotent, two-cell embryos [15], indi-
cating that some features of totipotent cells can be
regained occasionally in pluripotent cells. This phenome-
non provides us with a novel way of studying certain
aspects of totipotency. However, the study did not prove
these two-cell like cells to be totipotent according to the
stringent criteria, in which a single totipotent cell can
develop into a complete organism. Moreover, near-
complete (95%–99%) knockdown of muERV-L transcripts
by three different siRNA duplexes did not interfere with
full-term embryonic development (unpublished data), sug-
gesting that the transcripts of retrotransposon elements are

not involved in the regulation of totipotency, but rather
occur as a consequence of global DNA demethylation
prior to ZGA.

Recent progress in identifying two-cell marker genes and
new players in the genome-wide demethylation process has
shed light on the molecular mechanism governing totipotency.
Nevertheless, many questions still remain unanswered. To
date, no totipotent cell lines have been established in vitro.
The upstream Bmaster^ signals that trigger the establishment
of totipotency have not yet been identified. Given the distinct
phases of ZGA in the mouse, it is likely that multiple
regulators/cofactors are associated with regulators of ZGA to
ensure temporal gene activation for establishing totipotency. It
would be interesting to see how the upstream signals relate to
histone replacement or modification, genome-wide DNA de-
methylation, ZGA, and the expression of two-cell-specific
genes, particularly those of maternal origin. The identification
of two-cell marker genes has moved us closer to solving the
fundamental question in developmental biology of how toti-
potency is established.
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