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clinical and radiological results are of course helpful, how-
ever genetic conformation is always necessary.
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Introduction

Hypomyelination, hypogonadotropic hypogonadism, and 
hypodontia is an autosomal recessive hypomyelinating dis-
order first reported in children and adults by Wolf et al. and 
Timmons et al. [1, 2]. These patients had a hypomyelinat-

Abstract  The diagnosis of 4H leukodystrophy (hypomyelin-
ation, hypogonadotropic hypogonadism, and hypodontia) is 
based on clinical findings and magnetic resonance imaging 
(MRI). Recently, mutations of the genes encoding Pol III 
(RNA polymerase III) subunit A (POLR3A) and subunit B 
(POL3B) have been identified as the genetic causes of hypo-
myelination. We describe two Polish female siblings aged 
5 and 10 years with compound heterozygous mutations in 
POLR3B. They both presented with similar clinical symp-
toms and MRI findings presenting as 4H leukodystrophy, 
and the association of polymicrogyria and cataract. Accord-
ing to our observation in young children with the absence of 
hypogonadotropic hypogonadism, brain MRI pattern is very 
essential in proper early diagnosis of 4H leukodystrophy. All 
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ing leukodystrophy with prominent cerebellar features and 
followed a progressive course. At that time, no molecular 
cause was identified. In 2006, Timmons et al. [2] suggested 
the term “4 H syndrome”, although it should be noted that 
the non-neurological features hypodontia and/or hypogo-
nadism are not always present [2, 3].

Several syndromes causing diffuse hypomyelination have 
been documented, including hypomyelination, hypodontia, 
and hypogonadotropic hypogonadism (4H) syndrome (MIM 
612440) [1, 2, 4], hypomyelination with atrophy of the basal 
ganglia and cerebellum (H-ABC) (MIM 612438) [5, 6], dif-
fuse cerebral hypomyelination with cerebellar atrophy and 
hypoplasia of the corpus callosum [7, 8], tremor–ataxia with 
central hypomyelination [9], Pelizaeus–Merzbacher disease 
and Pelizaeus–Merzbacher-like syndrome [10, 11], among 
others.

The diagnosis of 4H syndrome is based on clinical find-
ings and magnetic resonance imaging (MRI). Recently, 
mutations of the genes encoding POLR3 (RNA poly-
merase III) subunits POLR3A (POLR3A), subunit POLR3B 
(POLR3B) and POLR1C (POLR1C) have been identified as 
the genetic causes of this disorder [3, 8, 12–18]. POLR3 is 
an enzyme responsible for transcription of specific noncod-
ing small RNAs involved in the regulation of essential cel-
lular processes (transcription, RNA processing, translation) 
[19]. It is suggested that mutations in POLR3A, POLR3B, 
and POLR1C lead to abnormal POLR3 function and abnor-
mal production of proteins important for development of the 
central nervous system white matter [18, 20].

In 2014, Wolf et al. published a multinational cross-sec-
tional observational study on the clinical, molecular, and 
MRI characteristics of 105 patients with mutation-proven 
4H leukodystrophy caused by mutations in POLR3A or 
POLR3B. A total of 62 patients had mutations in the POLR3B 
gene [21]. In our publication we report two Polish female 
siblings diagnosed and treated at the Children’s Memorial 
Health Institute in Warsaw, Poland, with compound hetero-
zygous mutations in POLR3B. They both presented with 
compatible clinical and MRI features of 4H leukodystrophy, 
together with polymicrogyria (PMG) and cataracts, which 
have been never reported in 4H patients before.

Methods

Magnetic Resonance Imaging

Brain MRI was performed in both patients using a 1.5 T 
scanner with 8-channel phased-array head coil. TSE 
T2-weighted images in axial (TR/TE, 3930/108  ms), 
coronal (TR/TE, 5290–5450/135), and sagittal (TR/TE, 
5500–5610/135–143  ms) planes, axial fl2D T1-weighted 
(TR/TE, 234/4.8  ms), and tfl3d_nsIR sag_iso (TI/TR/

TE, 1100/1840/39  ms) were acquired. Diffusion-weighted 
3-scan trace in the transverse plane by using echo-planar 
imaging (TI/TR/TE, 1100/6000/72 ms) was performed with 
b-values of b = 0. 500, and 1000. The MRI characteristics 
were analyzed, with particular attention paid to the struc-
tural anomalies and the state of brain myelination, accord-
ing to previously published criteria [22–24].

Retrospectively, two neuroradiologists independently 
reviewed all the MR images. Discrepancies were solved by 
consensus. Sizes of the cerebellar hemispheres and vermis, 
myelination of the corpus callosum, posterior limb of the 
internal capsules (PLIC), cerebral and cerebellar white mat-
ter, and optic radiation were evaluated. The sizes of patients’ 
cerebellum were subjectively compared with the cerebellum 
of aged-matched controls. Cerebral atrophy was defined as 
volume loss leading to enlargement of the ventricles and 
subarachnoid spaces. Cerebellar atrophy was assessed by 
evaluating the degree of enlargement of the fissures of the 
cerebellar hemispheres and vermis. White matter hypomy-
elination was assessed on axial T1 and T2-weighted images 
as previously defined [22–24].

DNA Screening

Peripheral blood samples were obtained from siblings and 
their parents after obtaining informed consent. Genomic 
DNA was extracted using standard methods. Mutation 
analysis was first performed in Montreal, Canada as part 
of a REB (Research Ethics Board)-approved research proj-
ect using whole exome sequencing, followed by Sanger 
sequencing for validation of variants and segregation analy-
sis. The results were confirmed in a clinical lab—Medgen in 
Warsaw, Poland.

Case Report

Case 1

This patient was admitted for the first time to our hospital at 
the age of 8 years for investigations of neurological abnor-
malities and dysmorphic features. Her parents are healthy. 
The perinatal history revealed that she was born after an 
uneventful second pregnancy and delivery. Of note, the 
patient’s head circumference at birth was 31 cm (< 3rd per-
centile). Hypotonia and bilateral hip dysplasia were noted in 
the neonatal period. Hip dysplasia was surgically corrected 
at the age of 2 years and the girl was able to walk 10 months 
later despite the right leg being 2 cm shorter than the left. 
Tremors in the extremities and trunk occurred at the age 
of 30 months and were more intense in the morning. Over 
time, gait disturbances and cerebellar signs became more 
pronounced. Intellectual disability was diagnosed at the age 
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Indeed, T2 hyperintensity of the white matter was observed 
in the cerebral and cerebellar hemispheres, as well as in 
bilateral middle cerebellar peduncles. The inferior collic-
uli were myelinated and visible as low signal intensity on 
T2- and high signal on T1-weighted images. Hypointense 
signal of the dentate nuclei was noted, indicating relatively 
preserved myelination. Mild cerebellar atrophy involved 
both the vermis and the hemispheres. The corpus callosum 
was thin and unmyelinated. Relatively, preserved myelina-
tion of the anterolateral thalamus and optic radiation was 
also observed. No hypointense signal was visible in the 
PLIC, indicating that the pyramidal tracts were not myelin-
ated (Fig.  1). Mild enlargement of the lateral ventricles 
was observed. Additionally, diffuse bilateral and symmet-
rical frontoparietal PMG was noticed (Fig.  2). The signal 
of basal ganglia and brainstem was normal. At the time of 
the examinations, the patient was prepubescent and a pitu-
itary gland of 5.5 × 2.5 × 9 mm was visualized (small for her 
age; pituitary gland diameter was compared with standards 
published by Fink et al. [25]). There was no hypophysis 
structural anomaly. Magnetic resonance findings are sum-
marized in Table 2. During the 2 years of observation (two 
MRI examinations) a slight progression of atrophy involv-
ing the vermis and cerebellar hemispheres was observed. 
No change in the diffuse hypomyelination of the white mat-
ter was noted.

of 4 years (IQ 34). She had vision problems and binocular 
cataracts were diagnosed at the age of 7.5 years. Cataracts 
progressed with such intensity that ophthalmological sur-
gery was necessary 6 months later. Myopia was also noted. 
She lost the ability to walk at the age of 8 years. Micro-
cephaly (head circumference 48 cm—below 3rd percentile) 
was also noted at the age of 8 years. At her most recent visit 
with us, the patient was 12-year-old. She was still axially 
hypotonic, wheelchair bound, anarthric, G-tube fed because 
of dysphagia, had severe cerebellar features and only mild 
pyramidal features. No epileptic seizure was observed 
clinically, but her electroencephalography (EEG) revealed 
epileptic discharges during sleep. All clinical features are 
summarized in Table 1.

Genetic and metabolic tests were pursued due to the 
presence of dysmorphic features (deep set eyes, hypodon-
tia, microcephaly) and developmental delay. Karyotype 
was normal (46XX), Rett syndrome, Angelman syndrome, 
Pelizaeus–Merzbacher disease, Krabbe disease, neuronal 
ceroid-lipofuscinosis, metachromatic leukodystrophy, and 
GM1/GM2 gangliosidosis were excluded and no other met-
abolic diseases were found. The patient’s body weight and 
height were reduced, although growth hormone deficiency, 
hypothyroidism, and adrenal insufficiency were excluded.

The cerebral MRI performed at the age of 8 and 10 years 
revealed diffuse supra- and infratentorial hypomyelination. 

Table 1  Clinical symptoms and signs in female siblings with 4H syndrome
Type of symptoms and signs Case 1 age of onset Case 2 age of onset
Cataract + Diagnosed and operated 

at the age of 8 years
+ Diagnosed and operated 

at the age of 3 years
Myopia + 8 years + 3 years
Nystagmus − − − −
Optic atrophy − − − −
Sensorineural hearing loss + Right ear 3 years + Left ear 3 years
Microcephaly (below 3rd percentile) + At birth + At birth
Dysphagia + 4 years − −
Hypotonia + At birth + At birth
Brachial plexus paresis − − + Left At birth
Tremors + 2.5 years + 2.5 years
Ataxia + 2 years + 2 years
Dysmetria + 3 years + 3 years
Dysarthria + 6 years − −
Developmental delay + 1 year + 1 year
Intellectual disability + 4 years + 4 years
Wheelchair use + 8 years − −
Epileptic seizures − − − −
Epileptic discharges in EEG + 3 years + 3 years
Dysplasia of the hips + At birth operated at the 

age of 2 year
− −

Flat -valgus feet + 3 years + 3 years
Short stature (below 3rd percentile) + 2 years + 2 years
Hypodontia + 2 years + 2 years
Hypogonadotropic hypogonadism Too young − Too young −
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Fig. 1  Brain magnetic resonance 
imaging (MRI) of the patients. 
T2-weighted images. Case 1 is 
seen in A–L. The first column 
(A–F) shows the brain MRI at the 
age of 8 years while the second 
column (G–L)—the MRI at the 
age of 10 years. Case 2 is shown 
in M–Z. The third column (M–S) 
shows the brain MRI at the age of 
3 years while the fourth column 
(T–Z) shows the MRI—at the age 
of 5 years. Coronal T2-weighted 
images demonstrated very thin 
and slightly myelinated optic ra-
diation (arrow on G) and myelin-
ated inferior colliculi (arrow on 
M). Typical hypointensity of the 
dentate nucleus is seen on axial 
T2-weighted images (arrow on B) 
more evident in the older girl (B, 
H). Note the hyperintense signal 
of the middle cerebellar peduncle 
(arrow on I) demonstrating 
hypomyelination of this structure. 
In the older girl axial images 
(C, I) mild atrophy of cerebellar 
hemispheres is seen with little 
progression over 2 years. Cer-
ebellar hemispheres did not show 
atrophy in the younger girl (N, O, 
U, V). Diffuse hyperintensity of 
the cerebral white matter is seen 
on supratentorial axial images 
of the brain. Ventroanterolateral 
nucleus of the thalamus appeared 
hypointense (arrow, picture D). 
Posterior limbs of internal cap-
sules are not myelinated. Mild en-
largement of the lateral ventricles 
is visible. Corpus callosum is thin 
and unmyelinated on midline sag-
ittal T2-weighted images of the 
older girl (F, L). Note atrophy of 
the vermis. Slight progression of 
the atrophy of the vermis is seen. 
Corpus callosum of the younger 
girl (S, Z) is also unmyelinated 
and thinned posteriorly (isthmus 
and splenium); slight progression 
of changes. Note prominent, but 
within normal limits, primary fis-
sure of the vermis (arrow, picture 
Z), which remained unchanged 
over 2 years
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paedic instruments; orthopaedic surgery was not necessary. 
She started to walk without help at the age of 27 months. 
The girl was also hypotonic. The child was diagnosed with 
myopia and she developed cataracts very rapidly and at an 
earlier age than her sister. She needed ophthalmological 
surgery at the age of 3 years. Her dysmorphic features and 
other clinical symptoms were almost the same as those of 
her sister, including severe morning tremors, ataxic gait, and 
intellectual disability (IQ 50 at the age of 4 years). Speech 
development was also delayed: at the age of 6 years she was 
only able to say 20 words, but without dysarthria. Due to the 
similar clinical picture, neuroimaging was performed and 
a genetic etiology was suspected. Like her sister, she had 
microcephaly at birth, with a head circumference of 32 cm 
(< 3rd percentile), and at the age 3 years, with a head cir-
cumference of 44 cm (< 3rd percentile). Clinical features are 
summarized in Table 1.

MRI of the brain performed at ages of 3 and 5 years 
showed less pronounced hypomyelination in both infra- and 
supratentorial regions relative to her sister. Hypomyelin-
ation of the cerebellar white matter was less significant. The 
inferior colliculi were myelinated and visible as low signal 
intensity on T2- and high signal intensity on T1-weighted 
images. A slight hypointense signal of the dentate nucleus 
is evident (indicating relatively preserved myelination). The 
size of the cerebellar hemispheres and vermis were within 
normal limits, the primary fissure in the vermis was visible. 
The posterior part of the unmyelinated corpus callosum 
(isthmus and splenium) was thinned. Relatively, preserved 
myelination of the anterolateral thalamus and the optic radi-
ation was observed. No signal hypointensity of the PLIC 
was noted, indicating that the pyramidal tracts were not 
myelinated, as in her sister (Fig. 1). Diffuse, bilateral, sym-
metrical frontoparietal PMG was also visualized. The basal 
ganglia and brainstem were within normal limits. At the 
time of examination the girl was prepubertal, and according 
to Fink AM et al. [25] her pituitary gland (5.6 × 3.9 × 9 mm) 
was borderline small. There was no hypophysis structural 
anomaly. Trigones of the lateral ventricles were slightly 
widened. MR findings are summarized in Table 2. Compar-
ing the patient’s two examinations revealed mild atrophic 
progression in the isthmus of the corpus callosum.

Molecular Results

Both patients were found to be compound heterozygotes for 
mutations in POLR3B: c.1939G > A (p.E647K) in exon 16 
and c.2084-6A > G in intron 19. The mutation c.2084-6A > G 
has been previously reported and it is known to be disease-
causing [3, 21]. Variant c.1939G > A (p.E647K) has not been 
reported in any database, nor in other POLR3-related leuko-
dystrophy cases. In silico analysis using the bioinformatics 

Case 2

The first patient’s younger sister was admitted at the age of 
3 years. Her prenatal and perinatal histories were unevent-
ful. In the neonatal period, she demonstrated clinical signs 
of a left brachial plexus paresis (Erb’s paresis). Both hips 
were also dysplastic and treated conservatively with ortho-

Table 2  Summary of the magnetic resonance findings
Magnetic resonance imaging Case 1/at the 

age of 10 year
Case 2/at the 
age of 5 year

Hypomyelination of the 
cerebellar white matter

Yes Yes less 
accentuated

Hypomyelination of middle 
cerebellar peduncles

Yes Yes less 
accentuated

Atrophy of the cerebellar vermis Yes No
Atrophy of the cerebellar 
hemispheres

Yes mild No

Myelinated dentate nuclei Yes Yes less 
accentuated

Atrophy of the cerebral 
hemispheres

Yes mild No

Hypomyelination of the cerebral 
white matter

Yes Yes

Myelinated optic radiation Yes Yes
Myelinated inferior colliculi Yes Yes
T2-hypointense posterior limb 
of the internal capsules signal

No No

Corpus callosum unmyelinated Yes Yes
Thin corpus callosum Yes Yes/partially thin 

the splenium and 
isthmus

Polymicrogyria Yes Yes
Enlargement of the lateral 
ventricles

Yes Yes only 
trigonum

Basal ganglia atrophy No No
Brain stem atrophy No No
Pituitary glanda

Anterior-posterior/high/lateral 
in mm

5.5 × 2.6 × 9 
below normal 
values

5.6 ×3.9×9 in 
the borderline 
range

aGirls before puberty

Fig. 2  Sagittal (a), and coronal (b) T2-weighted images of case 1 
showing irregularity of the frontal cortex with shallow sulci and nu-
merous small gyri, consistent with polymicrogyria
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tion. Relative T2 hypointensity of the anterolateral thalamus 
was seen in 91 % of the patients [21] and relative myelin 
preservation in the dentate nucleus was visualized in 93 % 
of the patients [20]; such features were also present in both 
our patients. We did not observe myelination of the corti-
cospinal tracts at the level of the PLIC. Our results are in 
contrast to previously published papers, which reported 
hypointense dots in the PLIC. Focal myelination of the cor-
ticospinal tracts at the level of internal capsules was seen 
in 70 % of the patients with POLR3B mutations [3, 21, 31]. 
Mild atrophy of cerebral hemispheres, seen only in the older 
sister, was described by Wolf et al. [21] who had mentioned 
that supratentorial atrophy was rarely seen before the age 
of 10 years. We observed unmyelinated corpus callosum in 
both our patients with overall thinning in the older and par-
tial thinning in the younger patient (splenium and isthmus). 
Thinned corpus callosum was found in all ten patients with 
POLR3B mutations in a paper published by Daoud et al. 
[3]. Wolf et al. [1] noted thinning of corpus callosum in all 
patients above 17 years of age, and concluded that among 
children below the age of 10 years thin corpus callosum is a 
more frequent finding in POLR3A than POLR3B mutations 
[21]. Mild atrophy of the vermis and cerebellar hemispheres 
were seen in the older patient while a deep primary fissure, 
although within normal limits, was noted in the younger 
patient. This is somewhat in contrast with Wolf et al. [21], 
who had found cerebellar atrophy in all POLR3B (except 
for one 3-year-old), although median age at last MRI exami-
nation among those patients was 10 years. Our investiga-
tions did not fully corroborate the observations published by 
Takanashi et al. [17] in a small group of patients concerning 
different patterns of cerebellar abnormalities and hypomy-
elination between POLR3A and POLR3B mutations. The 
authors found small vermis and cerebellar hemispheres 
with thin folia and enlarged fissures in all the patients with 
POLR3B mutations. They also suggested that patients with 
POLR3B mutations were affected by milder hypomyelin-
ation than those with POLR3A mutations. These observa-
tions stand in opposition to our findings, since our patients 
presented diffuse hypomyelination. The discrepancy in the 
size and atrophy of cerebellar hemispheres and vermis may 
be possibly explained by the ages of our patients (5 and 
10 years), compared with older patients (16, 28, 31 years) 
investigated by Takanashi et al. [17]. It will be interesting to 
investigate the sisters when they get older.

PMG is a new neuroradiological finding in both our cases 
as it has been never reported in association with 4H leuko-
dystrophy. It is our opinion that the PMG in these girls is 
most likely not due to the POLR3B mutations. Indeed, Wolf 
et al. has reviewed over 100 cases of POLR3-related leu-
kodystrophy and has never encountered another case with 
PMG. However, since subtle PMG may be difficult to detect 
on MRI, it needs meticulous reading and is better seen with 

tools MT (mutation taster), PP2 (Polyphen2), SIFT (Sorting 
Intolerant From Tolerant) and PROVEAN (Provean Varia-
tion Effect Analyzer) predicted this variant to be damaging. 
Segregation analysis revealed that the mother is a carrier 
of the intronic mutation and the father is a carrier of the 
c.1939G > A (p.E647K) variant. Whole exome sequencing 
analysis is still ongoing in order to identify the etiology of 
the PMG and cataracts as these clinical features are hypoth-
esized to be caused by a mutation(s) in a second gene.

Discussion

4H or POLR3-related leukodystrophy is inherited in an 
autosomal recessive fashion and is caused by mutations in 
one of three genes encoding RNA polymerase III (POLR3) 
subunits, that is, POLR3A, POLR3B, and POLR1C [8, 12–
17]. Daoud et al. [3] noticed that POLR3A mutations are 
more frequent but a multinational cross-sectional observa-
tional report published in 2014 by Wolf et al. [21] concluded 
that patients from European backgrounds were more likely 
to have POLR3B mutations than other populations. The two 
patients we investigated with mutations in POLR3B genes 
showed diffuse hypomyelination of the cerebral and cer-
ebellar white matter, hypodontia, and cataracts. Children 
were prepubertal, thus hypogonadotropic hypogonadism 
could not be assessed. Interestingly, pituitary volume in the 
older sister is below normal and in the younger sister is in 
the borderline small range [25]. All genetic, neuroimaging, 
and clinical features were characteristic for 4H leukodystro-
phy, except for PMG and cataracts. Mild atrophy of cerebel-
lar hemispheres and vermis together with enlarged folia was 
observed in the older girl, while diffuse hypomyelination of 
cerebral white matter with unmyelinated corpus callosum 
were seen in both sisters. Such imaging findings are typical 
for 4H leukodystrophy and have been previously described 
in the literature [3, 17, 21].

In addition to the characteristics of 4H leukodystrophy, 
both patients presented bilateral frontoparietal PMG. PMG 
is a common cortical malformation characterized by an 
excessive number of abnormally small gyri. PMG may be 
uni- or bilateral, symmetrical or asymmetrical, focal or dif-
fuse. Any region of the cerebral cortex can be affected. It 
can be caused by congenital infections, in utero ischemia 
or could be genetic in origin [26]. Several genes have been 
associated with PMG, including GPR56, SRPX2, TUBB2B, 
TUBB3, PAX6, TBR2, KIAA1279, NHEJ1, RAB3GAP1, 
EOMES, COL18A1, and TUBA8 [26–29].

According to previously published data [3, 21, 31] 
myelination of the optic radiation was seen in almost all 
4H patients (95 % of patients in a paper published by Wolf 
et al. [1] in 2014 [21]. We also noticed narrow, slightly 
T2-hypointense and poorly visible signal of the optic radia-
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the age of 1 year and intellectual disability at 4 years. These 
two Polish girls presented with characteristic cerebellar fea-
tures, such as ataxia and severe tremors. Pyramidal signs 
were not observed. However, our patients are young and, 
according to Wolf et al. [21], pyramidal signs are usually 
absent in young children. We did not observe epileptic sei-
zures, although the presence of PMG and the abnormal EEG 
pattern observed, clearly indicate that they are at risk. Epi-
lepsy is not a characteristic feature of 4H leukodystrophy; 
it was noted in 19 % of the patients [21]. Musculoskeletal 
signs are sometimes observed in 4 H leukodystrophy, such 
as hip dysplasia and flat valgus feet, as seen in our patients. 
At their last evaluations, both patients had (at the age of 11 
years and 6 years) short statures and low weights (endocrine 
tests are normal in the older sibling), but hypogonadotropic 
hypogonadism as well as delayed puberty will be monitored 
when the time comes even if hypogonadotropic hypogonad-
ism is sometimes absent. Indeed, delayed puberty was found 
in 69 % of the patients with POLR3B mutations [21].

Conclusion

According to the literature, our observations, suggest that 
in young children without signs of hypogonadotropic hypo-
gonadism, brain MRI pattern is essential for proper early 
diagnosis of 4H leukodystrophy. Although clinical and 
radiological characteristics are helpful, genetic confirma-
tion is always necessary. Future studies will shed light on 
whether or not the PMG and cataracts are caused by the 
POLR3-related leukodystrophy or by another disorder.
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MRI protocols not typically performed in leukodystrophy 
patients, it is not possible to completely rule out that muta-
tions in POLR3B are also causative for the PMG [17, 21]. 
PMG can be due either to genetic aberrations or to other 
causes (e.g., infections such as cytomegalovirus (CMV)). 
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