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Abbreviations
AA	� Arachidonic acid
BCFA	� Branched chain fatty acid
BMP	� Bis-mono-acylglycero-phosphate
CL	� Cardiolipin
DE	� Diether
DHA	� Docosahexaenoic acid
DGGGP	� Di-O-geranylgeranylglycerylphosphate
EPA	� Eicosapentaenoic acid
GDGT	� Glyceroldialkyl-glycerol-tetraether
G-1-P	� Glycerol-1-phosphate
G-3-P	� Glycerol-3-phosphate
IPL	� Intact polar lipid
MUFA	� Monounsaturated fatty acid
PMF	� Proton motive force
PUFA	� Polyunsaturated fatty acid
SCFA	� Short chain fatty acid
TE	� Tetraether
UFA	� Unsaturated fatty acid

Introduction

The core lipids that serve as the framework for fully mature 
membrane lipids are fundamentally different in bacte-
ria and archaea. These differences are the basis of the so-
called ‘lipid divide’ and are represented by ‘phosphatidic 
acid’ for bacteria and eukarya and ‘archaetidic acid’ for 
archaea. Phosphatidic acid is composed of two fatty acid 
hydrocarbon chains esterified to the sn-1 and sn-2 posi-
tion of glycerol-3-phosphate (G-3-P) (Fig.  1a). Archae-
tidic acid (also known as di-O-geranylgeranylglyceryl 

Abstract  The cytoplasmic membrane of a prokaryotic 
cell consists of a lipid bilayer or a monolayer that shields 
the cellular content from the environment. In addition, the 
membrane contains proteins that are responsible for trans-
port of proteins and metabolites as well as for signalling 
and energy transduction. Maintenance of the functional-
ity of the membrane during changing environmental con-
ditions relies on the cell’s potential to rapidly adjust the 
lipid composition of its membrane. Despite the fundamen-
tal chemical differences between bacterial ester lipids and 
archaeal ether lipids, both types are functional under a wide 
range of environmental conditions. We here provide an 
overview of archaeal and bacterial strategies of changing 
the lipid compositions of their membranes. Some molecu-
lar adjustments are unique for archaea or bacteria, whereas 
others are shared between the two domains. Strikingly, 
shared adjustments were predominantly observed near the 
growth boundaries of bacteria. Here, we demonstrate that 
the presence of membrane spanning ether-lipids and methyl 
branches shows a striking relationship with the growth 
boundaries of archaea and bacteria.
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phosphate; DGGGP) on the other hand consists of two 
methyl-branched isoprenoids (phytanyls once saturated) 
connected by ether-bonds to the sn-2 and sn-3 position of 
glycerol-1-phosphate (G-1-P) (Fig.  1e). Besides the typi-
cal diester and diether lipids, most archaea but also some 

bacteria also contain glycerol-dialkyl-glycerol-tetraether 
(GDGT) lipids in their membranes (Fig. 1c, d, g, h). These 
lipids are bipolar and believed to be the product of a tail-
to-tail condensation between two lipids and as such form 
a monolayer instead of a bilayer membrane. Although the 

Fig. 1   Common bacterial and archaeal lipid variations and the lipid 
divide. The lipid divide is presented by three colours. Grey hydro-
carbon chains are represented by fatty acids in bacteria and isopre-
noid chains in archaea. Red in bacteria, ester-bonds typically link 
the hydrocarbon chains to the glycerol backbone. In archaea, hydro-
carbon chains are attached to the glycerol backbone by ether-bonds. 
Yellow the backbone moiety in bacterial lipids is represented by 
glycerol-3-phosphate (a–d). In archaeal lipids the backbone moiety 
is represented by the enantiomeric glycerol-1-phosphate (e–h). Com-
mon variations on the bacterial ‘phosphatidic acid’ (a) are presented 

by anteiso- and iso-branched chain fatty acids or ether bonds shown 
in (b). c and d show branched chain GDGTs with iso-diabolic acid 
and diabolic acid with either ester or ether bonds, respectively. Com-
mon variations on the archaeal ‘archaetidic acid’ (e) are presented 
by a fusion of the isoprenoid tail ends to form macrocyclic archaeol 
(f). Archaeal bipolar glycerol dialkyl glycerol tetraether (GDGT-0) is 
depicted in g and spans the membrane to form lipid monolayers. h 
shows GDGT-2, this bipolar lipid contains 2 cyclopentane rings in the 
phytanyl chains. Head groups are presented either by R1 phosphate 
polar heads, or R2 single or multiple hexoses
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model core lipids have been dubbed to be strictly domain-
specific, a certain degree of overlap exists between these 
traits. We now know that bacteria occasionally also pro-
duce membrane spanning ether lipids (Weijers et al. 2006) 
and archaea also produce fatty acid ether lipids (Gattinger 
et  al. 2002). Because of the general chemical differences, 
bacteria and archaea also evolved domain-specific adapta-
tion mechanisms to effectively respond to different phys-
icochemical conditions of their habitats. The common 
physicochemical parameters that breach the integrity of 
membranes are temperature, pH and hydrostatic pres-
sure. Typical membrane characteristics that are adversely 
affected by environmental changes are the permeability and 
fluidity. These parameters have, for example, a large effect 
on the function and mobility of membrane proteins, diffu-
sion of nutrients and proper separation during cell division. 
To maintain physiological homeostasis, membrane integrity 
is, therefore, continuously secured through a mechanism 
called ‘homeoviscous adaptation’. This process was first 
demonstrated in Escherichia coli by the observation that 
fluidity of the membrane remains relatively constant at var-
ious temperatures (Sinensky 1974). The cells manage this 
by actively modifying their lipid composition to maintain 
membrane functionality at different temperatures. These 
modifications often cause shifts in ratios of lipid types 
and/or their hydrocarbon moieties, rather than complete 
replacement of certain species. Additionally, it has been 
demonstrated that polar head groups also play a significant 
role in the maintenance of membrane fluidity and perme-
ability. Both for bacteria and archaea a change in polar 
head group composition has been observed in response to 
changing environmental conditions. Despite this pivotal 
role, changes in polar head groups have not been docu-
mented properly since the discovery of this mechanism. 
Although the core lipids were once thought to form a sharp 
distinction between the two domains, recent analyses have 
revealed that a certain degree of overlap exists between 
some lipids features which in some cases can be regarded 
as a form of homeoviscous adaptation.

We here provide an overview of adaptations of the core-
lipids in bacterial and archaeal cells in response to changes 
in physicochemical conditions. Additionally, we present a 
comparative analysis of the reported growth ranges of the 
most robust extremophiles to date, to disclose the growth 
boundaries of the bacterial and archaeal domains. We fur-
ther discuss these boundaries in relation to the encountered 
lipid compositions and their adaptation in the archaea and 
bacteria. Adaptation of cell physiology to physicochemical 
conditions occurs at two levels, long-term (genome evolu-
tion, defines the range within which a cell can survive) and 
short-term (reversible regulation of gene expression and 
enzyme activity to achieve optimal functionality). A mem-
brane adaptation can thus refer to the generally encountered 

lipid composition that enables a species to thrive at a par-
ticular challenging habitat within its optimum. This kind of 
adaptation is regarded as a native phenotype that contrib-
utes to the robustness against a particular challenge/param-
eter and is therefore, termed ‘physiological membrane 
adaptation’. Alternatively, an adaptation can also involve 
the changes in the lipid composition when conditions of the 
natural habitats change. This kind of adaptation is regarded 
as a stress response to the physicochemical change beyond 
the organism’s optimum that aids in the survival of the cell. 
This change will, therefore, be termed here as ‘membrane 
stress response’ and generally resembles the permanent 
physiological membrane adaptations to some extent. While 
most membrane adaptation studies have focussed on the 
changes that have been observed in the core lipid, it has 
become more apparent that major changes are also elicited 
on the polar head groups as adaptive traits.

Low temperature adaptation in bacteria

The environmental temperatures from which microbes are 
isolated roughly span from the freezing point of water and 
below for psychrophiles to the boiling point of water, for 
extreme hyperthermophiles. The challenges that microbes 
face below or above their optimal temperature is to retain 
optimal functionality of their macromolecules (nucleic 
acids, proteins, and lipids), aiming for a balance between 
stability (robustness) and flexibility (activity, transition 
states). As to bacterial membranes, the fluidity is depend-
ent on the membrane’s phase-transition temperature (Tm 
or transition midpoint) that expresses the temperature at 
which a membrane shifts from the preferred liquid crystal-
line phase into the rigid gel phase when the temperature 
drops. More specifically, at the phase-transition tempera-
ture, 50% of hydrocarbon chains melt and a fluid and gel 
phase coincide. At temperatures below Tm, lipids become 
‘frozen’ by alignment of the hydrocarbon chains perpen-
dicular to the plain of the bilayer (Eze 1991). This is a 
result of a close ordering and side-by-side packing of the 
immobilized hydrocarbon chains and gives rise to highly 
impermeable membranes. Not only is the barrier func-
tion affected, but many membrane proteins only function 
in the liquid crystalline phase (Russell 1990). Above Tm, 
the phospholipid hydrocarbon chains are motile with a 
gradual increase of motility towards the core of the bilayer. 
The preferred liquid crystalline phase, therefore, provides 
a functional matrix for the many biochemical processes 
while being permeable to neutral molecules like H2O, 
CO2 and O2, but impermeable to ions and solutes (Kon-
ings et  al. 2002; Mykytczuk et  al. 2007). To maintain 
sufficient membrane fluidity below their optimal growth 
temperatures, bacteria adopt a large variety of modifica-
tions to lower the Tm (reviewed in (Chattopadhyay 2006; 
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Chintalapati et al. 2004; Russell 1997; Shivaji and Prakash 
2010)). The molecular mechanisms are directed at increas-
ing the fluidity by forming a more disordered gel phase or 
by prevention of the gel phase. Distinct targets of bacterial 
cold adaptation (stress and physiological) have been identi-
fied: (i) unsaturated fatty acids (UFAs), (ii) short chain fatty 
acids (SCFAs), (iii) branched chain fatty acids (BCFAs), 
(iv) carotenoids, and (v) glycolipids and uncommon polar 
lipids. The most prevalent cold-stress modification is the 
incorporation of mono-unsaturated fatty acids (MUFAs) 
(Chintalapati et  al. 2004; Russell 1997). Bacteria actively 
introduce cis- or trans-double bonds (Fig. 2) by desaturases 
or synthesize UFAs de novo (Suutari and Laakso 1994). 
The main advantage of implementing desaturases is the 
rapid response they elicit. The cis-unsaturated fatty acids, 

however, increase fluidity more efficiently than trans-unsat-
urated fatty acids. This is due to the immobile 30° kink in 
the acyl chain that increases the cross-sectional area of the 
lipid (Gruner et al. 1985).

The incorporation of cis-unsaturation is a well-described 
mechanism of cold-stress in the mesophile Escherichia coli 
(Marr and Ingraham 1962). Correspondingly, the oppo-
site conversion of cis- to trans-unsaturated fatty acids has 
been correlated with adaptation to higher temperatures 
in Pseudomonas syringae (Kiran et  al. 2004). The pres-
ence of poly-unsaturated fatty acids (PUFAs) in response 
to low temperatures is uncommon in mesophilic bacteria 
and far less effective in fluidization compared to mono-
unsaturations. Nonetheless, omega-3 (ω3; EPA and DHA) 
and omega-6 (ω6; AA) PUFAs are abundantly detected in 

Fig. 2   Variations in fatty 
acid chain conformation. 
From top to bottom common 
fatty acid modifications are 
depicted: β-hydroxy fatty acid, 
ω-cyclohexyl fatty acid, cyclo-
propane fatty acid, iso-branched 
chain fatty acid, anteiso-
branched chain fatty acid, 
saturated straight chain fatty 
acid, trans-unsaturated fatty 
acid, cis-unsaturated fatty acid, 
diabolic acid, iso-diabolic acid, 
ether bound fatty acid. Adapted 
from (Chintalapati et al. 2004; 
Denich et al. 2003)
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marine psychrophiles and cyanobacteria as an adaptation to 
low temperatures (Russell 1997; Shivaji and Prakash 2010; 
Zsiros et al. 2000). Fluidization of the membrane can also 
be achieved by the incorporation of SCFAs (<12 carbons), 
but can only be implemented in growing cells and are not 
employed as an abrupt stress adaptation (Denich et  al. 
2003). It is, therefore, commonly accepted that SCFA for-
mation is not a universal way of fluidity modification dur-
ing cold stress. Additional membrane adaptation strategies 
to sub-optimal temperatures have been observed in Gram-
positive mesophiles (Bacillus subtilis, Bacillus T1) but also 
the Gram-negative thermophile Thermus thermophilus, in 
that they exchange iso- for anteiso-BCFA (Figs. 1b and 2) 
(Chintalapati et  al. 2004; Oshima and Miyagawa 1974). 
This is because anteiso-positioned methyl groups cause 
greater fluidity of the membrane due to a greater distur-
bance of the packing order of the hydrocarbon chains. As 
with incorporation of SCFAs, BCFAs are synthesized de 
novo, and do not allow a swift response to sudden tempera-
ture drops. In the psychrotolerant Sphingobacterium ant-
arcticus (Topt = 25°) a combination of cold-specific modi-
fications was detected (Jagannadham et  al. 2000; Shivaji 
et al. 1992). When cultivated at 5 °C, the amount of UFAs 
is increased as well as the amount of BCFAs. Oppositely, 
at extremely low temperatures (i.e. −15  °C) the psychro-
tolerant species Planococcus halocryophilus (Topt = 25 °C) 
exhibits a decrease in the amount of branched chain fatty 
acids emphasizing that the BCFA response is species- or 
situation-specific. In addition, polar and non-polar carot-
enoids (C40) were found to be incorporated into the mem-
brane as shown for the psychrotolerant Micrococcus roseus 
(Topt = 20 °C) (Chattopadhyay et al. 1997). These pigments 
are believed to insert their hydrophilic groups mainly at 
opposite sides of the polar regions of the bilayer and as 
such adopt a membrane spanning orientation (Grusze-
cki and Strzałka 2005). Ironically, polar carotenoids like 
zeaxanthins are believed to decrease membrane fluidity in 
the liquid crystalline phase, but increase fluidity in the gel 
phase. Polar carotenoids are, therefore, assumed to balance 
the fluidizing effect of the fatty acid modifications while 
simultaneously enhancing the barrier function to ions and 
oxygen (Chattopadhyay et al. 1997; Gruszecki and Strzałka 
2005; Jagannadham et al. 2000).

With respect to long-term physiological membrane 
adaptations to cold, many studies on the membrane lipid 
composition of psychrophilic bacteria (Topt <15  °C) have 
been performed (Table  1). Membrane characterization 
of Clostridium psychrophilum (Topt =  4  °C) (Guan et  al. 
2013; Spring et  al. 2003), Colwellia psychrerythraea 
(Topt = 8.5 °C) (Huston et al. 2004; Wan et al. 2016), and 
Psychromonas ingrahamii (Topt  =  5  °C) (Auman et  al. 
2006; Breezee et  al. 2004) revealed comparable adapta-
tions to cold. These adaptations also involve high levels of 

SCFAs, UFAs, polar carotenoids and glycolipids. Interest-
ingly, although iso-BCFAs are detected in psychrophilic 
membranes, branching does not play a prominent role. 
Comparative analysis of BCFA percentages in bacterial 
psychrophiles and non-psychrophiles shows a negative rela-
tionship with growth temperature optima (Fig.  3; Online 
Resource 1). In Psychromonas ingrahamii, BCFAs levels 
of only 4.5% of the total fatty acid content are detected, and 
in Colwellia psychrerythraea or Desulfotalea psychrophila 
BCFAs are present at trace amounts or completely absent. 
This suggests that BCFAs confer no benefit and may even 
be disadvantageous at very low temperatures (Topt ≤15 °C). 
When the psychrophilic Clostridium psychrophilum is cul-
tivated below 0  °C, a combination of cold-specific modi-
fications is detected like in Sphingobacterium antarcticus. 
These bacteria use a high degree of unsaturated, cyclopro-
pane containing fatty acids and SCFAs. Additionally, polar 
lipid changes are represented by a high degree of glycolip-
ids, sn1-ether fatty acid plasmalogens and cardiolipins 
(CLs). These comparisons indicate that long-term physi-
ological adaptations comprise highly similar mechanisms 
compared to the short-term stress adaptations, except for 
the contribution of BCFAs. 

Low temperature adaptation in archaea

Membrane adaptation to cold has not been studied as 
extensively in archaea as for bacteria. Cold-adaption in 
archaea was long time overlooked probably due to the late 
recognition of their abundance in oceans and a main inter-
est for hyperthermophilic archaea instead. Nonetheless, it 
appears that bacterial psychrophiles outnumber archaea 
in diversity and dominate subfreezing ecosystems (Fig.  4 
lower panels) (D’Amico et  al. 2006). According to the 
standard terminology of psychrophilicity, (Topt ≤15  °C, 
i.e. growth optimum at or below 15 °C), there are at pre-
sent only 2 confirmed species of archaeal psychrophiles 
[Cenarchaeum symbiosum Topt  =  10  °C (Preston et  al. 
1996) and Methanogenium frigidum Topt =  15  °C (Fran-
zmann et  al. 1997)]. Here we will, therefore, apply an 
adjusted terminology for archaeal psychrophilicity (Tmin 
< 5 °C, i.e. capable of growth below 15 °C). Methanosar-
cinaceae and Methanomicrobiales are thus far the most 
studied archaeal psychrophiles, but in-depth analyses of 
physiological membrane adaptations are lacking. The few 
reported lipid adaptation studies were stress response stud-
ies and demonstrate a couple of mechanisms to increase 
membrane fluidity with only the incorporation of unsatura-
tions being analogous to bacteria. The documented stress 
responses to cold are collectively grouped as following: 
(i) unsaturated diethers, (ii) isoprenoid hydroxylation, (iii) 
tetraether:diether ratio, and (iv) number of pentacycli. In 
Methanococcoides burtonii (Topt =  23  °C) (Nichols et  al. 
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Table 1   Physiological membrane adaptations by core lipid modifications typically found in bacterial and archaeal extremophiles

Bacteria Temperature pH Pressure

Tmin <15 °C Tmax >75 °C pHmin <3 pHmax >10 >70 MPa

Level of chain length Ref Ref Ref Ref Ref

shorter chain ≤C14 + (7,8) + (31, 33) + (42, 43)

longer chain ≥C18

Level of unsaturation

 PUFA + (1–3) + (39)

 MUFA-cis + (7,8, 40) + (21) + (33) + (44)

 MUFA-trans + (8)

Level of branching

 BCFA-iso + (4,15,41) + (29) + (38, 42–44)

 BCFA-anteiso + (4) + (29, 32) + (44)

 Diabolic acid + (18, 45) + (35)

 (β)-hydroxy FA + (8) + (30, 33)

Level of cyclization

 Ω-Cyclohexyl + (29, 32)

 Cyclopropyl + (7) + (21) + (30, 33)

Level of tetraester and etherlipids

 Tetraesters + (22, 46)

 Mono- di- tetraethers + (18–21) + (34, 35)

Level of terpenes

 Polar carotenoid + (5,6) + (16, 17)

 Non-polar terpenes + (44)

Other modifications

 Cardiolipins + (7) + (44)

 Glycolipids + (7) + (16)

 BMP + (44)

Archaea Temperature pH Pressure

Tmin <15 °C Tmax >75 °C pHmin <3 pHmax >10 >40 MPa

Level of chain length Ref Ref Ref Ref Ref

C20-chain + (9) + (24–26) + (47–53) + (28, 54–55)

C25-chain + (56) + (47–53)

Level of saturation

 Unsaturated diethers + (9, 10) + (11)

Level of branching

 Hydroxyarchaeol + (9)

Level of cyclization

 Pentacyclic TE + (13, 27) + (13,27, 36, 37)

 Macrocyclic + (57) + (28, 57)

Level of tetraether lipids

 Tetraethers – (9) + (12,23) + (14,36, 60) – (61, 62, 63) – (28)

Other modifications
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2004) and Halorubrum lacusprofundi (Topt = 33 °C) (Gib-
son et al. 2005), membranes are found that completely lack 
GDGTs and have an increased level of unsaturated diether 
lipids. The biosynthesis of unsaturated archaeol is prob-
ably a passive event in which the fully unsaturated precur-
sor DGGGP is selectively or incompletely saturated by 
reductases, unlike the active introduction of double bonds 
by desaturases typical for bacteria. Unsaturated archaeol, 
however, was also found in the hyperthermophile Metha-
nopyrus kandleri (Sprott et al. 1997), currently the record-
holder of highest maximum growth temperature. This 

discrepancy seriously questions both the fluidizing effect 
and the absolute requirement of unsaturated diethers as 
psychrophilic adaptation mechanism in archaea. In addi-
tion to high levels of unsaturated archaeol, a significant 
amount of hydroxyarchaeol was also observed in Methano-
coccoides burtonii (Nichols et al. 2004). This modification 
involves the hydroxylation at the C-3 position of the sn-1 
isoprenoid chain. The authors suggest that this modification 
results in an extension of the polarity of the head group, 
thereby shortening the core of the lipid. It is, however, not 
certain whether this type of adaptation is really cold-spe-
cific. Although archaea are also known to intercalate non-
polar poly-isoprenoids like lycopene and squalene between 
their membrane lipids, it is not demonstrated to result 
in fluidity buffering like polar carotenoids do in bacterial 
membranes. In the extreme halophile Halobacterium sali-
narum, squalene is detected at high quantities and shown to 
play a major role in packing and lateral organization of the 
polar lipids (Gilmore et al. 2013). A role of squalene in flu-
idity adaptation, comparable to carotenoids in bacteria, is 
therefore, also expected in psychrophilic archaea. Squalene 
is probably implemented to rigidify and reduce permeabil-
ity to protons and solutes.

Archaeal cold stress adaptation studies are mostly 
done on thermophiles grown below their optima. From 
these archaeal below-optimum adaptation studies a recur-
ring theme is an increase in diether content and resulting 
decrease of membrane spanning GDGTs (Fig.  1g, h). In 
Thermococcus kodakarensis (Topt =  85  °C), a temperature 
drop from 85 to 60 °C causes archaeol (DE) to increase from 
17.7 to 49.1% at the expense of GDGTs (82.3 to 50.9%) 
(Matsuno et al. 2009). Correspondingly, for Archaeoglobus 

References: 1: Russell (1997), 2: Shivaji and Prakash (2010), 3: Zsiros et al. (2000), 4: Oshima and Miyagawa (1974), 5: Chattopadhyay et al. 
(1997), 6: Jagannadham et al. (2000), 7: Guan et al. (2013), 8: Wan et al. (2016), 9: Nichols et al. (2004), 10: Gibson et al. (2005), 11: Sprott 
et al. (1997), 12: Cario et al. (2015), 13: De Rosa et al. (1980), 14: Uda et al. (2004), 15: Patel et al. (1991), 16: Ray et al. (1971), 17: Yokoyama 
et al. (1996), 18: Damsté et al. (2007), 19: Langworthy et al. (1983), 20: Huber et al. (1992), 21: Jahnke et al. (2001), 22: Huber et al. (1989), 23: 
Matsuno et al. (2009), 24: De Rosa et al. (1987), 25: Hafenbradl et al. (1996), 26: Ulrih et al. (2009), 27: Schleper et al. (1995), 28: Kaneshiro 
and Clark (1995), 29: De Rosa et al. (1974), 30: Wichlacz et al. (1986), 31: Wakao et al. (1994), 32: Matsubara et al. (2002), 33: Mykytczuk 
et al. (2010), 34: Weijers et al. (2006), 35: Damste et al. (2011), 36: Macalady et al. (2004), 37: Uda et al. (2001), 38: Clejan et al. (1986), 39: 
Nogi and Kato (1999), 40: Knoblauch et al. (1999), 41: Heinen et al. (1970), 42: Li et al. (1994), 43: Prowe and Antranikian (2001), 44: Clejan 
et al. (1986), 45: Balk et al. (2009), 46: Lee et al. (2002), 47: Namwong et al. (2007), 48: Feng et al. (2005), 49: Castillo et al. (2006), 50: Xu 
et al. (2001), 51: Xu et al. (1999), 52: Lanzotti et al. (1989), 53: Tindall et al. (1984), 54: Grant et al. (1985), 55: Takai et al. (2000), 56: Sako 
et al. (1996), 57: Sprott et al. (1991), 58: Hu et al. (2008), 59: Bowers and Wiegel (2011), 60: Schleper et al. (1995), 61: Feng et al. (2005), 62: 
Xu et al. (2001), 63: Lanzotti et al. (1989)

PUFA polyunsaturated fatty acids, MUFA-cis cis-monounsaturated fatty acids, MUFA-trans trans-monounsaturated fatty acids, BCFA-iso iso-
branched chain fatty acids, BCFA-anteiso anteiso-branched chain fatty acids, BMP bis-mono-acylglycero-phosphate, TE tetraethers, + increased 
production, − decreased production

Table 1   continued

Archaea Temperature pH Pressure

Tmin <15 °C Tmax >75 °C pHmin <3 pHmax >10 >40 MPa

Level of chain length Ref Ref Ref Ref Ref

 Glycolipids + (11) + (27, 37) – (48, 50, 53, 58, 59)
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Fig. 3   Bacterial growth temperature optima versus percentage 
BCFAs. Documented growth temperature optima of 48 bacteria plot-
ted against the percentage of BCFAs of the respective bacterium. 
The trend shows that at low growth temperatures, BCFA percentages 
are generally low, while at moderate and high growth temperatures, 
BCFA percentages are variable
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fulgidus (Topt = 78 °C) the diether content shifts from 60 to 
70% when grown at a relatively low temperature of 70 °C 
(Lai et al. 2008). One of the most recently described below-
optimum-stress adaptation in archaea concerns a decrease in 
pentacycle number. Archaeal pentacyclization is a modifica-
tion initially observed in hyperthermophiles. This feature 
involves the incorporation of cyclopentane rings along the 
biphytanyl chains up to 4 rings per chain (Fig. 1h). These 
rings are believed to stabilize chain packaging and to 
decrease membrane permeability. In Thermoplasma acido-
philum (Topt = 59 °C), lowering the growth temperature to 
40 °C results in a decreased average number of pentacycles 

per lipid. Here, a change in cyclization degree from 2.1 
to 1.6 cycles per lipid was observed (Uda et  al. 2001). A 
decrease in tetraether and pentacycle number, however, 
should not be regarded as universal cold-shock response. 
This is because membranes that are exclusively com-
posed of tetraethers with high numbers of pentacycles per 
lipid have also been reported to be common in mesophilic 
archaea (Oger and Cario 2013). Drawing general conclu-
sions from these changes is thus hampered by the fact that 
most of these studies are based on hyperthermophiles only. 
Moreover, the observed temperature effects should be nor-
malized by growth phase, which has not always been done.
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Due to the lack of reported archaea growing below 
−2  °C, it is tempting to suggest that bacteria are better 
equipped to growth in extremely cold habitats. Although this 
can be due to a sampling and cultivation bias, this hypoth-
esis is supported by recent meta-genomics and transcrip-
tomics sequence analysis of the accretion ice of subglacial 
lake Vostok (Antarctica) (Shtarkman et  al. 2013). Here, 
the metagenome showed a distribution of 94% bacterial 
sequences, 6% eukaryal and only a small number of archaeal 
sequences. Additionally, there is a difference in lowest 
reported growth temperature minima between archaea and 
bacteria (Fig. 4 lower panels). The lowest confirmed growth 
optimum for archaea lies at 15  °C for Methanogenium 
frigidum (Franzmann et  al. 1997). This is notably higher 
than the optimum of 5 °C for the bacterium Psychromonas 
ingrahamii, whose lowest demonstrated growth tempera-
ture lies at a startling −12 °C (Auman et al. 2006). In case 
there is truly a growth temperature boundary for archaea 
around the freezing point of water, a plausible explanation 
for this threshold may lie in the methyl branched hydrocar-
bon chains. In the comparative analysis of BCFA percent-
ages we showed that psychrophilic bacteria generally have 
less methyl branched lipids compared to mesophiles and 
thermophiles suggesting a disadvantage in cold environ-
ments. Methyl branched phytanyls on the other hand, are an 
imperative feature of archaeol. The isoprenoid constituent of 
archaeal membranes may, therefore, restrict efficient adapta-
tion mechanisms required to maintain fluidity at subfreezing 
temperatures. This apparent difference observed in growth 
temperature minima between archaea and bacteria also 
leads to interesting questions concerning lipid phases and 
functionality of the archaeal membrane, because the Tm of 
some archaeal membranes is established at −15/−20 °C or 
even lower (Blocher et al. 1990; Dannenmuller et al. 2000; 
Koga 2012). This average Tm thus suggests that archaeal 
membranes can maintain a liquid crystalline phase below 
0 °C without the requirement of extensive fluidity enhancing 
modifications. Apparently, the isolated psychrophilic archaea 
and their established growth minima so far do not support 
this and indicate that other factors than membrane fluidity 
become limiting for archaea at low temperature.

High temperature adaptation in bacteria

At higher temperatures, microbes endure increased fluid-
ity and permeability of the membrane up to a point that 
lipids pack too disordered to maintain a liquid crystalline 
phase. When the temperature rises beyond the optimum of 
the liquid-crystalline phase, lipids adopt a fluid phase and 
ultimately also a non-lamellar phase like the cubic and 
hexagonal structure (Escriba 2006). It is, therefore, not 
surprising to find adaptation strategies which are opposite 
to cold adaptations, like those that induce stiffening and 

promote ordering of the hydrocarbon chains. Mesophilic 
and thermophilic bacteria mainly adjust fluidity by increas-
ing the amount of (i) branched chain iso-fatty acids (Patel 
et al. 1991; Sinensky 1971, 1974), (ii) saturated fatty acids 
(Oshima and Miyagawa 1974), (iii) long-chain fatty acids 
and (iv) polar carotenoid content (Ray et al. 1971; Yokoy-
ama et  al. 1996). Counterintuitively, the membranes of 
thermophilic bacteria are not devoid of cis-monounsatu-
rated and anteiso-BCFAs (Patel et al. 1991) which are typi-
cally implemented as cold stress adaptation. What appears 
more important is the ratio between these fatty acids. In 
the highest temperature window of bacterial hyperther-
mophiles, some bacteria amend high amounts of BCFAs, 
which occasionally approach 100% of the fatty acids 
(Fig. 3). These BCFAs are for the greatest part composed 
of iso-BCFAs. Interestingly, thermophilic bacteria that are 
able to grow above 70  °C, implement lipid species that 
more or less remind of typical archaeal lipids (tetraethers, 
diethers and tetraesters). A key question that then arises is 
whether these lipids are typical physiological adaptations 
to heat, or whether they are remnants of these bacteria phy-
logenetically deeply rooted position. In Thermotogales spe-
cies, e.g. (Tmax = 90 °C) diabolic-acid derived membrane 
spanning tetraether-lipids are detected (Damsté et al. 2007). 
Diether fatty acid lipids are found in Thermodesulfotobac-
terium commune Tmax =  85  °C (Langworthy et  al. 1983) 
and Aquifex pyrophilus Tmax =  95  °C (Huber et  al. 1992; 
Jahnke et  al. 2001). Lastly, long chain dicarboxylic fatty 
acid dimethyl-esters or in short, tetraester-lipids are found 
in Thermoanaerobacter ethanolicus Tmax  =  78  °C (Jung 
et al. 1994; Sanghoo Lee et al. 2002), Thermoanaerobacter 
thermosulfurigenes Tmax =  75  °C (Russell and Fukunaga 
1990), Thermosipho africanus Tmax = 77 °C (Huber et al. 
1989), Fervidobacterium pennivorans Tmax = 80 °C (Dam-
sté et al. 2007) and more. Analogous to archaeal tetraether 
lipids, these bacterial tetraether and tetraester lipids are 
believed to result from a tail-to-tail condensation between 
two ‘regular’ iso-branched chain fatty acids that extend 
from both leaflets of the membrane. Contrary to the ear-
lier dogma, these mentioned bacterial species show that 
membrane spanning hydrocarbon chains are not an abso-
lute requirement for survival beyond 80 °C. This becomes 
especially apparent by Aquifex pyrophilus (Tmax = 95 °C) 
that does not have membrane spanning lipids but does con-
tain a high amount of ether lipids. It must be emphasized 
here that in this species also a minority of ester-lipids was 
isolated, which also shows the ability of ester lipids to tol-
erate these temperatures in vivo. Nonetheless, this analysis 
points at a temperature-dependent boundary at ~80 °C for 
bacterial membranes exclusively composed of ester-lipids. 
This is in line with the postulation of Robert Huber and 
Karl Stetter that ether bonds are essential for hyperthermo-
philic growth (Huber et al. 1992).
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High temperature adaptation in archaea

Currently, the highest reported growth maximum for bac-
teria was demonstrated for Geothermobacterium ferrire-
ducens (Tmax = 100 °C) (Kashefi et al. 2002) as opposed 
to the archaeal record holder Methanopyrus kandleri 
(Tmax = 122 °C) (Takai et al. 2008) (Fig. 4 upper panels). 
For thermophilic archaea, membrane spanning tetraether 
lipids are the most abundant and frequently also the only 
core lipid. Besides this regularity, not much variability 
is observed in hyperthermophilic membranes. Tetraether 
lipids form monolayers that are highly stable due to a 
restricted motility of the hydrocarbon chains. Raising the 
growth temperature, therefore, elicits an increased tetrae-
ther/diether ratio like shown for Thermococci (Cario et al. 
2015; Matsuno et  al. 2009). Presence of tetraethers thus 
appears to be highly supportive for hyperthermophilic 
growth, a rule that also became apparent in extreme hyper-
thermophilic bacteria which sometimes also use tetra-
ether lipids. A tetraether-containing membrane, however, 
might not be a prerequisite for heat tolerance, as Metha-
nopyrus kandleri, and Aeropyrum pernix were reported 
to have no or only trace amounts of tetraethers but grow 
optimally between 95 and 105 °C (Hafenbradl et al. 1996; 
Morii et  al. 1999; Sprott et  al. 1997; Ulrih et  al. 2009). 
The already high stability of tetraether membranes can be 
further increased by the incorporation of pentacycli that 
cause an up-shift of the transition temperature (Gliozzi 
et al. 1983). In line with this, an increase in the number of 
pentacycli per lipid is frequently observed, like in Ther-
moplasma acidophilum and Sulfolobus solfataricus (De 
Rosa et  al. 1980; Uda et  al. 2001). Finally, heat adapted 
membranes may involve macrocyclic archaeols (Kanesh-
iro and Clark 1995). In these modified archaeols the iso-
prenoid chains are cross-linked at their tail-ends, and like 
tetraethers dramatically restricted in their motion, causing 
an improved membrane barrier to water and membrane 
stability (Fig. 1f) (Dannenmuller et al. 2000).

Although the various reported lipid modifications sug-
gests certain overall trends in membrane adaptations to 
high temperature, several exceptions to these rules have 
been reported as well. By far the most invalidating finding 
might be the observed minority of GDGTs in the mem-
brane of the hyperthermophile Methanopyrus kandleri 
(Tmax = 122 °C) (Hafenbradl et al. 1993; Kurr et al. 1991; 
Sprott et al. 1997; Takai et al. 2008). However, it must be 
stressed here that initially also for Thermococcus baro-
philus and Thermococcus celer no GDGT’s were demon-
strated, but upon re-evaluation the lack was shown to be an 
artefact of the extraction method used (Cario et  al. 2015; 
Sugai et al. 2004). The analysis of intact polar lipids (IPL’s) 
with the omission of acid hydrolysis has shown to cause 
major erroneous membrane compositions. Conflicting 

data was also observed for glycolipids, that were found 
at high levels, but also low levels under high temperature 
conditions (De Rosa et  al. 1987). The implementation of 
ether-bonds seems to form a high correlation with ther-
mal adaptation in bacteria that generally do not use ether-
bonds. Despite the exceptions, the boundary of survival 
for bacteria appears to be around 100  °C. Altogether, the 
general trends indicate that bacterial and archaeal mem-
brane adaptations to temperature are complex and make 
use of different strategies (Table  1). However, the ques-
tion then remains what differentiates the bacteria from the 
archaea with respect to adaptations to low and high tem-
peratures. Bacteria maintain a proper level of permeability 
and acceptable fluidity at temperatures only just above their 
phase transition temperatures. Permeability and fluidity of 
archaeal membranes on the other hand generally stay opti-
mal while the membrane remains in the liquid crystalline 
phase throughout the entire biological temperature span 
between 0 and 100 °C. Oftentimes, it is therefore, hypoth-
esized that the archaeal biphytanyl hydrocarbon bonds 
linked to glycerol by ether bonds confer higher thermal 
stability, increased rigidity and reduced permeability to the 
archaeal membranes (Koga 2012; Mathai et al. 2001). This 
may explain why some archaeal membranes do not exten-
sively modify their core lipids. Our overall comparison of 
the lipid compositions also suggest that a lower number of 
ether bonds and level of branching highly determine the 
lower growth temperature boundary of thermophilic bacte-
ria compared to archaea. What remains elusive in archaeal 
membrane adaptation to temperature, however, is what the 
optimal phase for membrane functionality is, and to what 
extent glycolipids and how polar heads are involved in this 
regulation. A study on liposome phase behaviour in Sul-
folobus acidocaldarius showed the coexistence of multi-
ple phases around the growth temperature optimum, and 
more recently large variations in polar heads were detected 
in response to temperature fluctuation in T. kodakarensis. 
More general insight in archaeal phase transitions and the 
role of polar heads are thus essential to provide clarity in 
this issue.

High pressure adaptation in bacteria and archaea

In deep-sea marine environments, microorganisms are 
exposed to high hydrostatic pressure. These pressures also 
affect the membrane fluidity, and membranes are even 
labelled as the most pressure-sensitive biological structures 
(Oger and Jebbar 2010). At increasing pressures, lipids 
pack more tightly and membranes consequently loose flu-
idity, permeability and enter the gel phase similar to cold 
conditions (Casadei et  al. 2002). Deep-sea piezophiles/
barophiles are found to grow and even require pressures 
up to maximally 120  MPa (Yayanos 1986; Zeng et  al. 
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2009). For piezophilic bacteria and archaea, a slight dif-
ference is observed between their survival boundaries, 
although this is only based on studies of the bacterium 
Colwellia sp. MT-41(pressuremax  =  103  MPa)(Yayanos 
et al. 1981) and of the archaeon Thermococcus piezophilus 
(pressuremax = 130 MPa) (Dalmasso et al. 2016) (Fig. 5). 
The main difference of piezophilic from psychrophilic 
adaptation in bacteria is the prominent presence of PUFAs 
(Bartlett 1992) in addition to MUFAs. In Alteromonas sp. 
the amount of long chain PUFA 20:5 has been shown to 
increase with pressure (Wirsen et al. 1987). In contrast, it 
was shown in Photobacterium profundum that the MUFAs 
and not the PUFAs are correlated with survival at high pres-
sure in bacteria (Allen et al. 1999). The accumulation of the 
polar lipids phosphatidylglycerol and phosphatidylcholine 
instead of phosphatidylethanolamine is also a frequently 
observed adaptation (Jebbar et al. 2015; Mangelsdorf et al. 
2005; Yano et al. 1998). It is generally accepted that larger 
head groups lead to greater disruption of membrane pack-
ing and hence to enhance membrane fluidity (Jebbar et al. 
2015; Mangelsdorf et  al. 2005). Studies performed with 
archaea on the homeoviscous adaptation to pressure are 
scarce and likely hampered by the fact that the identified 
piezophilic archaea were frequently also (hyper) thermo-
philes. Currently, only two studies elaborately studied the 
effect of increased pressure on the membrane composi-
tion of archaea. In Methanococcus jannaschii, an increase 
in the macrocyclic archaeol and concomitant decrease in 
archaeol and GDGTs has been observed (Kaneshiro and 
Clark 1995). The difficulty of studying the sole effect of 
pressure on archaeal membranes is exemplified in a study 
on the piezophilic hyperthermophilic Thermococcus baro-
philus. Here a similar decrease of GDGTs and concomi-
tant increase in archaeol was found which completely 

resembles cold adaptation (Cario et al. 2015). Interestingly, 
these cocci show an adapted level of unsaturation of apolar 
lipids (Cario et al. 2015), but it is left unclear whether this 
is a temperature or pressure induced effect. The common 
feature, however, with bacteria is that increased pressure 
leads to adaptations that result in more fluid membranes.

Low pH adaptation in bacteria

Like the discovery of microorganisms thriving at extreme 
temperatures, also bacteria and archaea have been found in 
ecosystems with extreme pH values. Bacteria and archaea 
have evolved various ways to cope with extreme acidity 
(<pH 2) or alkalinity (>pH 10). The challenge both acido-
philes and alkaliphiles are facing is to retain a near neu-
tral intracellular pH. The ΔpH (pHin–pHout) across the 
membrane is a major component of the proton motive 
force (PMF), and as such important for the energy supply 
of the cell. The cells actively pump out protons by means 
of a respiratory chain or photosystem. This outflux gener-
ates a proton motive force (PMF) that is used by ATPases 
to generate chemical energy in the form of ATP. Upon 
external down-shifts in pH, the PMF needs to be adjusted 
by a higher activity of the respiratory chain or other proton-
pumping systems. Acidophiles evolved several mechanisms 
to maintain near neutral intracellular pH. They, for exam-
ple, reverse their membrane potential (Δψ) to deflect intru-
sion of protons. A higher expression of proton exporters 
and secondary transporters is therefore, a common strategy. 
Often, enzymes and chemicals are produced that bind or 
buffer protons. The most effective strategy, however, lies in 
reduction of proton permeability by the plasma membrane. 
The neutralophilic bacterium Escherichia coli, remodels its 
membrane, based on only three strategies: (i) an increase in 

0

20

40

60

80

100

120

140

160

M
Pa

Bacteria pressure maxima

MPa min MPA opt MPa max

0

20

40

60

80

100

120

140

160

M
Pa

Archaea pressure maxima

MPa min Mpa opt MPa max

Fig. 5   Reported maximal, optimal and minimal pressure-values of presently studied most extreme piezophiles/barophiles. Barophilic bacteria 
and archaea are grouped according to increasing maximal pressure tolerance



662	 Extremophiles (2017) 21:651–670

1 3

short straight-chain fatty acids content, (ii) a decrease in the 
amount of unsaturations and (iii) lowering the amount of 
cyclopropane-fatty acids (Yuk and Marshall 2004) (Fig. 2). 
These modifications, however, do not follow a consistent 
pattern with other pH stress studies on neutralophiles. A 
decrease in short-chain fatty acids was observed in Strep-
tococcus mutans instead (Fozo and Quivey 2004). In this 
species, another opposite effect was also observed for the 
number of unsaturations, which showed an increase to acid 
stress. Another quite contrasting finding was the fact that 
a cyclopropane fatty acid knockout in Salmonella enterica 
typhimurium showed a sensitivity to low pH, suggesting a 
positive relation with these fatty acids instead (Kim et  al. 
2005). This sensitivity to low pH was also observed in an 
Escherichia coli cfa knock-out strain (Chang and Cronan 
1999). As a fourth adaptation to low pH values an over-
all increase of anteiso- and simultaneous decrease in iso-
BCFAs was observed in Listeria monocytogenes (Giotis 
et al. 2007).

Obligate acidophiles synthesize a membrane that is 
highly impermeable to protons (Baker-Austin and Dopson 
2007). More consistent physiological membrane adapta-
tions are described in extreme acidophilic bacteria of which 
Alicyclobacillus (Bacillus) acidocaldarius (De Rosa et  al. 
1974), Acidiphilium sp. (Wakao et al. 1994; Wichlacz et al. 
1986), Alicyclobacillus acidiphilus (Matsubara et al. 2002) 
and Acidithiobacillus ferro-oxidans (Mykytczuk et  al. 
2010) are most thoroughly studied. These membranes are 
composed of high levels of iso- and anteiso-BCFAs, both 
saturated and mono-unsaturated fatty acids and uncommon 
β-hydroxy-, ω-cyclohexyl (Fig.  2) and cyclopropane fatty 
acids. These permanent modifications were detected in the 
membranes of acidophilic bacteria which tolerate growth 
at pH ≤2.5. In peat bogs (pH 3–5) GDGT-like lipids with 
branched dicarboxylic fatty acids (iso-diabolic acid) bound 
by ether-bonds to G-3-P have been detected (Weijers et al. 
2006). These lipids, that highly resemble the archaeal 
membrane spanning lipids, are clearly of bacterial origin 
and seem to correlate with the low pH of the habitat from 
which they were isolated. A widespread presence of the 
iso-diabolic acid lipids was also detected in various spe-
cies of the phylum Acidobacteria, but do not grow below 
pH 3 (Damste et al. 2011). Here we find another example 
for the usage of archaeal-like lipids implemented by bacte-
ria, possibly to deal with the environmental stress. Despite 
their numerous adaptation strategies, bacteria have not 
been demonstrated to grow at pH <1 as opposed to archaea 
(Fig. 6 upper panels).

Low pH adaptation in archaea

As with temperature adaptations, the three typical homeo-
viscous adaptation strategies of archaea are also observed 

in acidic environments. A key characteristic of acido-
philic archaea is the presence of a membrane monolayer 
typically composed of nearly 100% GDGTs (Macalady 
et  al. 2004; Oger and Cario 2013). Biophysical studies 
on liposomes composed of GDGTs showed that mon-
olayer membranes are extremely impermeable to protons 
(Elferink et al. 1994). Extreme acidophilic archaea, able 
to thrive at pH <1, are also shown to incorporate multiple 
cyclopentane rings, to enhance lipid packing, compress-
ibility and membrane rigidity even more (De Rosa et al. 
1980; Macalady et  al. 2004; Schleper et  al. 1995; Uda 
et  al. 2001). Whether the number of cyclopentane rings 
is really correlated with acidophilicity, however, is still a 
matter of debate. Nonetheless is it highly supported by a 
molecular modelling study that showed a tighter packed 
structure compared to GDGTs without rings (Gabriel and 
Chong 2000). The relation of cyclopentane rings with 
thermophilicity is shown multiple times, but in the case 
of acidophiles hampered by the fact that these species 
are often also thermophiles. The number of cyclopentane 
rings, e.g. was shown to decrease in Thermoplasma aci-
dophilum when grown at lower pH values (Shimada et al. 
2008). In contrast, Acidilobus sulfurireducens exhibits 
an increase in the cyclopentane rings at low pH values 
(Boyd et  al. 2011). Apparently, the pH stress response 
shows a species- or temperature-dependent response in 
terms of the number of cyclopentane rings. A study on 
the extreme acidophile Picrophilus oshimae (pHopt = 0.7) 
may hint on the cause of this discrepancy. When the lipids 
were extracted and re-constituted to liposomes they were 
unable to assemble when suspended at a pH >4.0 (van de 
Vossenberg et  al. 1998a, b). As this finding highly con-
tradicts the self-assembly capabilities of archaeal lipids 
from neutralophilic hyperthermophiles with the same 
core-lipid architecture, it suggests a putative important 
role for polar head-groups in physiological membrane 
adaptations of acidophiles and perhaps also for low pH 
stress response. Here, repulsive charges of the polar head 
groups at high pH could be the explanation for reduced 
membrane packaging of the lipids. Nonetheless, mem-
brane spanning lipids have been shown to be correlated 
with acidophilic archaea (Macalady et al. 2004). Because 
bacteria are also known to generate membrane spanning 
lipids, the difference in lower pH boundary of archaea 
can be attributed to cyclopentane rings and the abun-
dant methyl-branches. Although it is evident that these 
features lend archaea a lower permeability compared to 
standard bacterial lipids, the membrane spanning lipids 
in bacteria do not enable them to survive equally low pH 
levels as archaea. In a molecular dynamics study, (Chu-
gunov et al. 2014) simulated the effect of methyl-groups 
and cyclopentane rings on membrane permeability and 
fluidity. A prominent finding was that the presence of 
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methyl groups confers greater fluidization and higher 
permeability to the membrane than membrane spanning 
lipids without methyl groups. It is very likely that the 
inability of bacteria to include multiple methyl chains in 
their hydrocarbon chains explains why membrane span-
ning lipids are not detected in the most extreme acido-
philic bacteria (pHmin <3).

High pH adaptation in bacteria and archaea

On the other side of the pH scale, we encounter the obli-
gate alkaliphiles. In sharp contrast to acidophiles, bacteria 
survive at comparable and even slightly higher pH values 
than archaea, with ~pH = 11.4 as the upper limit for bac-
teria (Fig.  6 lower panels). This suggests that the adapta-
tion mechanisms of archaea and bacteria to high pH are 
nearly equivalent in efficiency. Although studies on the 
membrane composition in alkaliphilic bacteria are scarce, a 

few general trends are observed. The first striking observa-
tion is the high variability of lipids present in alkaliphilic 
bacteria. Often specific species like bis-mono-acylglyc-
ero-phosphate (BMP) lipids and CLs are detected in high 
quantities (Krulwich 2006).The alkaliphilic membranes 
are also copiously enriched in BCFAs (both iso as anteiso), 
and oftentimes MUFAs are very abundant (Clejan et  al. 
1986; Li et  al. 1994; Rainey et  al. 1996; Ye et  al. 2004). 
The actual upper pH limit for life was described for a bac-
terium, Bacillus pseudofirmus (pHmax = 11.4) (Janto et al. 
2011). In this species, high levels of CL, BMP, squalenes, 
and carotenoids were detected. Furthermore, the fatty 
acids were mainly composed of MUFAs and 92% BCFAs 
(Clejan et al. 1986). Altogether, it is concluded that enrich-
ment of BCFAs is a recurring theme in extremophilic 
bacteria in general, except for the psychrophiles. Another 
alkaliphilic characteristic is the presence of squalenes, tet-
rahydrosqualenes or other polyisoprenes in the membrane. 
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Hauß et  al. showed that these neutral lipids specifically 
position in the centre of the lipid bilayer, parallel to the 
plane of the membrane (Hauß et al. 2002), where they are 
thought to reduce lipid motility and proton leakiness as 
proposed by (Haines 2001). Furthermore, water perme-
ability is reduced and membrane rigidity increased which 
is an adaptation mechanism also suitable for low pH or 
high temperature. Squalene incorporation is also one of few 
adaptation mechanisms that are shared by both archaea and 
bacteria. In alkaliphilic archaea one can recognize a very 
distinct pattern from other archaea in which tetraethers and 
its derivatives are completely absent. Alkaliphilic archaeal 
membranes are dominated by diether lipids composed of 
C20:C20 or C20:C25 core lipids (Oger and Cario 2013) 
and a complete absence of GDGTs. The same holds true for 
glycolipids which are found only in trace amounts or which 
are completely absent. The polar headgroups are typically 
dominated by phosphatidylglycerol and phosphatidyl-glyc-
erol phosphate methyl ester (PGP-Me) causing an overall 
negative charge of the membrane that strongly influences 
permeability to protons and water.

Concluding remarks on extremophile membrane 
adaptations

Various studies have shown that archaeal membranes 
have more robust properties compared to bacterial mem-
branes (Koga and Morii 2005; Mathai et  al. 2001; van 
de Vossenberg et  al. 1998a, b; Yamauchi et  al. 1993). 
Nevertheless, both archaea and bacteria inhabit extreme 
environments as extensively as mild environments. To 
provide insight into the occurrence of both domains in 
extreme environments we made an inventory of maxi-
mal and minimal growth conditions of well characterized 
hyperthermophiles, psychrophiles. This analysis dem-
onstrates an equally broad temperature growth range of 
~120 degrees for both archaea and bacteria. An impor-
tant difference, however, lies in the domination at the 
temperature extremes. Bacteria are found to dominate 
lower temperature ecosystems, whereas archaea dominate 
the higher temperature ecosystems. A comparable pat-
tern also appeared when we analysed the pH scale where 
archaea dominate the bacteria <pH 1, and bacteria show 
a slight benefit at high alkalinity >pH 11. Regardless of 
the basal core lipid composition, both domains exten-
sively reshape their membrane composition to overcome 
the inhospitable conditions. Here we discussed the effi-
ciency of homeoviscous adaptations which may correlate 
with the different growth boundaries. At the observed 
boundaries it appears that bacterial core lipids are better 
accommodated to adjust the membrane fluidity, whereas 
archaeal core lipids are more efficient in rigidifying mod-
ifications. When looking into the membrane composition 

of the most extreme representatives of the domains, a 
consistent pattern appears at low pH and high tempera-
ture. Archaea form tetraether monolayer membranes that 
constitutes an adaptation mechanism of highly efficient 
rigidification and reduction of permeability. Interestingly, 
some of these typically archaeal features are also being 
implemented in bacterial hyperthermophiles and acido-
philes. Examples are an increased level of ether-bonds, 
membrane spanning lipids, and a high level of methyl-
branched BCFAs. It appears that both these features 
contribute to the fact that, e.g. both Thermotogales and 
Aquificales can survive higher growth temperatures than 
other bacterial hyperthermophiles. Typical membrane 
spanning lipids are also found in bacteria that thrive in 
acidic ecosystems. Here, however, these traits do not 
seem to improve the bacterial survival boundary at low 
pH. Despite this, it is conceivable that the cyclopentane 
rings do show correlation with the lowest pH survival 
range as formation of ring structures is also observed in 
bacterial lipids. In this case, it would support the hypoth-
esized inferior survival boundaries to high temperature 
and low pH by implementing standard bacterial lipids 
(fatty acid-diester-lipids). On the other hand, at low tem-
peratures it is observed that psychrophilic bacteria reduce 
their BCFA content as one of the main lipid modifica-
tions. This implies that at sub-freezing temperatures the 
effect of BCFAs to disturb the packing order near the 
interface of the bilayer is no longer sufficient to main-
tain fluidity. Because of that, facultative psychrophiles 
perhaps mainly implement unsaturations that cause a 
greater cross-sectional area of the lipids and less tight 
packing of the hydrocarbon chains than BCFAs. The iso-
prenoid hydrocarbon chains of archaeol which have an 
imperatively high number of methyl branches may thus 
be a disadvantageous characteristic at low temperatures. 
The methyl branches maintain a too dense packing which 
apparently cannot easily be compensated. In sharp con-
trast to bacteria, imitation of bacterial lipid features by 
archaea is thus far not observed in psychrophilic or alka-
liphilic ecosystems. Despite this, both ester and ether 
lipid fatty acid phospholipids are detected in archaea, but 
there does not seem to be a correlation with either growth 
temperatures or pH from the analysed archaea thus far 
(Gattinger et  al. 2002). Altogether, the deductions pre-
sented here are in line with the hypothesis that cytoplas-
mic membrane compositions are one of the main deter-
mining factors behind survival boundaries at extreme pH 
and temperatures.
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