Skip to main content
. 2017 May 15;21(4):651–670. doi: 10.1007/s00792-017-0939-x

Table 1.

Physiological membrane adaptations by core lipid modifications typically found in bacterial and archaeal extremophiles

Bacteria Temperature pH Pressure
T min <15 °C T max >75 °C pHmin <3 pHmax >10 >70 MPa
Level of chain length Ref Ref Ref Ref Ref
shorter chain ≤C14 + (7,8) + (31, 33) + (42, 43)
longer chain ≥C18
Level of unsaturation
 PUFA + (1–3) + (39)
 MUFA-cis + (7,8, 40) + (21) + (33) + (44)
 MUFA-trans + (8)
Level of branching
 BCFA-iso + (4,15,41) + (29) + (38, 42–44)
 BCFA-anteiso + (4) + (29, 32) + (44)
 Diabolic acid + (18, 45) + (35)
 (β)-hydroxy FA + (8) + (30, 33)
Level of cyclization
 Ω-Cyclohexyl + (29, 32)
 Cyclopropyl + (7) + (21) + (30, 33)
Level of tetraester and etherlipids
 Tetraesters + (22, 46)
 Mono- di- tetraethers + (18–21) + (34, 35)
Level of terpenes
 Polar carotenoid + (5,6) + (16, 17)
 Non-polar terpenes + (44)
Other modifications
 Cardiolipins + (7) + (44)
 Glycolipids + (7) + (16)
 BMP + (44)
Archaea Temperature pH Pressure
T min <15 °C T max >75 °C pHmin <3 pHmax >10 >40 MPa
Level of chain length Ref Ref Ref Ref Ref
C20-chain + (9) + (24–26) + (47–53) + (28, 54–55)
C25-chain + (56) + (47–53)
Level of saturation
 Unsaturated diethers + (9, 10) + (11)
Level of branching
 Hydroxyarchaeol + (9)
Level of cyclization
 Pentacyclic TE + (13, 27) + (13,27, 36, 37)
 Macrocyclic + (57) + (28, 57)
Level of tetraether lipids
 Tetraethers (9) + (12,23) + (14,36, 60) (61, 62, 63) (28)
Other modifications
 Glycolipids + (11) + (27, 37) (48, 50, 53, 58, 59)

References: 1: Russell (1997), 2: Shivaji and Prakash (2010), 3: Zsiros et al. (2000), 4: Oshima and Miyagawa (1974), 5: Chattopadhyay et al. (1997), 6: Jagannadham et al. (2000), 7: Guan et al. (2013), 8: Wan et al. (2016), 9: Nichols et al. (2004), 10: Gibson et al. (2005), 11: Sprott et al. (1997), 12: Cario et al. (2015), 13: De Rosa et al. (1980), 14: Uda et al. (2004), 15: Patel et al. (1991), 16: Ray et al. (1971), 17: Yokoyama et al. (1996), 18: Damsté et al. (2007), 19: Langworthy et al. (1983), 20: Huber et al. (1992), 21: Jahnke et al. (2001), 22: Huber et al. (1989), 23: Matsuno et al. (2009), 24: De Rosa et al. (1987), 25: Hafenbradl et al. (1996), 26: Ulrih et al. (2009), 27: Schleper et al. (1995), 28: Kaneshiro and Clark (1995), 29: De Rosa et al. (1974), 30: Wichlacz et al. (1986), 31: Wakao et al. (1994), 32: Matsubara et al. (2002), 33: Mykytczuk et al. (2010), 34: Weijers et al. (2006), 35: Damste et al. (2011), 36: Macalady et al. (2004), 37: Uda et al. (2001), 38: Clejan et al. (1986), 39: Nogi and Kato (1999), 40: Knoblauch et al. (1999), 41: Heinen et al. (1970), 42: Li et al. (1994), 43: Prowe and Antranikian (2001), 44: Clejan et al. (1986), 45: Balk et al. (2009), 46: Lee et al. (2002), 47: Namwong et al. (2007), 48: Feng et al. (2005), 49: Castillo et al. (2006), 50: Xu et al. (2001), 51: Xu et al. (1999), 52: Lanzotti et al. (1989), 53: Tindall et al. (1984), 54: Grant et al. (1985), 55: Takai et al. (2000), 56: Sako et al. (1996), 57: Sprott et al. (1991), 58: Hu et al. (2008), 59: Bowers and Wiegel (2011), 60: Schleper et al. (1995), 61: Feng et al. (2005), 62: Xu et al. (2001), 63: Lanzotti et al. (1989)

PUFA polyunsaturated fatty acids, MUFA-cis cis-monounsaturated fatty acids, MUFA-trans trans-monounsaturated fatty acids, BCFA-iso iso-branched chain fatty acids, BCFA-anteiso anteiso-branched chain fatty acids, BMP bis-mono-acylglycero-phosphate, TE tetraethers, + increased production, − decreased production